1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
The sampling Class has a set of static functions, that you can call to sample the surface of a mesh.
Each function is templated on the mesh and on a Sampler object s.
Each function calls many time the sample object with the sampling point as parameter.
Sampler Classes and Sampling algorithms are independent.
Sampler classes exploits the sample that are generated with various algorithms.
For example, you can compute Hausdorff distance (that is a sampler) using various
sampling strategies (montecarlo, stratified etc).
****************************************************************************/
#ifndef __VCGLIB_POINT_SAMPLING
#define __VCGLIB_POINT_SAMPLING
#include <vcg/math/random_generator.h>
#include <vcg/complex/algorithms/closest.h>
#include <vcg/space/index/spatial_hashing.h>
#include <vcg/complex/algorithms/hole.h>
#include <vcg/complex/algorithms/stat.h>
#include <vcg/complex/algorithms/create/platonic.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/update/bounding.h>
#include <vcg/space/segment2.h>
#include <vcg/space/index/grid_static_ptr.h>
namespace vcg
{
namespace tri
{
/// \ingroup trimesh
/// \headerfile point_sampling.h vcg/complex/algorithms/point_sampling.h
/**
\brief A basic sampler class that show the required interface used by the SurfaceSampling class.
Most of the methods of sampling classes call the AddFace method of this class with the face containing the sample and its barycentric coord.
Beside being an example of how to write a sampler it provides a simple way to use the various sampling classes.
For example if you just want to get a vector with positions over the surface You have just to write
vector<Point3f> myVec;
SurfaceSampling<MyMesh, TrivialSampler<MyMesh> >::Montecarlo(M, TrivialSampler<MyMesh>(myVec), SampleNum);
**/
template <class MeshType>
class TrivialSampler
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::FaceType FaceType;
void reset()
{
sampleVec->clear();
}
TrivialSampler()
{
sampleVec = new std::vector<CoordType>();
vectorOwner=true;
}
TrivialSampler(std::vector<CoordType> &Vec)
{
sampleVec = &Vec;
vectorOwner=false;
reset();
}
~TrivialSampler()
{
if(vectorOwner) delete sampleVec;
}
private:
std::vector<CoordType> *sampleVec;
bool vectorOwner;
public:
std::vector<CoordType> &SampleVec()
{
return *sampleVec;
}
void AddVert(const VertexType &p)
{
sampleVec->push_back(p.cP());
}
void AddEdge(const EdgeType& e, ScalarType u ) // u==0 -> v(0) u==1 -> v(1);
{
sampleVec->push_back(e.cV(0)->cP()*(1.0-u)+e.cV(1)->cP()*u);
}
void AddFace(const FaceType &f, const CoordType &p)
{
sampleVec->push_back(f.cP(0)*p[0] + f.cP(1)*p[1] +f.cP(2)*p[2] );
}
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &, float )
{
// Retrieve the color of the sample from the face f using the barycentric coord p
// and write that color in a texture image at position <tp[0], texHeight-tp[1]>
// if edgeDist is > 0 then the corrisponding point is affecting face color even if outside the face area (in texture space)
}
}; // end class TrivialSampler
template <class MeshType>
class TrivialPointerSampler
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::FaceType FaceType;
TrivialPointerSampler() {}
~TrivialPointerSampler() {}
void reset()
{
sampleVec.clear();
}
public:
std::vector<VertexType *> sampleVec;
void AddVert(VertexType &p)
{
sampleVec.push_back(&p);
}
void AddEdge(const EdgeType& e, ScalarType u ) // u==0 -> v(0) u==1 -> v(1);
{
if( u < 0.5 )
sampleVec.push_back(e.cV(0));
else
sampleVec.push_back(e.cV(1));
}
// This sampler should be used only for getting vertex pointers. Meaningless in other case.
void AddFace(const FaceType &, const CoordType &) { assert(0); }
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &, float ) { assert(0); }
}; // end class TrivialSampler
template <class MeshType>
class MeshSampler
{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::CoordType CoordType;
MeshSampler(MeshType &_m):m(_m){
perFaceNormal = false;
}
MeshType &m;
bool perFaceNormal; // default false; if true the sample normal is the face normal, otherwise it is interpolated
void reset()
{
m.Clear();
}
void AddVert(const VertexType &p)
{
tri::Allocator<MeshType>::AddVertices(m,1);
m.vert.back().ImportData(p);
}
void AddFace(const FaceType &f, CoordType p)
{
tri::Allocator<MeshType>::AddVertices(m,1);
m.vert.back().P() = f.cP(0)*p[0] + f.cP(1)*p[1] +f.cP(2)*p[2];
if(perFaceNormal) m.vert.back().N() = f.cN();
else m.vert.back().N() = f.cV(0)->N()*p[0] + f.cV(1)->N()*p[1] + f.cV(2)->N()*p[2];
if(tri::HasPerVertexQuality(m) )
m.vert.back().Q() = f.cV(0)->Q()*p[0] + f.cV(1)->Q()*p[1] + f.cV(2)->Q()*p[2];
}
}; // end class MeshSampler
/* This sampler is used to perform compute the Hausdorff measuring.
* It keep internally the spatial indexing structure used to find the closest point
* and the partial integration results needed to compute the average and rms error values.
* Averaged values assume that the samples are equi-distributed (e.g. a good unbiased montecarlo sampling of the surface).
*/
template <class MeshType>
class HausdorffSampler
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef GridStaticPtr<FaceType, ScalarType > MetroMeshFaceGrid;
typedef GridStaticPtr<VertexType, ScalarType > MetroMeshVertexGrid;
public:
HausdorffSampler(MeshType* _m, MeshType* _sampleMesh=0, MeshType* _closestMesh=0 ) :markerFunctor(_m)
{
m=_m;
init(_sampleMesh,_closestMesh);
}
MeshType *m; /// the mesh for which we search the closest points.
MeshType *samplePtMesh; /// the mesh containing the sample points
MeshType *closestPtMesh; /// the mesh containing the corresponding closest points that have been found
MetroMeshVertexGrid unifGridVert;
MetroMeshFaceGrid unifGridFace;
// Parameters
double min_dist;
double max_dist;
double mean_dist;
double RMS_dist; /// from the wikipedia defintion RMS DIST is sqrt(Sum(distances^2)/n), here we store Sum(distances^2)
double volume;
double area_S1;
Histogramf hist;
// globals parameters driving the samples.
int n_total_samples;
int n_samples;
bool useVertexSampling;
ScalarType dist_upper_bound; // samples that have a distance beyond this threshold distance are not considered.
typedef typename tri::FaceTmark<MeshType> MarkerFace;
MarkerFace markerFunctor;
float getMeanDist() const { return mean_dist / n_total_samples; }
float getMinDist() const { return min_dist ; }
float getMaxDist() const { return max_dist ; }
float getRMSDist() const { return sqrt(RMS_dist / n_total_samples); }
void init(MeshType* _sampleMesh=0, MeshType* _closestMesh=0 )
{
samplePtMesh =_sampleMesh;
closestPtMesh = _closestMesh;
if(m)
{
tri::UpdateNormal<MeshType>::PerFaceNormalized(*m);
if(m->fn==0) useVertexSampling = true;
else useVertexSampling = false;
if(useVertexSampling) unifGridVert.Set(m->vert.begin(),m->vert.end());
else unifGridFace.Set(m->face.begin(),m->face.end());
markerFunctor.SetMesh(m);
hist.SetRange(0.0, m->bbox.Diag()/100.0, 100);
}
min_dist = std::numeric_limits<double>::max();
max_dist = 0;
mean_dist =0;
RMS_dist = 0;
n_total_samples = 0;
}
void AddFace(const FaceType &f, CoordType interp)
{
CoordType startPt = f.cP(0)*interp[0] + f.cP(1)*interp[1] +f.cP(2)*interp[2]; // point to be sampled
CoordType startN = f.cV(0)->cN()*interp[0] + f.cV(1)->cN()*interp[1] +f.cV(2)->cN()*interp[2]; // Normal of the interpolated point
AddSample(startPt,startN); // point to be sampled);
}
void AddVert(VertexType &p)
{
p.Q()=AddSample(p.cP(),p.cN());
}
float AddSample(const CoordType &startPt,const CoordType &startN)
{
// the results
CoordType closestPt;
ScalarType dist = dist_upper_bound;
// compute distance between startPt and the mesh S2
FaceType *nearestF=0;
VertexType *nearestV=0;
vcg::face::PointDistanceBaseFunctor<ScalarType> PDistFunct;
dist=dist_upper_bound;
if(useVertexSampling)
nearestV = tri::GetClosestVertex<MeshType,MetroMeshVertexGrid>(*m,unifGridVert,startPt,dist_upper_bound,dist);
else
nearestF = unifGridFace.GetClosest(PDistFunct,markerFunctor,startPt,dist_upper_bound,dist,closestPt);
// update distance measures
if(dist == dist_upper_bound)
return dist;
if(dist > max_dist) max_dist = dist; // L_inf
if(dist < min_dist) min_dist = dist; // L_inf
mean_dist += dist; // L_1
RMS_dist += dist*dist; // L_2
n_total_samples++;
hist.Add((float)fabs(dist));
if(samplePtMesh)
{
tri::Allocator<MeshType>::AddVertices(*samplePtMesh,1);
samplePtMesh->vert.back().P() = startPt;
samplePtMesh->vert.back().Q() = dist;
samplePtMesh->vert.back().N() = startN;
}
if(closestPtMesh)
{
tri::Allocator<MeshType>::AddVertices(*closestPtMesh,1);
closestPtMesh->vert.back().P() = closestPt;
closestPtMesh->vert.back().Q() = dist;
closestPtMesh->vert.back().N() = startN;
}
return dist;
}
}; // end class HausdorffSampler
/* This sampler is used to transfer the detail of a mesh onto another one.
* It keep internally the spatial indexing structure used to find the closest point
*/
template <class MeshType>
class RedetailSampler
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef GridStaticPtr<FaceType, ScalarType > MetroMeshGrid;
typedef GridStaticPtr<VertexType, ScalarType > VertexMeshGrid;
public:
RedetailSampler():m(0) {}
MeshType *m; /// the source mesh for which we search the closest points (e.g. the mesh from which we take colors etc).
CallBackPos *cb;
int sampleNum; // the expected number of samples. Used only for the callback
int sampleCnt;
MetroMeshGrid unifGridFace;
VertexMeshGrid unifGridVert;
bool useVertexSampling;
// Parameters
typedef tri::FaceTmark<MeshType> MarkerFace;
MarkerFace markerFunctor;
bool coordFlag;
bool colorFlag;
bool normalFlag;
bool qualityFlag;
bool selectionFlag;
bool storeDistanceAsQualityFlag;
float dist_upper_bound;
void init(MeshType *_m, CallBackPos *_cb=0, int targetSz=0)
{
coordFlag=false;
colorFlag=false;
qualityFlag=false;
selectionFlag=false;
storeDistanceAsQualityFlag=false;
m=_m;
tri::UpdateNormal<MeshType>::PerFaceNormalized(*m);
if(m->fn==0) useVertexSampling = true;
else useVertexSampling = false;
if(useVertexSampling) unifGridVert.Set(m->vert.begin(),m->vert.end());
else unifGridFace.Set(m->face.begin(),m->face.end());
markerFunctor.SetMesh(m);
// sampleNum and sampleCnt are used only for the progress callback.
cb=_cb;
sampleNum = targetSz;
sampleCnt = 0;
}
// this function is called for each vertex of the target mesh.
// and retrieve the closest point on the source mesh.
void AddVert(VertexType &p)
{
assert(m);
// the results
CoordType closestPt, normf, bestq, ip;
ScalarType dist = dist_upper_bound;
const CoordType &startPt= p.cP();
// compute distance between startPt and the mesh S2
if(useVertexSampling)
{
VertexType *nearestV=0;
nearestV = tri::GetClosestVertex<MeshType,VertexMeshGrid>(*m,unifGridVert,startPt,dist_upper_bound,dist); //(PDistFunct,markerFunctor,startPt,dist_upper_bound,dist,closestPt);
if(cb) cb(sampleCnt++*100/sampleNum,"Resampling Vertex attributes");
if(storeDistanceAsQualityFlag) p.Q() = dist;
if(dist == dist_upper_bound) return ;
if(coordFlag) p.P()=nearestV->P();
if(colorFlag) p.C() = nearestV->C();
if(normalFlag) p.N() = nearestV->N();
if(qualityFlag) p.Q()= nearestV->Q();
if(selectionFlag) if(nearestV->IsS()) p.SetS();
}
else
{
FaceType *nearestF=0;
vcg::face::PointDistanceBaseFunctor<ScalarType> PDistFunct;
dist=dist_upper_bound;
if(cb) cb(sampleCnt++*100/sampleNum,"Resampling Vertex attributes");
nearestF = unifGridFace.GetClosest(PDistFunct,markerFunctor,startPt,dist_upper_bound,dist,closestPt);
if(dist == dist_upper_bound) return ;
CoordType interp;
InterpolationParameters(*nearestF,(*nearestF).cN(),closestPt, interp);
interp[2]=1.0-interp[1]-interp[0];
if(coordFlag) p.P()=closestPt;
if(colorFlag) p.C().lerp(nearestF->V(0)->C(),nearestF->V(1)->C(),nearestF->V(2)->C(),interp);
if(normalFlag) p.N() = nearestF->V(0)->N()*interp[0] + nearestF->V(1)->N()*interp[1] + nearestF->V(2)->N()*interp[2];
if(qualityFlag) p.Q()= nearestF->V(0)->Q()*interp[0] + nearestF->V(1)->Q()*interp[1] + nearestF->V(2)->Q()*interp[2];
if(selectionFlag) if(nearestF->IsS()) p.SetS();
}
}
}; // end class RedetailSampler
/**
\brief Main Class of the Sampling framework.
This class allows you to perform various kind of random/procedural point sampling over a triangulated surface.
The class is templated over the PointSampler object that allows to customize the use of the generated samples.
**/
template <class MeshType, class VertexSampler = TrivialSampler< MeshType> >
class SurfaceSampling
{
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::BoxType BoxType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef typename vcg::SpatialHashTable<FaceType, ScalarType> MeshSHT;
typedef typename vcg::SpatialHashTable<FaceType, ScalarType>::CellIterator MeshSHTIterator;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> MontecarloSHT;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator MontecarloSHTIterator;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator SampleSHTIterator;
typedef typename MeshType::template PerVertexAttributeHandle<float> PerVertexFloatAttribute;
public:
static math::MarsenneTwisterRNG &SamplingRandomGenerator()
{
static math::MarsenneTwisterRNG rnd;
return rnd;
}
// Returns an integer random number in the [0,i-1] interval using the improve Marsenne-Twister method.
// this functor is needed for passing it to the std functions.
static unsigned int RandomInt(unsigned int i)
{
return (SamplingRandomGenerator().generate(i));
}
// Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method.
static double RandomDouble01()
{
return SamplingRandomGenerator().generate01();
}
#define FAK_LEN 1024
static double LnFac(int n) {
// Tabled log factorial function. gives natural logarithm of n!
// define constants
static const double // coefficients in Stirling approximation
C0 = 0.918938533204672722, // ln(sqrt(2*pi))
C1 = 1./12.,
C3 = -1./360.;
// C5 = 1./1260., // use r^5 term if FAK_LEN < 50
// C7 = -1./1680.; // use r^7 term if FAK_LEN < 20
// static variables
static double fac_table[FAK_LEN]; // table of ln(n!):
static bool initialized = false; // remember if fac_table has been initialized
if (n < FAK_LEN) {
if (n <= 1) {
if (n < 0) assert(0);//("Parameter negative in LnFac function");
return 0;
}
if (!initialized) { // first time. Must initialize table
// make table of ln(n!)
double sum = fac_table[0] = 0.;
for (int i=1; i<FAK_LEN; i++) {
sum += log(double(i));
fac_table[i] = sum;
}
initialized = true;
}
return fac_table[n];
}
// not found in table. use Stirling approximation
double n1, r;
n1 = n; r = 1. / n1;
return (n1 + 0.5)*log(n1) - n1 + C0 + r*(C1 + r*r*C3);
}
static int PoissonRatioUniforms(double L) {
/*
This subfunction generates a integer with the poisson
distribution using the ratio-of-uniforms rejection method (PRUAt).
This approach is STABLE even for large L (e.g. it does not suffer from the overflow limit of the classical Knuth implementation)
Execution time does not depend on L, except that it matters whether
is within the range where ln(n!) is tabulated.
Reference:
E. Stadlober
"The ratio of uniforms approach for generating discrete random variates".
Journal of Computational and Applied Mathematics,
vol. 31, no. 1, 1990, pp. 181-189.
Partially adapted/inspired from some subfunctions of the Agner Fog stocc library ( www.agner.org/random )
Same licensing scheme.
*/
// constants
const double SHAT1 = 2.943035529371538573; // 8/e
const double SHAT2 = 0.8989161620588987408; // 3-sqrt(12/e)
double u; // uniform random
double lf; // ln(f(x))
double x; // real sample
int k; // integer sample
double pois_a = L + 0.5; // hat center
int mode = (int)L; // mode
double pois_g = log(L);
double pois_f0 = mode * pois_g - LnFac(mode); // value at mode
double pois_h = sqrt(SHAT1 * (L+0.5)) + SHAT2; // hat width
double pois_bound = (int)(pois_a + 6.0 * pois_h); // safety-bound
while(1) {
u = RandomDouble01();
if (u == 0) continue; // avoid division by 0
x = pois_a + pois_h * (RandomDouble01() - 0.5) / u;
if (x < 0 || x >= pois_bound) continue; // reject if outside valid range
k = (int)(x);
lf = k * pois_g - LnFac(k) - pois_f0;
if (lf >= u * (4.0 - u) - 3.0) break; // quick acceptance
if (u * (u - lf) > 1.0) continue; // quick rejection
if (2.0 * log(u) <= lf) break; // final acceptance
}
return k;
}
/**
algorithm poisson random number (Knuth):
init:
Let L ← e^−λ, k ← 0 and p ← 1.
do:
k ← k + 1.
Generate uniform random number u in [0,1] and let p ← p × u.
while p > L.
return k − 1.
*/
static int Poisson(double lambda)
{
if(lambda>50) return PoissonRatioUniforms(lambda);
double L = exp(-lambda);
int k =0;
double p = 1.0;
do
{
k = k+1;
p = p*RandomDouble01();
} while (p>L);
return k -1;
}
static void AllVertex(MeshType & m, VertexSampler &ps)
{
AllVertex(m, ps, false);
}
static void AllVertex(MeshType & m, VertexSampler &ps, bool onlySelected)
{
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
if ((!onlySelected) || ((*vi).IsS()))
{
ps.AddVert(*vi);
}
}
/// Sample the vertices in a weighted way. Each vertex has a probability of being chosen
/// that is proportional to its quality.
/// It assumes that you are asking a number of vertices smaller than nv;
/// Algorithm:
/// 1) normalize quality so that sum q == 1;
/// 2) shuffle vertices.
/// 3) for each vertices choose it if rand > thr;
static void VertexWeighted(MeshType & m, VertexSampler &ps, int sampleNum)
{
ScalarType qSum = 0;
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
qSum += (*vi).Q();
ScalarType samplePerUnit = sampleNum/qSum;
ScalarType floatSampleNum =0;
std::vector<VertexPointer> vertVec;
FillAndShuffleVertexPointerVector(m,vertVec);
std::vector<bool> vertUsed(m.vn,false);
int i=0; int cnt=0;
while(cnt < sampleNum)
{
if(vertUsed[i])
{
floatSampleNum += vertVec[i]->Q() * samplePerUnit;
int vertSampleNum = (int) floatSampleNum;
floatSampleNum -= (float) vertSampleNum;
// for every sample p_i in T...
if(vertSampleNum > 1)
{
ps.AddVert(*vertVec[i]);
cnt++;
vertUsed[i]=true;
}
}
i = (i+1)%m.vn;
}
}
/// Sample the vertices in a uniform way. Each vertex has a probability of being chosen
/// that is proportional to the area it represent.
static void VertexAreaUniform(MeshType & m, VertexSampler &ps, int sampleNum)
{
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if(!(*vi).IsD())
(*vi).Q() = 0;
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
{
ScalarType areaThird = DoubleArea(*fi)/6.0;
(*fi).V(0)->Q()+=areaThird;
(*fi).V(1)->Q()+=areaThird;
(*fi).V(2)->Q()+=areaThird;
}
VertexWeighted(m,ps,sampleNum);
}
static void FillAndShuffleFacePointerVector(MeshType & m, std::vector<FacePointer> &faceVec)
{
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD()) faceVec.push_back(&*fi);
assert((int)faceVec.size()==m.fn);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(faceVec.begin(),faceVec.end(), p_myrandom);
}
static void FillAndShuffleVertexPointerVector(MeshType & m, std::vector<VertexPointer> &vertVec)
{
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD()) vertVec.push_back(&*vi);
assert((int)vertVec.size()==m.vn);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(vertVec.begin(),vertVec.end(), p_myrandom);
}
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
static void VertexUniform(MeshType & m, VertexSampler &ps, int sampleNum, bool onlySelected)
{
if (sampleNum >= m.vn) {
AllVertex(m, ps, onlySelected);
return;
}
std::vector<VertexPointer> vertVec;
FillAndShuffleVertexPointerVector(m, vertVec);
int added = 0;
for (int i = 0; ((i < m.vn) && (added < sampleNum)); ++i)
if (!(*vertVec[i]).IsD())
if ((!onlySelected) || (*vertVec[i]).IsS())
{
ps.AddVert(*vertVec[i]);
added++;
}
}
static void VertexUniform(MeshType & m, VertexSampler &ps, int sampleNum)
{
VertexUniform(m, ps, sampleNum, false);
}
///
/// \brief The EdgeSamplingStrategy enum determines the sampling strategy for edge meshes.
/// Given a sampling radius 'r', and the total length of the edge mesh 'L',
/// the number of generated samples is: op(L/r) (+ 1 if the mesh is not a loop)
/// where op is (floor | round | ceil)
///
enum EdgeSamplingStrategy
{
Floor = 0,
Round,
Ceil,
};
/// Perform an uniform sampling over an EdgeMesh.
///
/// It assumes that the mesh is 1-manifold.
/// each connected component is sampled in a independent way.
/// For each component of length <L> we place on it floor(L/radius)+1 samples.
/// (if conservative argument is false we place ceil(L/radius)+1 samples)
///
static void EdgeMeshUniform(MeshType &m, VertexSampler &ps, float radius, EdgeSamplingStrategy strategy = Floor)
{
tri::RequireEEAdjacency(m);
tri::RequireCompactness(m);
tri::RequirePerEdgeFlags(m);
tri::RequirePerVertexFlags(m);
tri::UpdateTopology<MeshType>::EdgeEdge(m);
tri::UpdateFlags<MeshType>::EdgeClearV(m);
tri::MeshAssert<MeshType>::EEOneManifold(m);
for (EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
{
if (!ei->IsV())
{
edge::Pos<EdgeType> ep(&*ei,0);
edge::Pos<EdgeType> startep = ep;
do // first loop to search a boundary component.
{
ep.NextE();
if (ep.IsBorder())
break;
} while (startep != ep);
if (!ep.IsBorder())
{
// it's a loop
assert(ep == startep);
// to keep the uniform resampling order-independent:
// 1) start from the 'lowest' point...
edge::Pos<EdgeType> altEp = ep;
altEp.NextE();
while (altEp != startep) {
if (altEp.V()->cP() < ep.V()->cP())
{
ep = altEp;
}
altEp.NextE();
}
// 2) ... with consistent direction
const auto dir0 = ep.VFlip()->cP() - ep.V()->cP();
ep.FlipE();
const auto dir1 = ep.VFlip()->cP() - ep.V()->cP();
if (dir0 < dir1)
{
ep.FlipE();
}
}
else
{
// not a loop
// to keep the uniform resampling order-independent
// start from the border with 'lowest' point
edge::Pos<EdgeType> altEp = ep;
do {
altEp.NextE();
} while (!altEp.IsBorder());
if (altEp.V()->cP() < ep.V()->cP())
{
ep = altEp;
}
}
ScalarType totalLen = 0;
ep.FlipV();
// second loop to compute the length of the chain.
do
{
ep.E()->SetV();
totalLen += Distance(ep.V()->cP(), ep.VFlip()->cP());
ep.NextE();
} while (!ep.E()->IsV() && !ep.IsBorder());
if (ep.IsBorder())
{
ep.E()->SetV();
totalLen += Distance(ep.V()->cP(), ep.VFlip()->cP());
}
VertexPointer startVertex = ep.V();
// Third loop actually performs the sampling.
int sampleNum = -1;
{
double div = double(totalLen) / radius;
switch (strategy) {
case Round:
sampleNum = int(round(div));
break;
case Ceil:
sampleNum = int(ceil(div));
break;
default: // Floor
sampleNum = int(floor(div));
break;
};
}
assert(sampleNum >= 0);
ScalarType sampleDist = totalLen / sampleNum;
// printf("Found a chain of %f with %i samples every %f (%f)\n", totalLen, sampleNum, sampleDist, radius);
ScalarType curLen = 0;
int sampleCnt = 1;
ps.AddEdge(*(ep.E()), ep.VInd() == 0 ? 0.0 : 1.0);
do {
ep.NextE();
assert(ep.E()->IsV());
ScalarType edgeLen = Distance(ep.VFlip()->cP(), ep.V()->cP());
ScalarType d0 = curLen;
ScalarType d1 = d0 + edgeLen;
while (d1 > sampleCnt * sampleDist && sampleCnt < sampleNum)
{
ScalarType off = (sampleCnt * sampleDist - d0) / edgeLen;
// printf("edgeLen %f off %f samplecnt %i\n", edgeLen, off, sampleCnt);
ps.AddEdge(*(ep.E()), ep.VInd() == 0 ? 1.0 - off : off);
sampleCnt++;
}
curLen += edgeLen;
} while(!ep.IsBorder() && ep.V() != startVertex);
if(ep.V() != startVertex)
{
ps.AddEdge(*(ep.E()), ep.VInd() == 0 ? 0.0 : 1.0);
}
}
}
}
/// \brief Sample all the border corner vertices
///
/// It assumes that the border flag have been set over the mesh both for vertex and for faces.
/// All the vertices on the border where the edges of the boundary of the surface forms an angle smaller than the given threshold are sampled.
/// It assumes that the Per-Vertex border Flag has been set.
static void VertexBorderCorner(MeshType & m, VertexSampler &ps, ScalarType angleRad)
{
vcg::tri::UpdateSelection<MeshType>::VertexCornerBorder(m,angleRad);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if(vi->IsS()) ps.AddVert(*vi);
}
}
/// \brief Sample all the border vertices
///
/// It assumes that the border flag have been set over the mesh.
/// All the vertices on the border are sampled.
///
static void VertexBorder(MeshType & m, VertexSampler &ps)
{
VertexBorderCorner(m,ps,std::numeric_limits<ScalarType>::max());
}
/// Sample all the crease vertices.
/// It assumes that the crease edges had been marked as non-faux edges
/// for example by using
/// tri::UpdateFlags<MeshType>::FaceFauxCrease(mesh,creaseAngleRad);
/// Then it chooses all the vertices where there are at least three non faux edges.
///
static void VertexCrease(MeshType & m, VertexSampler &ps)
{
typedef typename UpdateTopology<MeshType>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
typename std::vector< SimpleEdge >::iterator ei;
UpdateTopology<MeshType>::FillUniqueEdgeVector(m,Edges,false);
typename MeshType::template PerVertexAttributeHandle <int> hv = tri::Allocator<MeshType>:: template GetPerVertexAttribute<int> (m);
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
hv[ei->v[0]]++;
hv[ei->v[1]]++;
}
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if(hv[vi]>2)
ps.AddVert(*vi);
}
}
static void FaceUniform(MeshType & m, VertexSampler &ps, int sampleNum)
{
if(sampleNum>=m.fn) {
AllFace(m,ps);
return;
}
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
for(int i =0; i< sampleNum; ++i)
ps.AddFace(*faceVec[i],Barycenter(*faceVec[i]));
}
static void AllFace(MeshType & m, VertexSampler &ps)
{
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
ps.AddFace(*fi,Barycenter(*fi));
}
}
static void AllEdge(MeshType & m, VertexSampler &ps)
{
// Edge sampling.
typedef typename UpdateTopology<MeshType>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
typename std::vector< SimpleEdge >::iterator ei;
UpdateTopology<MeshType>::FillUniqueEdgeVector(m,Edges);
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
ps.AddFace(*(*ei).f,ei->EdgeBarycentricToFaceBarycentric(0.5));
}
// Regular Uniform Edge sampling
// Each edge is subdivided in a number of pieces proprtional to its length
// Sample are choosen without touching the vertices.
static void EdgeUniform(MeshType & m, VertexSampler &ps,int sampleNum, bool sampleFauxEdge=true)
{
typedef typename UpdateTopology<MeshType>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
UpdateTopology<MeshType>::FillUniqueEdgeVector(m,Edges,sampleFauxEdge);
// First loop compute total edge length;
float edgeSum=0;
typename std::vector< SimpleEdge >::iterator ei;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
edgeSum+=Distance((*ei).v[0]->P(),(*ei).v[1]->P());
float sampleLen = edgeSum/sampleNum;
float rest=0;
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
{
float len = Distance((*ei).v[0]->P(),(*ei).v[1]->P());
float samplePerEdge = floor((len+rest)/sampleLen);
rest = (len+rest) - samplePerEdge * sampleLen;
float step = 1.0/(samplePerEdge+1);
for(int i=0;i<samplePerEdge;++i)
{
CoordType interp(0,0,0);
interp[ (*ei).z ]=step*(i+1);
interp[((*ei).z+1)%3]=1.0-step*(i+1);
ps.AddFace(*(*ei).f,interp);
}
}
}
// Generate the barycentric coords of a random point over a single face,
// with a uniform distribution over the triangle.
// It uses the parallelogram folding trick.
static CoordType RandomBarycentric()
{
return math::GenerateBarycentricUniform<ScalarType>(SamplingRandomGenerator());
}
// Given a triangle return a random point over it
static CoordType RandomPointInTriangle(const FaceType &f)
{
CoordType u = RandomBarycentric();
return f.cP(0)*u[0] + f.cP(1)*u[1] + f.cP(2)*u[2];
}
static void StratifiedMontecarlo(MeshType & m, VertexSampler &ps,int sampleNum)
{
ScalarType area = Stat<MeshType>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
// Montecarlo sampling.
double floatSampleNum = 0.0;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
int faceSampleNum = (int) floatSampleNum;
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBarycentric());
floatSampleNum -= (double) faceSampleNum;
}
}
/**
This function compute montecarlo distribution with an approximate number of
samples exploiting the poisson distribution approximation of the binomial distribution.
For a given triangle t of area a_t, in a Mesh of area A,
if we take n_s sample over the mesh, the number of samples that falls in t
follows the poisson distribution of P(lambda ) with lambda = n_s * (a_t/A).
To approximate the Binomial we use a Poisson distribution with parameter
\lambda = np can be used as an approximation to B(n,p)
(it works if n is sufficiently large and p is sufficiently small).
*/
static void MontecarloPoisson(MeshType & m, VertexSampler &ps,int sampleNum)
{
ScalarType area = Stat<MeshType>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
float areaT=DoubleArea(*fi) * 0.5f;
int faceSampleNum = Poisson(areaT*samplePerAreaUnit);
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBarycentric());
// SampleNum -= (double) faceSampleNum;
}
}
/**
This function computes a montecarlo distribution with an EXACT number of samples.
it works by generating a sequence of consecutive segments proportional to the triangle areas
and actually shooting sample over this line
*/
static void EdgeMontecarlo(MeshType & m, VertexSampler &ps, int sampleNum, bool sampleAllEdges)
{
typedef typename UpdateTopology<MeshType>::PEdge SimpleEdge;
std::vector< SimpleEdge > Edges;
UpdateTopology<MeshType>::FillUniqueEdgeVector(m,Edges,sampleAllEdges);
assert(!Edges.empty());
typedef std::pair<ScalarType, SimpleEdge*> IntervalType;
std::vector< IntervalType > intervals (Edges.size()+1);
int i=0;
intervals[i]=std::make_pair(0,(SimpleEdge*)(0));
// First loop: build a sequence of consecutive segments proportional to the edge lenghts.
typename std::vector< SimpleEdge >::iterator ei;
for(ei=Edges.begin(); ei != Edges.end(); ei++)
{
intervals[i+1]=std::make_pair(intervals[i].first+Distance((*ei).v[0]->P(),(*ei).v[1]->P()), &*ei);
++i;
}
// Second Loop get a point on the line 0...Sum(edgeLen) to pick a point;
ScalarType edgeSum = intervals.back().first;
for(i=0;i<sampleNum;++i)
{
ScalarType val = edgeSum * RandomDouble01();
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std::vector<IntervalType>::iterator it = lower_bound(intervals.begin(),intervals.end(),std::make_pair(val,(SimpleEdge*)(0)) );
assert(it != intervals.end() && it != intervals.begin());
assert( ( (*(it-1)).first < val ) && ((*(it)).first >= val) );
SimpleEdge * ep=(*it).second;
ps.AddFace( *(ep->f), ep->EdgeBarycentricToFaceBarycentric(RandomDouble01()) );
}
}
/**
This function computes a montecarlo distribution with an EXACT number of samples.
it works by generating a sequence of consecutive segments proportional to the triangle areas
and actually shooting sample over this line
*/
static void Montecarlo(MeshType & m, VertexSampler &ps,int sampleNum)
{
typedef std::pair<ScalarType, FacePointer> IntervalType;
std::vector< IntervalType > intervals (m.fn+1);
FaceIterator fi;
int i=0;
intervals[i]=std::make_pair(0,FacePointer(0));
// First loop: build a sequence of consecutive segments proportional to the triangle areas.
for(fi=m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
intervals[i+1]=std::make_pair(intervals[i].first+0.5*DoubleArea(*fi), &*fi);
++i;
}
ScalarType meshArea = intervals.back().first;
for(i=0;i<sampleNum;++i)
{
ScalarType val = meshArea * RandomDouble01();
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std::vector<IntervalType>::iterator it = lower_bound(intervals.begin(),intervals.end(),std::make_pair(val,FacePointer(0)) );
assert(it != intervals.end());
assert(it != intervals.begin());
assert( (*(it-1)).first <val );
assert( (*(it)).first >= val);
ps.AddFace( *(*it).second, RandomBarycentric() );
}
}
static ScalarType WeightedArea(FaceType &f, PerVertexFloatAttribute &wH)
{
ScalarType averageQ = ( wH[f.V(0)] + wH[f.V(1)] + wH[f.V(2)] )/3.0;
return averageQ*averageQ*DoubleArea(f)/2.0;
}
/// Compute a sampling of the surface that is weighted by the quality and a variance
///
/// We use the quality as linear distortion of density.
/// We consider each triangle as scaled between 1 and 1/variance linearly according quality.
///
/// In practice with variance 2 the average distance between sample will double where the quality is maxima.
/// If you have two same area region A with q==-1 and B with q==1, if variance==2 the A will have 4 times more samples than B
///
static void WeightedMontecarlo(MeshType & m, VertexSampler &ps,int sampleNum, float variance)
{
tri::RequirePerVertexQuality(m);
tri::RequireCompactness(m);
PerVertexFloatAttribute rH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<float> (m,"radius");
InitRadiusHandleFromQuality(m, rH, 1.0, variance, true);
ScalarType weightedArea = 0;
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
weightedArea += WeightedArea(*fi,rH);
ScalarType samplePerAreaUnit = sampleNum/weightedArea;
// Montecarlo sampling.
double floatSampleNum = 0.0;
for(FaceIterator fi=m.face.begin(); fi != m.face.end(); fi++)
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum += WeightedArea(*fi,rH) * samplePerAreaUnit;
int faceSampleNum = (int) floatSampleNum;
// for every sample p_i in T...
for(int i=0; i < faceSampleNum; i++)
ps.AddFace(*fi,RandomBarycentric());
floatSampleNum -= (double) faceSampleNum;
}
}
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
{
// recursive face subdivision.
if(sampleNum == 1)
{
// ground case.
CoordType SamplePoint;
if(randSample)
{
CoordType rb=RandomBarycentric();
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
}
else SamplePoint=((v0+v1+v2)*(1.0f/3.0f));
ps.AddFace(*fp,SamplePoint);
return 1;
}
int s0 = sampleNum /2;
int s1 = sampleNum-s0;
assert(s0>0);
assert(s1>0);
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
ScalarType w1 = 1.0-w0;
// compute the longest edge.
ScalarType maxd01 = SquaredDistance(v0,v1);
ScalarType maxd12 = SquaredDistance(v1,v2);
ScalarType maxd20 = SquaredDistance(v2,v0);
int res;
if(maxd01 > maxd12)
if(maxd01 > maxd20) res = 0;
else res = 2;
else
if(maxd12 > maxd20) res = 1;
else res = 2;
int faceSampleNum=0;
// break the input triangle along the midpoint of the longest edge.
CoordType pp;
switch(res)
{
case 0 : pp = v0*w0 + v1*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
case 1 : pp = v1*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample);
break;
case 2 : pp = v0*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
}
return faceSampleNum;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivision(MeshType & m, VertexSampler &ps,int sampleNum, bool randSample)
{
ScalarType area = Stat<MeshType>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
vcg::tri::UpdateNormal<MeshType>::PerFaceNormalized(m);
double floatSampleNum = 0.0;
int faceSampleNum;
// Subdivision sampling.
typename std::vector<FacePointer>::iterator fi;
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
{
const CoordType b0(1.0, 0.0, 0.0);
const CoordType b1(0.0, 1.0, 0.0);
const CoordType b2(0.0, 0.0, 1.0);
// compute # samples in the current face.
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
faceSampleNum = (int) floatSampleNum;
if(faceSampleNum>0)
faceSampleNum = SingleFaceSubdivision(faceSampleNum,b0,b1,b2,ps,*fi,randSample);
floatSampleNum -= (double) faceSampleNum;
}
}
//---------
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivisionOld(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
{
// recursive face subdivision.
if(sampleNum == 1)
{
// ground case.
CoordType SamplePoint;
if(randSample)
{
CoordType rb=RandomBarycentric();
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
}
else SamplePoint=((v0+v1+v2)*(1.0f/3.0f));
CoordType SampleBary;
InterpolationParameters(*fp,SamplePoint,SampleBary);
ps.AddFace(*fp,SampleBary);
return 1;
}
int s0 = sampleNum /2;
int s1 = sampleNum-s0;
assert(s0>0);
assert(s1>0);
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
ScalarType w1 = 1.0-w0;
// compute the longest edge.
ScalarType maxd01 = SquaredDistance(v0,v1);
ScalarType maxd12 = SquaredDistance(v1,v2);
ScalarType maxd20 = SquaredDistance(v2,v0);
int res;
if(maxd01 > maxd12)
if(maxd01 > maxd20) res = 0;
else res = 2;
else
if(maxd12 > maxd20) res = 1;
else res = 2;
int faceSampleNum=0;
// break the input triangle along the midpoint of the longest edge.
CoordType pp;
switch(res)
{
case 0 : pp = v0*w0 + v1*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
case 1 : pp = v1*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample);
break;
case 2 : pp = v0*w0 + v2*w1;
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
break;
}
return faceSampleNum;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivisionOld(MeshType & m, VertexSampler &ps,int sampleNum, bool randSample)
{
ScalarType area = Stat<MeshType>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
std::vector<FacePointer> faceVec;
FillAndShuffleFacePointerVector(m,faceVec);
tri::UpdateNormal<MeshType>::PerFaceNormalized(m);
double floatSampleNum = 0.0;
int faceSampleNum;
// Subdivision sampling.
typename std::vector<FacePointer>::iterator fi;
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
{
// compute # samples in the current face.
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
faceSampleNum = (int) floatSampleNum;
if(faceSampleNum>0)
faceSampleNum = SingleFaceSubdivision(faceSampleNum,(**fi).V(0)->cP(), (**fi).V(1)->cP(), (**fi).V(2)->cP(),ps,*fi,randSample);
floatSampleNum -= (double) faceSampleNum;
}
}
//---------
// Similar Triangles sampling.
// Skip vertex and edges
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge)
{
int n_samples=0;
int i, j;
float segmentNum=n_samples_per_edge -1 ;
float segmentLen = 1.0/segmentNum;
// face sampling.
for(i=1; i < n_samples_per_edge-1; i++)
for(j=1; j < n_samples_per_edge-1-i; j++)
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
n_samples++;
ps.AddFace(*fp,sampleBary);
}
return n_samples;
}
static int SingleFaceSimilarDual(FacePointer fp, VertexSampler &ps, int n_samples_per_edge, bool randomFlag)
{
int n_samples=0;
float i, j;
float segmentNum=n_samples_per_edge -1 ;
float segmentLen = 1.0/segmentNum;
// face sampling.
for(i=0; i < n_samples_per_edge-1; i++)
for(j=0; j < n_samples_per_edge-1-i; j++)
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType V0((i+0)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+0)*segmentLen) ) ;
CoordType V1((i+1)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+0)*segmentLen) ) ;
CoordType V2((i+0)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+1)*segmentLen) ) ;
n_samples++;
if(randomFlag) {
CoordType rb=RandomBarycentric();
ps.AddFace(*fp, V0*rb[0]+V1*rb[1]+V2*rb[2]);
} else ps.AddFace(*fp,(V0+V1+V2)/3.0);
if( j < n_samples_per_edge-i-2 )
{
CoordType V3((i+1)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+1)*segmentLen) ) ;
n_samples++;
if(randomFlag) {
CoordType rb=RandomBarycentric();
ps.AddFace(*fp, V3*rb[0]+V1*rb[1]+V2*rb[2]);
} else ps.AddFace(*fp,(V3+V1+V2)/3.0);
}
}
return n_samples;
}
// Similar sampling
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
// 1) you have already sampled both edges and vertices
// 2) you are not going to take samples on edges and vertices.
//
// In the first case you have to consider only internal vertices of the subdivided triangles (to avoid multiple sampling of edges and vertices).
// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of points on an edge (vertex included)
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
// into 9 smaller triangles and you get (1*2)/2 == 1 only a single internal point.
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
// from which you get:
//
// 5 + sqrt( 1 + 8N )
// k = -------------------
// 2
//
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
// So if you want N samples in a triangle, the number <k> of points on an edge (vertex included) should be simply:
// k = 1 + sqrt(N)
// examples:
// N = 4 -> k = 3
// N = 9 -> k = 4
//template <class MeshType>
//void Sampling<MeshType>::SimilarFaceSampling()
static void FaceSimilar(MeshType & m, VertexSampler &ps,int sampleNum, bool dualFlag, bool randomFlag)
{
ScalarType area = Stat<MeshType>::ComputeMeshArea(m);
ScalarType samplePerAreaUnit = sampleNum/area;
// Similar Triangles sampling.
int n_samples_per_edge;
double n_samples_decimal = 0.0;
FaceIterator fi;
for(fi=m.face.begin(); fi != m.face.end(); fi++)
{
// compute # samples in the current face.
n_samples_decimal += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
int n_samples = (int) n_samples_decimal;
if(n_samples>0)
{
// face sampling.
if(dualFlag)
{
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); // original for non dual case
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
} else {
n_samples_per_edge = (int)(sqrt((double)n_samples) +1.0);
n_samples = SingleFaceSimilarDual(&*fi,ps, n_samples_per_edge,randomFlag);
}
}
n_samples_decimal -= (double) n_samples;
}
}
// Rasterization fuction
// Take a triangle
// T deve essere una classe funzionale che ha l'operatore ()
// con due parametri x,y di tipo S esempio:
// class Foo { public void operator()(int x, int y ) { ??? } };
// This function does rasterization with a safety buffer area, thus accounting some points actually outside triangle area
// The safety area samples are generated according to face flag BORDER which should be true for texture space border edges
// Use correctSafePointsBaryCoords = true to map safety texels to closest point barycentric coords (on edge).
static void SingleFaceRaster(typename MeshType::FaceType &f, VertexSampler &ps,
const Point2<typename MeshType::ScalarType> & v0,
const Point2<typename MeshType::ScalarType> & v1,
const Point2<typename MeshType::ScalarType> & v2,
bool correctSafePointsBaryCoords=true)
{
typedef typename MeshType::ScalarType S;
// Calcolo bounding box
Box2i bbox;
Box2<S> bboxf;
bboxf.Add(v0);
bboxf.Add(v1);
bboxf.Add(v2);
bbox.min[0] = floor(bboxf.min[0]);
bbox.min[1] = floor(bboxf.min[1]);
bbox.max[0] = ceil(bboxf.max[0]);
bbox.max[1] = ceil(bboxf.max[1]);
// Calcolo versori degli spigoli
Point2<S> d10 = v1 - v0;
Point2<S> d21 = v2 - v1;
Point2<S> d02 = v0 - v2;
// Preparazione prodotti scalari
S b0 = (bbox.min[0]-v0[0])*d10[1] - (bbox.min[1]-v0[1])*d10[0];
S b1 = (bbox.min[0]-v1[0])*d21[1] - (bbox.min[1]-v1[1])*d21[0];
S b2 = (bbox.min[0]-v2[0])*d02[1] - (bbox.min[1]-v2[1])*d02[0];
// Preparazione degli steps
S db0 = d10[1];
S db1 = d21[1];
S db2 = d02[1];
// Preparazione segni
S dn0 = -d10[0];
S dn1 = -d21[0];
S dn2 = -d02[0];
//Calculating orientation
bool flipped = !(d02 * vcg::Point2<S>(-d10[1], d10[0]) >= 0);
// Calculating border edges
Segment2<S> borderEdges[3];
S edgeLength[3];
unsigned char edgeMask = 0;
if (f.IsB(0)) {
borderEdges[0] = Segment2<S>(v0, v1);
edgeLength[0] = borderEdges[0].Length();
edgeMask |= 1;
}
if (f.IsB(1)) {
borderEdges[1] = Segment2<S>(v1, v2);
edgeLength[1] = borderEdges[1].Length();
edgeMask |= 2;
}
if (f.IsB(2)) {
borderEdges[2] = Segment2<S>(v2, v0);
edgeLength[2] = borderEdges[2].Length();
edgeMask |= 4;
}
// Rasterizzazione
double de = v0[0]*v1[1]-v0[0]*v2[1]-v1[0]*v0[1]+v1[0]*v2[1]-v2[0]*v1[1]+v2[0]*v0[1];
for(int x=bbox.min[0]-1;x<=bbox.max[0]+1;++x)
{
bool in = false;
S n[3] = { b0-db0-dn0, b1-db1-dn1, b2-db2-dn2};
for(int y=bbox.min[1]-1;y<=bbox.max[1]+1;++y)
{
if( ((n[0]>=0 && n[1]>=0 && n[2]>=0) || (n[0]<=0 && n[1]<=0 && n[2]<=0)) && (de != 0))
{
typename MeshType::CoordType baryCoord;
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
ps.AddTextureSample(f, baryCoord, Point2i(x,y), 0);
in = true;
} else {
// Check whether a pixel outside (on a border edge side) triangle affects color inside it
Point2<S> px(x, y);
Point2<S> closePoint;
int closeEdge = -1;
S minDst = FLT_MAX;
// find the closest point (on some edge) that lies on the 2x2 squared neighborhood of the considered point
for (int i=0; i<3; ++i)
{
if (edgeMask & (1 << i))
{
Point2<S> close;
S dst;
if ( ((!flipped) && (n[i]<0)) ||
( flipped && (n[i]>0)) )
{
dst = ((close = ClosestPoint(borderEdges[i], px)) - px).Norm();
if(dst < minDst &&
close.X() > px.X()-1 && close.X() < px.X()+1 &&
close.Y() > px.Y()-1 && close.Y() < px.Y()+1)
{
minDst = dst;
closePoint = close;
closeEdge = i;
}
}
}
}
if (closeEdge >= 0)
{
typename MeshType::CoordType baryCoord;
if (correctSafePointsBaryCoords)
{
// Add x,y sample with closePoint barycentric coords (on edge)
baryCoord[closeEdge] = (closePoint - borderEdges[closeEdge].P1()).Norm()/edgeLength[closeEdge];
baryCoord[(closeEdge+1)%3] = 1 - baryCoord[closeEdge];
baryCoord[(closeEdge+2)%3] = 0;
} else {
// Add x,y sample with his own barycentric coords (off edge)
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
}
ps.AddTextureSample(f, baryCoord, Point2i(x,y), minDst);
in = true;
}
}
n[0] += dn0;
n[1] += dn1;
n[2] += dn2;
}
b0 += db0;
b1 += db1;
b2 += db2;
}
}
// check the radius constrain
static bool checkPoissonDisk(SampleSHT & sht, const Point3<ScalarType> & p, ScalarType radius)
{
// get the samples closest to the given one
std::vector<VertexType*> closests;
typedef EmptyTMark<MeshType> MarkerVert;
static MarkerVert mv;
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
GridGetInBox(sht, mv, bb, closests);
ScalarType r2 = radius*radius;
for(int i=0; i<closests.size(); ++i)
if(SquaredDistance(p,closests[i]->cP()) < r2)
return false;
return true;
}
struct PoissonDiskParam
{
PoissonDiskParam()
{
adaptiveRadiusFlag = false;
bestSampleChoiceFlag = true;
bestSamplePoolSize = 10;
radiusVariance =1;
MAXLEVELS = 5;
invertQuality = false;
preGenFlag = false;
preGenMesh = NULL;
geodesicDistanceFlag = false;
randomSeed = 0;
}
struct Stat
{
int montecarloTime;
int gridTime;
int pruneTime;
int totalTime;
Point3i gridSize;
int gridCellNum;
size_t sampleNum;
int montecarloSampleNum;
};
bool geodesicDistanceFlag;
bool bestSampleChoiceFlag; // In poisson disk pruning when we choose a sample in a cell, we choose the sample that remove the minimal number of other samples. This previlege the "on boundary" samples.
int bestSamplePoolSize;
bool adaptiveRadiusFlag;
float radiusVariance;
bool invertQuality;
bool preGenFlag; // when generating a poisson distribution, you can initialize the set of computed points with
// ALL the vertices of another mesh. Useful for building progressive//prioritize refinements.
MeshType *preGenMesh; // There are two ways of passing the pregen vertexes to the pruning, 1) is with a mesh pointer
// 2) with a per vertex attribute.
int MAXLEVELS;
int randomSeed;
Stat pds;
};
// generate Poisson-disk sample using a set of pre-generated samples (with the Montecarlo algorithm)
// It always return a point.
static VertexPointer getSampleFromCell(Point3i &cell, MontecarloSHT & samplepool)
{
MontecarloSHTIterator cellBegin, cellEnd;
samplepool.Grid(cell, cellBegin, cellEnd);
return *cellBegin;
}
// Given a cell of the grid it search the point that remove the minimum number of other samples
// it linearly scan all the points of a cell.
static VertexPointer getBestPrecomputedMontecarloSample(Point3i &cell, MontecarloSHT & samplepool, ScalarType diskRadius, const PoissonDiskParam &pp)
{
MontecarloSHTIterator cellBegin,cellEnd;
samplepool.Grid(cell, cellBegin, cellEnd);
VertexPointer bestSample=0;
int minRemoveCnt = std::numeric_limits<int>::max();
std::vector<typename MontecarloSHT::HashIterator> inSphVec;
int i=0;
for(MontecarloSHTIterator ci=cellBegin; ci!=cellEnd && i<pp.bestSamplePoolSize; ++ci,i++)
{
VertexPointer sp = *ci;
if(pp.adaptiveRadiusFlag) diskRadius = sp->Q();
int curRemoveCnt = samplepool.CountInSphere(sp->cP(),diskRadius,inSphVec);
if(curRemoveCnt < minRemoveCnt)
{
bestSample = sp;
minRemoveCnt = curRemoveCnt;
}
}
return bestSample;
}
/// \brief Estimate the radius r that you should give to get a certain number of samples in a Poissson Disk Distribution of radius r.
///
static ScalarType ComputePoissonDiskRadius(MeshType &origMesh, int sampleNum)
{
ScalarType meshArea = Stat<MeshType>::ComputeMeshArea(origMesh);
// Manage approximately the PointCloud Case, use the half a area of the bbox.
// TODO: If you had the radius a much better approximation could be done.
if(meshArea ==0)
{
meshArea = (origMesh.bbox.DimX()*origMesh.bbox.DimY() +
origMesh.bbox.DimX()*origMesh.bbox.DimZ() +
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
}
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
return diskRadius;
}
static int ComputePoissonSampleNum(MeshType &origMesh, ScalarType diskRadius)
{
ScalarType meshArea = Stat<MeshType>::ComputeMeshArea(origMesh);
int sampleNum = meshArea / (diskRadius*diskRadius *M_PI *0.7) ; // 0.7 is a density factor
return sampleNum;
}
/// When performing an adptive pruning for each sample we expect a varying radius to be removed.
/// The radius is a PerVertex attribute that we compute from the current quality
///
/// the expected radius of the sample is computed so that
/// it linearly maps the quality between diskradius and diskradius*variance
/// in other words the radius
static void InitRadiusHandleFromQuality(MeshType &sampleMesh, PerVertexFloatAttribute &rH, ScalarType diskRadius, ScalarType radiusVariance, bool invert)
{
std::pair<float,float> minmax = tri::Stat<MeshType>::ComputePerVertexQualityMinMax( sampleMesh);
float minRad = diskRadius ;
float maxRad = diskRadius * radiusVariance;
float deltaQ = minmax.second-minmax.first;
float deltaRad = maxRad-minRad;
for (VertexIterator vi = sampleMesh.vert.begin(); vi != sampleMesh.vert.end(); vi++)
{
rH[*vi] = minRad + deltaRad*((invert ? minmax.second - (*vi).Q() : (*vi).Q() - minmax.first )/deltaQ);
}
}
// initialize spatial hash table for searching
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
// This radius implies that when we pick a sample in a cell all that cell probably will not be touched again.
// Howvever we must ensure that we do not put too many vertices inside each hash cell
static void InitSpatialHashTable(MeshType &montecarloMesh, MontecarloSHT &montecarloSHT, ScalarType diskRadius,
struct PoissonDiskParam pp=PoissonDiskParam())
{
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
float occupancyRatio=0;
do
{
// inflating
BoxType bb=montecarloMesh.bbox;
assert(!bb.IsNull());
bb.Offset(cellsize);
int sizeX = std::max(1,int(bb.DimX() / cellsize));
int sizeY = std::max(1,int(bb.DimY() / cellsize));
int sizeZ = std::max(1,int(bb.DimZ() / cellsize));
Point3i gridsize(sizeX, sizeY, sizeZ);
montecarloSHT.InitEmpty(bb, gridsize);
for (VertexIterator vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
if(!(*vi).IsD())
{
montecarloSHT.Add(&(*vi));
}
montecarloSHT.UpdateAllocatedCells();
pp.pds.gridSize = gridsize;
pp.pds.gridCellNum = (int)montecarloSHT.AllocatedCells.size();
cellsize/=2.0f;
occupancyRatio = float(montecarloMesh.vn) / float(montecarloSHT.AllocatedCells.size());
// qDebug(" %i / %i = %6.3f", montecarloMesh.vn , montecarloSHT.AllocatedCells.size(),occupancyRatio);
}
while( occupancyRatio> 100);
}
static void PoissonDiskPruningByNumber(VertexSampler &ps, MeshType &m,
size_t sampleNum, ScalarType &diskRadius,
PoissonDiskParam &pp,
float tolerance=0.04,
int maxIter=20)
{
size_t sampleNumMin = int(float(sampleNum)*(1.0f-tolerance));
size_t sampleNumMax = int(float(sampleNum)*(1.0f+tolerance));
float RangeMinRad = m.bbox.Diag()/50.0;
float RangeMaxRad = m.bbox.Diag()/50.0;
size_t RangeMinRadNum;
size_t RangeMaxRadNum;
// Note RangeMinRad < RangeMaxRad
// but RangeMinRadNum > sampleNum > RangeMaxRadNum
do {
ps.reset();
RangeMinRad/=2.0f;
PoissonDiskPruning(ps, m ,RangeMinRad,pp);
RangeMinRadNum = pp.pds.sampleNum;
// qDebug("PoissonDiskPruning Iteratin Min (%6.3f:%5i) instead of %i",RangeMinRad,RangeMinRadNum,sampleNum);
} while(RangeMinRadNum < sampleNum); // if the number of sample is still smaller you have to make radius larger.
do {
ps.reset();
RangeMaxRad*=2.0f;
PoissonDiskPruning(ps, m ,RangeMaxRad,pp);
RangeMaxRadNum = pp.pds.sampleNum;
// qDebug("PoissonDiskPruning Iteratin Max (%6.3f:%5i) instead of %i",RangeMaxRad,RangeMaxRadNum,sampleNum);
} while(RangeMaxRadNum > sampleNum);
float curRadius=RangeMaxRad;
int iterCnt=0;
while(iterCnt<maxIter &&
(pp.pds.sampleNum < sampleNumMin || pp.pds.sampleNum > sampleNumMax) )
{
iterCnt++;
ps.reset();
curRadius=(RangeMaxRad+RangeMinRad)/2.0f;
PoissonDiskPruning(ps, m ,curRadius,pp);
// qDebug("PoissonDiskPruning Iteratin (%6.3f:%5lu %6.3f:%5lu) Cur Radius %f -> %lu sample instead of %lu",RangeMinRad,RangeMinRadNum,RangeMaxRad,RangeMaxRadNum,curRadius,pp.pds.sampleNum,sampleNum);
if(pp.pds.sampleNum > sampleNum){
RangeMinRad = curRadius;
RangeMinRadNum = pp.pds.sampleNum;
}
if(pp.pds.sampleNum < sampleNum){
RangeMaxRad = curRadius;
RangeMaxRadNum = pp.pds.sampleNum;
}
}
diskRadius = curRadius;
}
/// This is the main function that is used to build a poisson distribuition
/// starting from a dense sample cloud (the montecarloMesh) by 'pruning' it.
/// it puts all the samples in a hashed UG and randomly choose a sample
/// and remove all the points in the sphere centered on the chosen sample
///
/// You can impose some constraint: all the vertices in the montecarloMesh
/// that are marked with a bool attribute called "fixed" are surely chosen
/// (if you also set the preGenFlag option)
///
static void PoissonDiskPruning(VertexSampler &ps, MeshType &montecarloMesh,
ScalarType diskRadius, PoissonDiskParam &pp)
{
tri::RequireCompactness(montecarloMesh);
if(pp.randomSeed) SamplingRandomGenerator().initialize(pp.randomSeed);
if(pp.adaptiveRadiusFlag)
tri::RequirePerVertexQuality(montecarloMesh);
int t0 = clock();
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHT;
InitSpatialHashTable(montecarloMesh,montecarloSHT,diskRadius,pp);
// if we are doing variable density sampling we have to prepare the handle that keeps the the random samples expected radii.
// At this point we just assume that there is the quality values as sampled from the base mesh
PerVertexFloatAttribute rH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<float> (montecarloMesh,"radius");
if(pp.adaptiveRadiusFlag)
InitRadiusHandleFromQuality(montecarloMesh, rH, diskRadius, pp.radiusVariance, pp.invertQuality);
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
int t1 = clock();
pp.pds.montecarloSampleNum = montecarloMesh.vn;
pp.pds.sampleNum =0;
int removedCnt=0;
// Initial pass for pruning the Hashed grid with the an eventual pre initialized set of samples
if(pp.preGenFlag)
{
if(pp.preGenMesh==0)
{
typename MeshType::template PerVertexAttributeHandle<bool> fixed;
fixed = tri::Allocator<MeshType>:: template GetPerVertexAttribute<bool> (montecarloMesh,"fixed");
for(VertexIterator vi=montecarloMesh.vert.begin();vi!=montecarloMesh.vert.end();++vi)
if(fixed[*vi]) {
pp.pds.sampleNum++;
ps.AddVert(*vi);
removedCnt += montecarloSHT.RemoveInSphere(vi->cP(),diskRadius);
}
}
else
{
for(VertexIterator vi =pp.preGenMesh->vert.begin(); vi!=pp.preGenMesh->vert.end();++vi)
{
ps.AddVert(*vi);
pp.pds.sampleNum++;
removedCnt += montecarloSHT.RemoveInSphere(vi->cP(),diskRadius);
}
}
montecarloSHT.UpdateAllocatedCells();
}
vertex::ApproximateGeodesicDistanceFunctor<VertexType> GDF;
while(!montecarloSHT.AllocatedCells.empty())
{
removedCnt=0;
for (size_t i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
{
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
ScalarType currentRadius =diskRadius;
VertexPointer sp;
if(pp.bestSampleChoiceFlag)
sp = getBestPrecomputedMontecarloSample(montecarloSHT.AllocatedCells[i], montecarloSHT, diskRadius, pp);
else
sp = getSampleFromCell(montecarloSHT.AllocatedCells[i], montecarloSHT);
if(pp.adaptiveRadiusFlag)
currentRadius = rH[sp];
ps.AddVert(*sp);
pp.pds.sampleNum++;
if(pp.geodesicDistanceFlag) removedCnt += montecarloSHT.RemoveInSphereNormal(sp->cP(),sp->cN(),GDF,currentRadius);
else removedCnt += montecarloSHT.RemoveInSphere(sp->cP(),currentRadius);
}
montecarloSHT.UpdateAllocatedCells();
}
int t2 = clock();
pp.pds.gridTime = t1-t0;
pp.pds.pruneTime = t2-t1;
}
/** Compute a Poisson-disk sampling of the surface.
* The radius of the disk is computed according to the estimated sampling density.
*
* This algorithm is an adaptation of the algorithm of White et al. :
*
* "Poisson Disk Point Set by Hierarchical Dart Throwing"
* K. B. White, D. Cline, P. K. Egbert,
* IEEE Symposium on Interactive Ray Tracing, 2007,
* 10-12 Sept. 2007, pp. 129-132.
*/
static void HierarchicalPoissonDisk(MeshType &origMesh, VertexSampler &ps, MeshType &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
{
// int t0=clock();
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHTVec[5];
// initialize spatial hash table for searching
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
// inflating
BoxType bb=origMesh.bbox;
bb.Offset(cellsize);
int sizeX = std::max(1.0f,bb.DimX() / cellsize);
int sizeY = std::max(1.0f,bb.DimY() / cellsize);
int sizeZ = std::max(1.0f,bb.DimZ() / cellsize);
Point3i gridsize(sizeX, sizeY, sizeZ);
// spatial hash table of the generated samples - used to check the radius constrain
SampleSHT checkSHT;
checkSHT.InitEmpty(bb, gridsize);
// sampling algorithm
// ------------------
//
// - generate millions of samples using montecarlo algorithm
// - extract a cell (C) from the active cell list (with probability proportional to cell's volume)
// - generate a sample inside C by choosing one of the contained pre-generated samples
// - if the sample violates the radius constrain discard it, and add the cell to the cells-to-subdivide list
// - iterate until the active cell list is empty or a pre-defined number of subdivisions is reached
//
int level = 0;
// initialize spatial hash to index pre-generated samples
montecarloSHTVec[0].InitEmpty(bb, gridsize);
// create active cell list
for (VertexIterator vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
montecarloSHTVec[0].Add(&(*vi));
montecarloSHTVec[0].UpdateAllocatedCells();
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
PerVertexFloatAttribute rH = tri::Allocator<MeshType>:: template GetPerVertexAttribute<float> (montecarloMesh,"radius");
if(pp.adaptiveRadiusFlag)
InitRadiusHandleFromQuality(montecarloMesh, rH, diskRadius, pp.radiusVariance, pp.invertQuality);
do
{
MontecarloSHT &montecarloSHT = montecarloSHTVec[level];
if(level>0)
{// initialize spatial hash with the remaining points
montecarloSHT.InitEmpty(bb, gridsize);
// create active cell list
for (typename MontecarloSHT::HashIterator hi = montecarloSHTVec[level-1].hash_table.begin(); hi != montecarloSHTVec[level-1].hash_table.end(); hi++)
montecarloSHT.Add((*hi).second);
montecarloSHT.UpdateAllocatedCells();
}
// shuffle active cells
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
// generate a sample inside C by choosing one of the contained pre-generated samples
//////////////////////////////////////////////////////////////////////////////////////////
int removedCnt=montecarloSHT.hash_table.size();
int addedCnt=checkSHT.hash_table.size();
for (int i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
{
for(int j=0;j<4;j++)
{
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
// generate a sample chosen from the pre-generated one
typename MontecarloSHT::HashIterator hi = montecarloSHT.hash_table.find(montecarloSHT.AllocatedCells[i]);
if(hi==montecarloSHT.hash_table.end()) {break;}
VertexPointer sp = (*hi).second;
// vr spans between 3.0*r and r / 4.0 according to vertex quality
ScalarType sampleRadius = diskRadius;
if(pp.adaptiveRadiusFlag) sampleRadius = rH[sp];
if (checkPoissonDisk(checkSHT, sp->cP(), sampleRadius))
{
ps.AddVert(*sp);
montecarloSHT.RemoveCell(sp);
checkSHT.Add(sp);
break;
}
else
montecarloSHT.RemovePunctual(sp);
}
}
addedCnt = checkSHT.hash_table.size()-addedCnt;
removedCnt = removedCnt-montecarloSHT.hash_table.size();
// proceed to the next level of subdivision
// increase grid resolution
gridsize *= 2;
//
level++;
} while(level < 5);
}
//template <class MeshType>
//void Sampling<MeshType>::SimilarFaceSampling()
// This function also generates samples outside faces if those affects faces in texture space.
// Use correctSafePointsBaryCoords = true to map safety texels to closest point barycentric coords (on edge)
// otherwise obtained samples will map to barycentric coord actually outside face
//
// If you don't need to get those extra points clear faces Border Flags
// vcg::tri::UpdateFlags<Mesh>::FaceClearB(m);
//
// Else make sure to update border flags from texture space FFadj
// vcg::tri::UpdateTopology<Mesh>::FaceFaceFromTexCoord(m);
// vcg::tri::UpdateFlags<Mesh>::FaceBorderFromFF(m);
static void Texture(MeshType & m, VertexSampler &ps, int textureWidth, int textureHeight, bool correctSafePointsBaryCoords=true)
{
typedef Point2<ScalarType> Point2x;
printf("Similar Triangles face sampling\n");
for(FaceIterator fi=m.face.begin(); fi != m.face.end(); fi++)
if (!fi->IsD())
{
Point2x ti[3];
for(int i=0;i<3;++i)
ti[i]=Point2x((*fi).WT(i).U() * textureWidth - 0.5, (*fi).WT(i).V() * textureHeight - 0.5);
// - 0.5 constants are used to obtain correct texture mapping
SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2], correctSafePointsBaryCoords);
}
}
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
class RRParam
{
public:
float offset;
float minDiag;
tri::FaceTmark<MeshType> markerFunctor;
TriMeshGrid gM;
};
static void RegularRecursiveOffset(MeshType & m, std::vector<CoordType> &pvec, ScalarType offset, float minDiag)
{
Box3<ScalarType> bb=m.bbox;
bb.Offset(offset*2.0);
RRParam rrp;
rrp.markerFunctor.SetMesh(&m);
rrp.gM.Set(m.face.begin(),m.face.end(),bb);
rrp.offset=offset;
rrp.minDiag=minDiag;
SubdivideAndSample(m, pvec, bb, rrp, bb.Diag());
}
static void SubdivideAndSample(MeshType & m, std::vector<CoordType> &pvec, const Box3<ScalarType> bb, RRParam &rrp, float curDiag)
{
CoordType startPt = bb.Center();
ScalarType dist;
// Compute mesh point nearest to bb center
FaceType *nearestF=0;
ScalarType dist_upper_bound = curDiag+rrp.offset;
CoordType closestPt;
vcg::face::PointDistanceBaseFunctor<ScalarType> PDistFunct;
dist=dist_upper_bound;
nearestF = rrp.gM.GetClosest(PDistFunct,rrp.markerFunctor,startPt,dist_upper_bound,dist,closestPt);
curDiag /=2;
if(dist < dist_upper_bound)
{
if(curDiag/3 < rrp.minDiag) //store points only for the last level of recursion (?)
{
if(rrp.offset==0)
pvec.push_back(closestPt);
else
{
if(dist>rrp.offset) // points below the offset threshold cannot be displaced at the right offset distance, we can only make points nearer.
{
CoordType delta = startPt-closestPt;
pvec.push_back(closestPt+delta*(rrp.offset/dist));
}
}
}
if(curDiag < rrp.minDiag) return;
CoordType hs = (bb.max-bb.min)/2;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
SubdivideAndSample(m, pvec,
BoxType(CoordType( bb.min[0]+i*hs[0], bb.min[1]+j*hs[1], bb.min[2]+k*hs[2]),
CoordType(startPt[0]+i*hs[0], startPt[1]+j*hs[1], startPt[2]+k*hs[2]) ),
rrp,curDiag
);
}
}
}; // end sampling class
template <class MeshType>
typename MeshType::ScalarType ComputePoissonDiskRadius(MeshType &origMesh, int sampleNum)
{
typedef typename MeshType::ScalarType ScalarType;
ScalarType meshArea = Stat<MeshType>::ComputeMeshArea(origMesh);
// Manage approximately the PointCloud Case, use the half a area of the bbox.
// TODO: If you had the radius a much better approximation could be done.
if(meshArea ==0)
{
meshArea = (origMesh.bbox.DimX()*origMesh.bbox.DimY() +
origMesh.bbox.DimX()*origMesh.bbox.DimZ() +
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
}
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
return diskRadius;
}
template <class MeshType>
void MontecarloSampling(MeshType &m, // the mesh that has to be sampled
MeshType &mm, // the mesh that will contain the samples
int sampleNum) // the desired number sample, if zero you must set the radius to the wanted value
{
typedef tri::MeshSampler<MeshType> BaseSampler;
MeshSampler<MeshType> mcSampler(&mm);
tri::SurfaceSampling<MeshType,BaseSampler>::Montecarlo(m, mcSampler, sampleNum);
}
template <class MeshType>
void MontecarloSampling(MeshType &m, // the mesh that has to be sampled
std::vector<Point3f> &montercarloSamples, // the vector that will contain the set of points
int sampleNum) // the desired number sample, if zero you must set the radius to the wanted value
{
typedef tri::TrivialSampler<MeshType> BaseSampler;
BaseSampler mcSampler(montercarloSamples);
tri::SurfaceSampling<MeshType,BaseSampler>::Montecarlo(m, mcSampler, sampleNum);
}
// Yet another simpler wrapper for the generation of a poisson disk distribution over a mesh.
//
template <class MeshType>
void PoissonSampling(MeshType &m, // the mesh that has to be sampled
std::vector<typename MeshType::CoordType> &poissonSamples, // the vector that will contain the set of points
int sampleNum, // the desired number sample, if zero you must set the radius to the wanted value
typename MeshType::ScalarType &radius, // the Poisson Disk Radius (used if sampleNum==0, setted if sampleNum!=0)
typename MeshType::ScalarType radiusVariance=1,
typename MeshType::ScalarType PruningByNumberTolerance=0.04f,
unsigned int randSeed=0)
{
typedef tri::TrivialSampler<MeshType> BaseSampler;
typedef tri::MeshSampler<MeshType> MontecarloSampler;
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pp;
int t0=clock();
// if(sampleNum>0) radius = tri::SurfaceSampling<MeshType,BaseSampler>::ComputePoissonDiskRadius(m,sampleNum);
if(radius>0 && sampleNum==0) sampleNum = tri::SurfaceSampling<MeshType,BaseSampler>::ComputePoissonSampleNum(m,radius);
pp.pds.sampleNum = sampleNum;
pp.randomSeed = randSeed;
poissonSamples.clear();
// std::vector<Point3f> MontecarloSamples;
MeshType MontecarloMesh;
// First step build the sampling
MontecarloSampler mcSampler(MontecarloMesh);
BaseSampler pdSampler(poissonSamples);
if(randSeed) tri::SurfaceSampling<MeshType,MontecarloSampler>::SamplingRandomGenerator().initialize(randSeed);
tri::SurfaceSampling<MeshType,MontecarloSampler>::Montecarlo(m, mcSampler, std::max(10000,sampleNum*40));
tri::UpdateBounding<MeshType>::Box(MontecarloMesh);
// tri::Build(MontecarloMesh, MontecarloSamples);
int t1=clock();
pp.pds.montecarloTime = t1-t0;
if(radiusVariance !=1)
{
pp.adaptiveRadiusFlag=true;
pp.radiusVariance=radiusVariance;
}
if(sampleNum==0) tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, MontecarloMesh, radius,pp);
else tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruningByNumber(pdSampler, MontecarloMesh, sampleNum, radius,pp,PruningByNumberTolerance);
int t2=clock();
pp.pds.totalTime = t2-t0;
}
/// \brief Low level wrapper for Poisson Disk Pruning
///
/// This function simply takes a mesh and a radius and returns a vector of vertex pointers listing the "surviving" points.
//
template <class MeshType>
void PoissonPruning(MeshType &m, // the mesh that has to be pruned
std::vector<typename MeshType::VertexPointer> &poissonSamples, // the vector that will contain the chosen set of points
float radius, unsigned int randSeed=0)
{
typedef tri::TrivialPointerSampler<MeshType> BaseSampler;
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pp;
pp.randomSeed = randSeed;
tri::UpdateBounding<MeshType>::Box(m);
BaseSampler pdSampler;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, m, radius,pp);
poissonSamples = pdSampler.sampleVec;
}
/// \brief Low level wrapper for Poisson Disk Pruning
///
/// This function simply takes a mesh containing a point cloud to be pruned and a radius
/// It returns a vector of CoordType listing the "surviving" points.
///
template <class MeshType>
void PoissonPruning(MeshType &m, // the mesh that has to be pruned
std::vector<typename MeshType::CoordType> &poissonSamples, // the vector that will contain the chosen set of points
float radius, unsigned int randSeed=0)
{
std::vector<typename MeshType::VertexPointer> poissonSamplesVP;
PoissonPruning(m,poissonSamplesVP,radius,randSeed);
poissonSamples.resize(poissonSamplesVP.size());
for(size_t i=0;i<poissonSamplesVP.size();++i)
poissonSamples[i]=poissonSamplesVP[i]->P();
}
/// \brief Very simple wrapping for the Exact Poisson Disk Pruning
///
/// This function simply takes a mesh and an expected number of points and returns
/// vector of points. It performs multiple attempts with varius radii to correctly get the expected number of samples.
/// It is obviously much slower than the other versions...
template <class MeshType>
void PoissonPruningExact(MeshType &m, /// the mesh that has to be pruned
std::vector<typename MeshType::VertexPointer> &poissonSamples, /// the vector that will contain the chosen set of points
typename MeshType::ScalarType & radius,
int sampleNum,
float tolerance=0.04,
int maxIter=20,
unsigned int randSeed=0)
{
size_t sampleNumMin = int(float(sampleNum)*(1.0f-tolerance)); // the expected values range.
size_t sampleNumMax = int(float(sampleNum)*(1.0f+tolerance)); // e.g. any sampling in [sampleNumMin, sampleNumMax] is OK
float RangeMinRad = m.bbox.Diag()/10.0f;
float RangeMaxRad = m.bbox.Diag()/10.0f;
size_t RangeMinSampleNum;
size_t RangeMaxSampleNum;
std::vector<typename MeshType::VertexPointer> poissonSamplesTmp;
do
{
RangeMinRad/=2.0f;
PoissonPruning(m,poissonSamplesTmp,RangeMinRad,randSeed);
RangeMinSampleNum = poissonSamplesTmp.size();
} while(RangeMinSampleNum < sampleNumMin);
do
{
RangeMaxRad*=2.0f;
PoissonPruning(m,poissonSamplesTmp,RangeMaxRad,randSeed);
RangeMaxSampleNum = poissonSamplesTmp.size();
} while(RangeMaxSampleNum > sampleNumMax);
float curRadius;
int iterCnt=0;
while(iterCnt<maxIter &&
(poissonSamplesTmp.size() < sampleNumMin || poissonSamplesTmp.size() > sampleNumMax) )
{
curRadius=(RangeMaxRad+RangeMinRad)/2.0f;
PoissonPruning(m,poissonSamplesTmp,curRadius,randSeed);
//qDebug("(%6.3f:%5i %6.3f:%5i) Cur Radius %f -> %i sample instead of %i",RangeMinRad,RangeMinSampleNum,RangeMaxRad,RangeMaxSampleNum,curRadius,poissonSamplesTmp.size(),sampleNum);
if(poissonSamplesTmp.size() > size_t(sampleNum))
RangeMinRad = curRadius;
if(poissonSamplesTmp.size() < size_t(sampleNum))
RangeMaxRad = curRadius;
}
swap(poissonSamples,poissonSamplesTmp);
radius = curRadius;
}
} // end namespace tri
} // end namespace vcg
#endif
|