File: pointcloud_normal.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (191 lines) | stat: -rw-r--r-- 6,856 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef NORMAL_EXTRAPOLATION_H
#define NORMAL_EXTRAPOLATION_H

#include <vcg/space/index/kdtree/kdtree.h>
#include <vcg/space/fitting3.h>
#include <vcg/complex/algorithms/smooth.h>

namespace vcg {
namespace tri {
///
/** \addtogroup trimesh */
/*@{*/
/// Class of static functions to smooth and fair meshes and their attributes.



template <typename MeshType>
class PointCloudNormal {
public:

  typedef typename MeshType::VertexType     VertexType;
  typedef typename MeshType::VertexType::CoordType     CoordType;
  typedef typename MeshType::VertexPointer  VertexPointer;
  typedef typename MeshType::VertexIterator VertexIterator;
  typedef typename MeshType::ScalarType			ScalarType;

  class WArc
  {
  public:
    WArc(VertexPointer _s,VertexPointer _t):src(_s),trg(_t),w(fabs(_s->cN()*_t->cN())){}

    VertexPointer src;
    VertexPointer trg;
    float w;
    bool operator< (const WArc &a) const {return w<a.w;}
  };

  static void ComputeUndirectedNormal(MeshType &m, int nn, ScalarType maxDist, KdTree<ScalarType> &tree,vcg::CallBackPos * cb=0)
  {
//    tree.setMaxNofNeighbors(nn);
    const ScalarType maxDistSquared = maxDist*maxDist;
    int cnt=0;
	int step = max(m.vn, int(m.vn / 100));
    typename KdTree<ScalarType>::PriorityQueue nq;
    for (VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
    {
        tree.doQueryK(vi->cP(),nn,nq);
        if(cb && (++cnt%step)==0) cb(cnt/step,"Fitting planes");

//        int neighbours = tree.getNofFoundNeighbors();
        int neighbours = nq.getNofElements();
        std::vector<CoordType> ptVec;
        for (int i = 0; i < neighbours; i++)
        {
//            int neightId = tree.getNeighborId(i);
            int neightId = nq.getIndex(i);
            if(nq.getWeight(i) <maxDistSquared)
              ptVec.push_back(m.vert[neightId].cP());
        }
        Plane3<ScalarType> plane;
        FitPlaneToPointSet(ptVec,plane);
        vi->N()=plane.Direction();
    }
  }

  static void AddNeighboursToHeap( MeshType &m, VertexPointer vp, int nn, KdTree<ScalarType> &tree, std::vector<WArc> &heap)
  {
    typename KdTree<ScalarType>::PriorityQueue nq;
    tree.doQueryK(vp->cP(),nn,nq);

    int neighbours =  nq.getNofElements();
    for (int i = 0; i < neighbours; i++)
    {
//        int neightId = tree.getNeighborId(i);
        int neightId = nq.getIndex(i);
        if (neightId < m.vn && (&m.vert[neightId] != vp))
        {
          if(!m.vert[neightId].IsV())
          {
            heap.push_back(WArc(vp,&(m.vert[neightId])));
            //std::push_heap(heap.begin(),heap.end());
            if(heap.back().w < 0.3f)
                heap.pop_back();
            else
                std::push_heap(heap.begin(),heap.end());
          }
        }
    }
    //std::push_heap(heap.begin(),heap.end());
  }
  /*! \brief parameters for the normal generation
   */
  struct Param
  {
    Param():
      fittingAdjNum(10),
      smoothingIterNum(0),
      coherentAdjNum(8),
      viewPoint(0,0,0),
      useViewPoint(false)
    {}

    int fittingAdjNum; /// number of adjacent nodes used for computing the fitting plane
    int smoothingIterNum; /// number of itaration of a simple normal smoothing (use the same number of ajdacent of fittingAdjNjm)
    int coherentAdjNum; /// number of nodes used in the coherency pass
    CoordType viewPoint;  /// position of a viewpoint used to disambiguate direction
    bool useViewPoint;  /// if the position of the viewpoint has to be used.
  };

  static void Compute(MeshType &m, Param p, vcg::CallBackPos * cb=0)
  {
    tri::Allocator<MeshType>::CompactVertexVector(m);
    if(cb) cb(1,"Building KdTree...");
    VertexConstDataWrapper<MeshType> DW(m);
    KdTree<ScalarType> tree(DW);

    ComputeUndirectedNormal(m, p.fittingAdjNum, std::numeric_limits<ScalarType>::max(), tree,cb);

    tri::Smooth<MeshType>::VertexNormalPointCloud(m,p.fittingAdjNum,p.smoothingIterNum,&tree);

    if(p.coherentAdjNum==0) return;
//    tree.setMaxNofNeighbors(p.coherentAdjNum+1);

    if(p.useViewPoint) // Simple case use the viewpoint position to determine the right orientation of each point
    {
      for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
      {
        if ( vi->N().dot(p.viewPoint- vi->P())<0.0f)
            vi->N()=-(*vi).N();
      }
      return;
    }

    tri::UpdateFlags<MeshType>::VertexClearV(m);
    std::vector<WArc> heap;
    VertexIterator vi=m.vert.begin();
    while(true)
    {
      // search an unvisited vertex
      while(vi!=m.vert.end() && vi->IsV())
        ++vi;

      if(vi==m.vert.end()) return;

      vi->SetV();
      AddNeighboursToHeap(m,&*vi,p.coherentAdjNum,tree,heap);

      while(!heap.empty())
      {
        std::pop_heap(heap.begin(),heap.end());
        WArc a = heap.back();
        heap.pop_back();
        if(!a.trg->IsV())
        {
          a.trg->SetV();
          if(a.src->cN()*a.trg->cN()<0.0f)
              a.trg->N()=-a.trg->N();
          AddNeighboursToHeap(m,a.trg,p.coherentAdjNum,tree,heap);
        }
      }
    }

    return;
  }

};
}//end namespace vcg
}//end namespace vcg
#endif // NORMAL_EXTRAPOLATION_H