1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef POLYGON_POLYCHORD_COLLAPSE_H
#define POLYGON_POLYCHORD_COLLAPSE_H
#include <list>
#include <unordered_map>
#include <vcg/complex/complex.h>
#include <vcg/simplex/face/jumping_pos.h>
namespace vcg {
namespace tri {
/** \addtogroup trimesh */
/**
* @brief The PolychordCollapse class provides methods to semplify a quad mesh, by collapsing the polychords.
*
* This class is an implementation of a method very similar to that for mesh semplification proposed
* by Daniels et al. in "Quadrilateral mesh simplification", see http://www.cs.utah.edu/~jdaniels/research/asia2008_qms.htm
* The main function is PolychordCollapse::CollapsePolychord() which deletes all the quadrilateral faces in a polychord.
* The polychords that can be collapsed in this case are those forming a closed loop (a ring) or that start and end to
* mesh borders. A way to preserve the structure of the singularities is also provided.
* The convenient method PolychordCollapse::CollapseAllPolychords() finds and collapses all the polychords on a mesh.
* The input mesh should be polygonal, i.e. it should have the vcg::face::PolyInfo component. Even though a generic
* triangle mesh can be given, actually the class does not perform any collapsing operation since it sees only triangles,
* in fact it does not consider faux edges.
*/
template < typename PolyMeshType >
class PolychordCollapse {
public:
typedef typename PolyMeshType::CoordType CoordType;
typedef typename PolyMeshType::VertexType VertexType;
typedef typename PolyMeshType::VertexPointer VertexPointer;
typedef typename PolyMeshType::VertexIterator VertexIterator;
typedef typename PolyMeshType::FaceType FaceType;
typedef typename PolyMeshType::FacePointer FacePointer;
typedef typename PolyMeshType::FaceIterator FaceIterator;
/**
* @brief The PC_ResultCode enum codifies the result type of a polychord collapse operation.
*/
enum PC_ResultCode {
PC_SUCCESS = 0x000,
PC_NOTMANIF = 0x001,
PC_NOTQUAD = 0x002,
PC_NOLINKCOND = 0x004,
PC_SINGSIDEA = 0x008,
PC_SINGSIDEB = 0x010,
PC_SINGBOTH = 0x020,
PC_SELFINTERSECT = 0x040,
PC_NOMOREMANIF = 0x080,
PC_VOID = 0x100,
PC_OTHER = 0x100
};
/**
* @brief The PC_Chord struct identifies a coord of a polychord passing through a quad.
*/
struct PC_Chord {
unsigned long mark;
PC_ResultCode q;
PC_Chord * prev;
PC_Chord * next;
PC_Chord() : mark(std::numeric_limits<unsigned long>::max()), q(PC_VOID), prev(NULL), next(NULL) { }
inline void Reset() {
mark = std::numeric_limits<unsigned long>::max();
q = PC_VOID;
prev = next = NULL;
}
};
/**
* @brief The PC_Chords class gives efficient access to each coord (relative to a face).
*/
class PC_Chords {
public:
/**
* @brief PC_Chords constructor.
* @note Since each face corresponds to two chords, the actual size of the vector of chords is 2*mesh.face.size().
* @param mesh
*/
PC_Chords (const PolyMeshType &mesh) : _Chords(2*mesh.face.size()), _currentChord(NULL) {
Reset(mesh);
}
/**
* @brief ResetMarks
*/
void ResetMarks() {
for (size_t i = 0; i < _Chords.size(); ++i)
_Chords.at(i).mark = std::numeric_limits<unsigned long>::max();
}
/**
* @brief Reset rearrages the container.
* @note Since each face corresponds to two chords, the actual size of the vector of chords is 2*mesh.face.size().
* @param mesh
*/
void Reset(const PolyMeshType &mesh) {
_Chords.resize(2*mesh.face.size());
for (size_t j = 0; j < _Chords.size(); ++j)
_Chords[j].Reset();
_currentChord = NULL;
PC_Chord *chord = NULL;
long long j = 0;
for (size_t i = 0; i < _Chords.size(); ++i) {
// set the prev
chord = NULL;
if ((long long)i-1 >= 0) {
chord = &_Chords[i-1];
if (vcg::tri::HasPerFaceFlags(mesh)) {
j = i-1;
while (j >= 0 && mesh.face[j/2].IsD())
--j;
if (j >= 0)
chord = &_Chords[j];
else
chord = NULL;
}
}
_Chords[i].prev = chord;
// set the next
chord = NULL;
if (i+1 < _Chords.size()) {
chord = &_Chords[i+1];
if (vcg::tri::HasPerFaceFlags(mesh)) {
j = i+1;
while (j < (long long)_Chords.size() && mesh.face[j/2].IsD())
++j;
if (j < (long long)_Chords.size())
chord = &_Chords[j];
else
chord = NULL;
}
}
_Chords[i].next = chord;
}
if (mesh.face.size() > 0) {
// set the current coord (first - not deleted - face)
_currentChord = &_Chords[0];
if (vcg::tri::HasPerFaceFlags(mesh) && mesh.face[0].IsD())
_currentChord = _currentChord->next;
}
}
/**
* @brief operator [], given a face index and an offset, it returns (a reference to) its corresponding PC_Chord.
* @param face_edge A std::pair<size_t, unsigned char>(face_index, offset). The offset should be 0 or 1.
* @return A reference to the corresponding PC_Chord.
*/
inline PC_Chord & operator[] (const std::pair<size_t, unsigned char> &face_edge) {
assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _Chords.size());
return _Chords[2*face_edge.first + face_edge.second];
}
/**
* @brief operator [], given a face index and an offset, it returns (a const reference to) its corresponding PC_Chord.
* @param face_edge A std::pair<size_t, unsigned char>(face_index, offset). The offset should be 0 or 1.
* @return A reference to the corresponding PC_Chord.
*/
inline const PC_Chord & operator[] (const std::pair<size_t, unsigned char> &face_edge) const {
assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _Chords.size());
return _Chords[2*face_edge.first + face_edge.second];
}
/**
* @brief operator [], given a coord, it returns its corresponding face index and edge.
* @param coord The coord pointer.
* @return A std::pair <size_t, unsigned char>(face_index, offset) with offset being 0 or 1.
*/
inline std::pair<size_t, unsigned char> operator[] (PC_Chord const * const coord) {
assert(coord >= &_Chords[0] && coord < &_Chords[0]+_Chords.size());
return std::pair<size_t, unsigned char>((coord - &_Chords[0])/2, (coord - &_Chords[0])%2);
}
/**
* @brief UpdateCoord updates the coord information and links.
* @param coord The coord to update.
* @param mark The mark of the polychord.
* @param resultCode The code for the type of the polychord.
*/
inline void UpdateCoord (PC_Chord &coord, const unsigned long mark, const PC_ResultCode resultCode) {
// update prev and next
if (coord.q == PC_VOID) {
if (coord.prev != NULL && &coord != _currentChord)
coord.prev->next = coord.next;
if (coord.next != NULL && &coord != _currentChord)
coord.next->prev = coord.prev;
}
coord.mark = mark;
coord.q = resultCode;
}
/**
* @brief Next, if it's not at the end, it goes to the next coord.
*/
inline void Next () {
if (_currentChord != NULL)
_currentChord = _currentChord->next;
}
/**
* @brief GetCurrent returns the current FaceType pointer and edge.
* @param face_edge A std::pair where to store the FaceType pointer and the edge index.
*/
inline void GetCurrent (std::pair<size_t, unsigned char> &face_edge) {
if (_currentChord != NULL) {
face_edge.first = (_currentChord - &_Chords[0])/2;
face_edge.second = (_currentChord - &_Chords[0])%2;
} else {
face_edge.first = std::numeric_limits<size_t>::max();
face_edge.second = 0;
}
}
/**
* @brief End says if an end has been reached.
* @return true if an end has been reached, false otherwise.
*/
inline bool End () {
return _currentChord == NULL;
}
private:
std::vector<PC_Chord> _Chords;
PC_Chord *_currentChord;
};
/**
* @brief The LinkCondition class provides a tool to check if a polychord satisfies the link conditions.
*/
class LinkConditions {
private:
typedef long int LCVertexIndex;
typedef std::set<LCVertexIndex> LCVertexStar; ///< define the star of a vertex
typedef long int LCEdgeIndex;
typedef std::set<LCEdgeIndex> LCEdgeStar; ///< define the set of edges whose star involves a vertex
/**
* @brief The LCVertex struct represents a vertex for the Link Conditions.
*/
struct LCVertex {
LCVertexStar star; // vertex star
LCEdgeStar edges; // list of edges whose star involves this vertex
LCVertex(){} // default constructor
LCVertex(const LCVertex &lcVertex) { // copy constructor
star = lcVertex.star;
edges = lcVertex.edges;
}
LCVertex & operator=(const LCVertex &lcVertex) { // assignment operator
star = lcVertex.star;
edges = lcVertex.edges;
return *this;
}
void reset() { star.clear(); edges.clear(); } // reset
};
/**
* @brief The LCEdge struct represents an edge for the Link Conditions.
*/
struct LCEdge {
LCVertexIndex v1, v2; // endpoints
LCVertexStar star; // edge star
LCEdge() {v1 = v2 = -1;} // default contructor
LCEdge(const LCEdge &lcEdge) { // copy constructor
v1 = lcEdge.v1;
v2 = lcEdge.v2;
star = lcEdge.star;
}
LCEdge & operator=(const LCEdge &lcEdge) { // assignment operator
v1 = lcEdge.v1;
v2 = lcEdge.v2;
star = lcEdge.star;
return *this;
}
void reset() { // reset
v1 = -1;
v2 = -1;
star.clear();
}
};
public:
/**
* @brief LinkCondition constructor.
* @param size The number of vertices of the mesh.
*/
LinkConditions (const size_t size) : _lcVertices(size) { }
/**
* @brief Resize just resets the size of the container.
* @param size
*/
inline void Resize(const size_t size) {
_lcVertices.resize(size);
LC_ResetStars();
}
/**
* @brief CheckLinkConditions checks if collapsing the polychord starting from startPos
* satisfies the link conditions.
* @warning The polychord starts from startPos and ends to itself (if it's a loop) or to a border. In the latter case,
* call this method starting from the opposite border of the strip of quads.
* @param mesh The mesh for getting the vertex index.
* @param startPos The starting position of the polychord.
* @return true if satisfied, false otherwise.
*/
bool CheckLinkConditions (const PolyMeshType &mesh, const vcg::face::Pos<FaceType> &startPos) {
assert(!startPos.IsNull());
assert(mesh.vert.size() == _lcVertices.size());
std::vector<LCEdge> lcEdges;
LCVertexStar intersection;
// reset the stars
LC_ResetStars();
// compute the stars
LC_computeStars(mesh, startPos, lcEdges);
// for each edge e = (v1,v2)
// if intersection( star(v1) , star(v2) ) == star(e)
// then collapse e
// else
// return false (i.e. link conditions not satisfied)
for (size_t e = 0; e < lcEdges.size(); e++) {
// compute the intersetion
intersection.clear();
std::set_intersection(_lcVertices[lcEdges[e].v1].star.begin(), _lcVertices[lcEdges[e].v1].star.end(),
_lcVertices[lcEdges[e].v2].star.begin(), _lcVertices[lcEdges[e].v2].star.end(),
std::inserter(intersection, intersection.end()));
// if intersection( star(v1) , star(v2) ) != star(e) then return false
if (intersection != lcEdges[e].star)
return false;
// else simulate the collapse
LC_SimulateEdgeCollapse(lcEdges, e);
}
// at this point all collapses are possible, thus return true
return true;
}
private:
/**
* @brief LC_ResetStars resets the stars on a polychord.
*/
void LC_ResetStars() {
for (size_t v = 0; v < _lcVertices.size(); ++v)
_lcVertices[v].reset();
}
/**
* @brief LC_computeStars computes the stars of edges and vertices of the polychord from the starting pos
* either to itself (if it's a loop) or to the border edge.
* @param mesh The mesh for getting the vertex index.
* @param startPos Starting position.
* @param lcEdges Vector of edge stars.
*/
void LC_computeStars (const PolyMeshType &mesh, const vcg::face::Pos<FaceType> &startPos, std::vector<LCEdge> &lcEdges) {
assert(!startPos.IsNull());
assert(mesh.vert.size() == _lcVertices.size());
vcg::face::Pos<FaceType> runPos = startPos;
vcg::face::JumpingPos<FaceType> vStarPos;
vcg::face::Pos<FaceType> eStarPos;
LCEdgeIndex edgeInd = -1;
size_t nEdges = 0;
// count how many edges
do {
++nEdges;
// go on the next edge
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos && !runPos.IsBorder());
if (runPos.IsBorder())
++nEdges;
// resize the vector of edges
lcEdges.resize(nEdges);
for (size_t e = 0; e < nEdges; ++e)
lcEdges[e].reset();
/// compute the star of all the vertices and edges seen from the polychord
runPos = startPos;
do {
// access the next lcedge
edgeInd++;
// set lcvertices references
lcEdges[edgeInd].v1 = vcg::tri::Index(mesh, runPos.V());
lcEdges[edgeInd].v2 = vcg::tri::Index(mesh, runPos.VFlip());
// add this edge to its vertices edge-stars
_lcVertices[lcEdges[edgeInd].v1].edges.insert(edgeInd);
_lcVertices[lcEdges[edgeInd].v2].edges.insert(edgeInd);
// compute the star of this edge
lcEdges[edgeInd].star.insert(lcEdges[edgeInd].v1); // its endpoints, clearly
lcEdges[edgeInd].star.insert(lcEdges[edgeInd].v2); // its endpoints, clearly
// navigate over the other vertices of this facet
eStarPos = runPos;
eStarPos.FlipE();
eStarPos.FlipV();
while (eStarPos.V() != runPos.VFlip()) {
// add current vertex to the star of this edge
lcEdges[edgeInd].star.insert(vcg::tri::Index(mesh, eStarPos.V()));
// add this edge to the edge-star of the current vertex
_lcVertices[vcg::tri::Index(mesh, eStarPos.V())].edges.insert(edgeInd);
// go on
eStarPos.FlipE();
eStarPos.FlipV();
}
// go on the opposite facet
if (!runPos.IsBorder()) {
eStarPos = runPos;
eStarPos.FlipF();
eStarPos.FlipE();
eStarPos.FlipV();
while (eStarPos.V() != runPos.VFlip()) {
// add current vertex to the star of this edge
lcEdges[edgeInd].star.insert(vcg::tri::Index(mesh, eStarPos.V()));
// add this edge to the edge-star of the current vertex
_lcVertices[vcg::tri::Index(mesh, eStarPos.V())].edges.insert(edgeInd);
// go on
eStarPos.FlipE();
eStarPos.FlipV();
}
}
// compute the star of vertex v2
runPos.FlipV();
vStarPos.Set(runPos.F(), runPos.E(), runPos.V());
// v2 is in its star
_lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
do {
vStarPos.FlipV();
vStarPos.FlipE();
while (vStarPos.V() != runPos.V()) {
// add the current vertex to the v2 star
_lcVertices[vcg::tri::Index(mesh, runPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
// add v2 to the star of the current vertex
_lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, runPos.V()));
vStarPos.FlipV();
vStarPos.FlipE();
}
vStarPos.NextFE();
} while (vStarPos != runPos);
// compute the star of vertex v1
runPos.FlipV();
vStarPos.Set(runPos.F(), runPos.E(), runPos.V());
// v1 is in its star
_lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
do {
vStarPos.FlipV();
vStarPos.FlipE();
while (vStarPos.V() != runPos.V()) {
// add the current vertex to the v2 star
_lcVertices[vcg::tri::Index(mesh, runPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
// add v2 to the star of the current vertex
_lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, runPos.V()));
vStarPos.FlipV();
vStarPos.FlipE();
}
vStarPos.NextFE();
} while (vStarPos != runPos);
// when arrive to a border, stop
if (runPos != startPos && runPos.IsBorder())
break;
// go on the next edge
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos);
// check if the starting pos or the border has been reached
assert(runPos == startPos || runPos.IsBorder());
}
/**
* @brief LC_SimulateEdgeCollapse simulates an edge collapse by updating the stars involved.
* @param lcEdges The vector of edges.
* @param edgeInd The in dex of the edge to collapse.
*/
void LC_SimulateEdgeCollapse (std::vector<LCEdge> &lcEdges, const LCEdgeIndex edgeInd) {
// let v1 and v2 be the two end points
LCVertexIndex v1 = lcEdges[edgeInd].v1;
LCVertexIndex v2 = lcEdges[edgeInd].v2;
LCVertexIndex v = -1;
/// v2 merges into v1:
// star(v1) = star(v1) U star(v2)
_lcVertices[v1].star.insert(_lcVertices[v2].star.begin(), _lcVertices[v2].star.end());
_lcVertices[v1].star.erase(v2); // remove v2 from v1-star
_lcVertices[v2].star.erase(v1); // remove v1 from v2-star
// foreach v | v2 \in star(v) [i.e. v \in star(v2)]
// star(v) = star(v) U {v1} \ {v2}
for (typename LCVertexStar::iterator vIt = _lcVertices[v2].star.begin(); vIt != _lcVertices[v2].star.end(); ++vIt) {
v = *vIt;
if (v == v2) // skip v2 itself
continue;
_lcVertices[v].star.insert(v1);
_lcVertices[v].star.erase(v2);
}
/// update the star of the edges which include v1 and v2 in their star
// foreach e | v1 \in star(e) ^ v2 \in star(e)
// star(e) = star(e) \ {v1,v2} U {v1}
for (typename LCEdgeStar::iterator eIt = _lcVertices[v1].edges.begin(); eIt != _lcVertices[v1].edges.end(); ++eIt)
lcEdges[*eIt].star.erase(v2);
for (typename LCEdgeStar::iterator eIt = _lcVertices[v2].edges.begin(); eIt != _lcVertices[v2].edges.end(); ++eIt) {
lcEdges[*eIt].star.erase(v2);
lcEdges[*eIt].star.insert(v1);
}
}
/**
* @brief _lcVertices is a vector of vertex stars for the link conditions.
*/
std::vector<LCVertex> _lcVertices;
};
// PolychordCollapse's methods begin here::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// /**
// * @brief CheckConsistent checks for consistency. ONLY FOR DEBUG.
// * @param mesh
// * @return
// */
// static bool CheckConsistent(PolyMeshType &mesh) {
// vcg::tri::RequirePerFaceFlags(mesh);
// vcg::tri::RequirePerFaceColor(mesh);
// for (size_t f = 0; f < mesh.face.size(); ++f) {
// if (!mesh.face[f].IsD()) {
// for (int v = 0; v < mesh.face[f].VN(); ++v) {
// if (!vcg::face::IsBorder(mesh.face[f], v)) {
// if (mesh.face[f].FFp(v)->IsD()) {
// mesh.face[f].C() = vcg::Color4b(vcg::Color4b::Magenta);
// return false;
// }
// if (mesh.face[f].FFp(v)->FFp(mesh.face[f].FFi(v)) != &mesh.face[f]) {
// mesh.face[f].C() = vcg::Color4b(vcg::Color4b::Yellow);
// return false;
// }
// }
// }
// }
// }
// return true;
// }
/**
* @brief MarkPolychords marks the chords of the polychord starting at startPos.
* @param mesh The input mesh.
* @param startPos The starting position.
* @param chords The vector of chords.
* @param mark The current mark, used to identify quads already visited.
*/
static void MarkPolychords(const PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &startPos,
PC_Chords &chords,
const unsigned long mark) {
vcg::face::Pos<FaceType> runPos = startPos;
std::pair<size_t, unsigned char> face_edge(std::numeric_limits<size_t>::max(), 0);
do {
assert(runPos.F()->VN() == 4);
face_edge.first = vcg::tri::Index(mesh, runPos.F());
face_edge.second = runPos.E() % 2;
chords[face_edge].mark = mark;
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos && !runPos.IsBorder());
}
/**
* @brief CollapsePolychord performs all checks and then collapses the polychord.
*
* @warning This function deletes faces and vertices by calling
* vcg::tri::Allocator<PolyMeshType>::DeleteFace() and
* vcg::tri::Allocator<PolyMeshType>::DeleteVertex().
* The object PC_Chords chords is used to track the polychords, and it has got
* a size proportional to that of the mesh face container. If you actually
* delete faces and vertices by calling vcg::tri::Allocator<PolyMeshType>::CompactFaceVector()
* and vcg::tri::Allocator<PolyMeshType>::CompactVertexVector() after this function,
* object PC_Chords chords then is not valid any more, so you MUST rearrange it
* by calling PC_Chords.Reset(). For the same reason, you MUST rearrange LinkConditions linkConditions
* by calling LinkConditions.Resize().
* However, for efficiency, you SHOULD compact vertex and face containers at the end of all your
* polychord collapsing operations, without having to rearrange chords and linkConditions.
* The function CollapseAllPolychords() does this for you.
*
* @note Vertex flags, face flags, FF adjacency and FV adjacency are required. Not anything else.
* Such components are automatically updated here. If the mesh has other components that may be
* affected by this editing, you should update them later by yourself.
*
* @param mesh The polygonal mesh used for getting the face index and deleting the faces
* (it SHOULD have the vcg::face::PolyInfo component).
* @param pos Position of the polychord.
* @param mark Mark for the current polychord.
* @param chords Vector of chords.
* @param linkConditions Link conditions checker.
* @param checkSing true if singularities on both sides are not allowed.
* @return A PC_ResultCode resulting from checks or PC_SUCCESS if the collapse has been performed.
*/
static PC_ResultCode CollapsePolychord (PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &pos,
const unsigned long mark,
PC_Chords &chords,
LinkConditions &linkConditions,
const bool checkSing = true) {
vcg::tri::RequireFFAdjacency(mesh);
if (mesh.IsEmpty())
return PC_VOID;
if (pos.IsNull())
return PC_VOID;
vcg::face::Pos<FaceType> tempPos, startPos;
// check if the sequence of facets is a polychord and find the starting coord
PC_ResultCode resultCode = CheckPolychordFindStartPosition(pos, startPos, checkSing);
// if not successful, visit the sequence for marking it and return
if (resultCode != PC_SUCCESS && resultCode != PC_SINGSIDEA && resultCode != PC_SINGSIDEB) {
// if not manifold, visit the entire polychord ending on the non-manifold edge
if (resultCode == PC_NOTMANIF) {
tempPos = pos;
VisitPolychord(mesh, tempPos, chords, mark, resultCode);
if (tempPos.IsManifold() && !tempPos.IsBorder()) {
tempPos.FlipF();
VisitPolychord(mesh, tempPos, chords, mark, resultCode);
}
return resultCode;
}
// if not quad, visit all the polychords passing through this coord
if (resultCode == PC_NOTQUAD) {
tempPos = startPos;
do {
if (!tempPos.IsBorder()) {
tempPos.FlipF();
VisitPolychord(mesh, tempPos, chords, mark, resultCode);
tempPos.FlipF();
}
tempPos.FlipV();
tempPos.FlipE();
} while (tempPos != startPos);
VisitPolychord(mesh, startPos, chords, mark, resultCode);
return resultCode;
}
VisitPolychord(mesh, startPos, chords, mark, resultCode);
return resultCode;
}
// check if the link conditions are satisfied
// if not satisfied, visit the sequence for marking it and return
if (!linkConditions.CheckLinkConditions(mesh, startPos)) {
VisitPolychord(mesh, startPos, chords, mark, PC_NOLINKCOND);
return PC_NOLINKCOND;
}
// mark the polychord's chords
MarkPolychords(mesh, startPos, chords, mark);
// check if the polychord does not intersect itself
// if it self-intersects, visit the polychord for marking it and return
if (IsPolychordSelfIntersecting(mesh, startPos, chords, mark)) {
VisitPolychord(mesh, startPos, chords, mark, PC_SELFINTERSECT);
return PC_SELFINTERSECT;
}
// check if manifoldness remains
// if it will loose manifoldness, visit the sequence for marking it and return
if (!WillPolychordBeManifold(mesh, startPos, chords, mark)) {
VisitPolychord(mesh, startPos, chords, mark, PC_NOMOREMANIF);
return PC_NOMOREMANIF;
}
// at this point the polychord is collapsable, visit it for marking
VisitPolychord(mesh, startPos, chords, mark, PC_SUCCESS);
// now collapse
CoordType point;
// int valenceA = 0, valenceB = 0;
vcg::face::Pos<FaceType> runPos = startPos;
vcg::face::JumpingPos<FaceType> tmpPos;
// bool onSideA = false, onSideB = false;
vcg::face::Pos<FaceType> sideA, sideB;
typedef std::queue<VertexPointer *> FacesVertex;
typedef std::pair<VertexPointer, FacesVertex> FacesVertexPair;
typedef std::queue<FacesVertexPair> FacesVertexPairQueue;
FacesVertexPairQueue vQueue;
typedef std::pair<FacePointer *, FacePointer> FFpPair;
typedef std::pair<char *, char> FFiPair;
typedef std::pair<FFpPair, FFiPair> FFPair;
typedef std::queue<FFPair> FFQueue;
FFQueue ffQueue;
std::queue<VertexPointer> verticesToDeleteQueue;
std::queue<FacePointer> facesToDeleteQueue;
runPos = startPos;
do {
// compute new vertex
point = (runPos.V()->P() + runPos.VFlip()->P()) / 2.f;
if (checkSing) {
if (resultCode == PC_SINGSIDEA)
point = runPos.V()->P();
else if (resultCode == PC_SINGSIDEB)
point = runPos.VFlip()->P();
}
runPos.V()->P() = point;
// list the vertex pointer of the faces on the other side to be updated
vQueue.push(FacesVertexPair());
vQueue.back().first = runPos.V();
tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
tmpPos.FlipV();
tmpPos.NextFE(); // go to next face
while (tmpPos.F() != runPos.F()) {
if (tmpPos.F() != runPos.FFlip())
vQueue.back().second.push(&tmpPos.F()->V(tmpPos.VInd()));
tmpPos.NextFE(); // go to next face
}
// enqueue to delete the other vertex
verticesToDeleteQueue.push(runPos.VFlip());
// list the adjacencies
sideA = runPos;
sideA.FlipE();
sideA.FlipF();
sideB = runPos;
sideB.FlipV();
sideB.FlipE();
sideB.FlipF();
// first side
if (!sideA.IsBorder()) {
ffQueue.push(FFPair(FFpPair(),FFiPair()));
ffQueue.back().first.first = &sideA.F()->FFp(sideA.E());
ffQueue.back().second.first = &sideA.F()->FFi(sideA.E());
if (!sideB.IsBorder()) {
ffQueue.back().first.second = sideB.F();
ffQueue.back().second.second = sideB.E();
} else {
ffQueue.back().first.second = sideA.F();
ffQueue.back().second.second = sideA.E();
}
}
// second side
if (!sideB.IsBorder()) {
ffQueue.push(FFPair(FFpPair(),FFiPair()));
ffQueue.back().first.first = &sideB.F()->FFp(sideB.E());
ffQueue.back().second.first = &sideB.F()->FFi(sideB.E());
if (!sideA.IsBorder()) {
ffQueue.back().first.second = sideA.F();
ffQueue.back().second.second = sideA.E();
} else {
ffQueue.back().first.second = sideB.F();
ffQueue.back().second.second = sideB.E();
}
}
// enqueue to delete the face
facesToDeleteQueue.push(runPos.F());
// go on next edge/face
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos && !runPos.IsBorder());
assert(runPos == startPos || vcg::face::IsBorder(*startPos.F(),startPos.E()));
if (runPos.IsBorder()) {
// compute new vertex on the last (border) edge
point = (runPos.V()->P() + runPos.VFlip()->P()) / 2.f;
if (checkSing) {
if (resultCode == PC_SINGSIDEA)
point = runPos.V()->P();
else if (resultCode == PC_SINGSIDEB)
point = runPos.VFlip()->P();
}
runPos.V()->P() = point;
// list the vertex pointer of the faces on the other side to be updated
vQueue.push(FacesVertexPair());
vQueue.back().first = runPos.V();
tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
tmpPos.FlipV();
tmpPos.NextFE(); // go to next face
while (tmpPos.F() != runPos.F()) {
vQueue.back().second.push(&tmpPos.F()->V(tmpPos.VInd()));
tmpPos.NextFE();
}
// enqueue to delete the other vertex
verticesToDeleteQueue.push(runPos.VFlip());
}
// update vertices
while (!vQueue.empty()) {
while (!vQueue.front().second.empty()) {
*vQueue.front().second.front() = vQueue.front().first;
vQueue.front().second.pop();
}
vQueue.pop();
}
// update adjacencies
while (!ffQueue.empty()) {
*ffQueue.front().first.first = ffQueue.front().first.second;
*ffQueue.front().second.first = ffQueue.front().second.second;
ffQueue.pop();
}
// delete faces
while (!facesToDeleteQueue.empty()) {
vcg::tri::Allocator<PolyMeshType>::DeleteFace(mesh, *facesToDeleteQueue.front());
facesToDeleteQueue.pop();
}
// delete vertices
while (!verticesToDeleteQueue.empty()) {
vcg::tri::Allocator<PolyMeshType>::DeleteVertex(mesh, *verticesToDeleteQueue.front());
verticesToDeleteQueue.pop();
}
return PC_SUCCESS;
}
/**
* @brief CollapseAllPolychords finds and collapses all the polychords.
* @param mesh The input polygonal mesh (it SHOULD have the vcg::face::PolyInfo component).
* @param checkSing true if singularities on both sides of a polychord are not allowed.
*/
static void CollapseAllPolychords (PolyMeshType &mesh, const bool checkSing = true) {
vcg::tri::RequireFFAdjacency(mesh);
if (mesh.IsEmpty())
return;
vcg::face::Pos<FaceType> pos;
PC_ResultCode resultCode;
std::pair<size_t, unsigned char> face_edge;
// construct the link conditions checker
LinkConditions linkConditions(mesh.vert.size());
// construct the vector of chords
PC_Chords chords(mesh);
unsigned long mark = 0;
// iterate over all the chords
while (!chords.End()) {
// get the current coord
chords.GetCurrent(face_edge);
resultCode = chords[face_edge].q;
assert(resultCode == PC_VOID);
// construct a pos on the face and edge of the current coord
pos.Set(&mesh.face[face_edge.first], face_edge.second, mesh.face[face_edge.first].V(face_edge.second));
// (try to) collapse the polychord
resultCode = CollapsePolychord(mesh, pos, mark, chords, linkConditions, checkSing);
// go to the next coord
chords.Next();
// increment the mark
++mark;
if (mark == std::numeric_limits<unsigned long>::max()) {
chords.ResetMarks();
mark = 0;
}
}
}
/**
* @brief FindPolychords lists all the valid polychords starting position of a mesh.
* @param mesh The input mesh.
* @param polychords The container of results.
* @param loopsOnly true if closed polychords only must be listed, false for all polychords.
*/
static void FindPolychords (PolyMeshType &mesh, std::deque< vcg::face::Pos<FaceType> > &polychords, const bool loopsOnly = false) {
vcg::tri::RequireFFAdjacency(mesh);
polychords.clear();
if (mesh.IsEmpty())
return;
vcg::face::Pos<FaceType> pos, startPos;
PC_ResultCode resultCode;
std::pair<size_t, unsigned char> face_edge;
// construct the vector of chords
PC_Chords chords(mesh);
unsigned long mark = 0;
// iterate over all the chords
while (!chords.End()) {
// get the current coord
chords.GetCurrent(face_edge);
// construct a pos on the face and edge of the current coord
pos.Set(&mesh.face[face_edge.first], face_edge.second, mesh.face[face_edge.first].V(face_edge.second));
// check and find start pos
resultCode = CheckPolychordFindStartPosition(pos, startPos, false);
// visit the polychord
if (resultCode == PC_SUCCESS || resultCode == PC_SINGBOTH || resultCode == PC_SINGSIDEA || resultCode == PC_SINGSIDEB) {
VisitPolychord(mesh, startPos, chords, mark, PC_OTHER);
// store a new polychord
if (!loopsOnly)
polychords.push_back(startPos);
else if (!startPos.IsBorder())
polychords.push_back(startPos);
} else {
if (resultCode == PC_NOTMANIF) {
pos = startPos;
VisitPolychord(mesh, pos, chords, mark, resultCode);
if (pos.IsManifold() && !pos.IsBorder()) {
pos.FlipF();
VisitPolychord(mesh, pos, chords, mark, resultCode);
}
} else if (resultCode == PC_NOTQUAD) {
// if not quad, visit all the polychords passing through this coord
pos = startPos;
do {
if (!pos.IsBorder()) {
pos.FlipF();
VisitPolychord(mesh, pos, chords, mark, resultCode);
pos.FlipF();
}
pos.FlipV();
pos.FlipE();
} while (pos != startPos);
VisitPolychord(mesh, startPos, chords, mark, resultCode);
}
VisitPolychord(mesh, startPos, chords, mark, resultCode);
}
// go to the next coord
chords.Next();
// increment the mark
++mark;
if (mark == std::numeric_limits<unsigned long>::max()) {
chords.ResetMarks();
mark = 0;
}
}
}
/**
* @brief SplitPolychord splits a polychord into n polychords by inserting all the needed faces.
* @param mesh is the input polygonal mesh.
* @param pos is a position into the polychord (not necessarily the starting border). It will be updated with changes.
* @param n is the number of polychords to replace the input one.
* @param facesToUpdate is a vector of face pointers to be updated after re-allocation.
* @param verticesToUpdate is a vector of vertex pointers to be updated after re-allocation.
*/
static void SplitPolychord (PolyMeshType &mesh, vcg::face::Pos<FaceType> &pos, const size_t n,
std::vector<FacePointer *> &facesToUpdate, std::vector<VertexPointer *> &verticesToUpdate) {
vcg::tri::RequireFFAdjacency(mesh);
vcg::tri::RequirePerFaceFlags(mesh);
if (mesh.IsEmpty())
return;
if (pos.IsNull())
return;
if (n <= 1)
return;
// remember which face vertex has pos, for later updating
int posVInd = pos.VInd();
vcg::face::Pos<FaceType> startPos, runPos;
PC_ResultCode result = CheckPolychordFindStartPosition(pos, startPos, false);
if (result != PC_SUCCESS && result != PC_SINGBOTH && result != PC_SINGSIDEA && result != PC_SINGSIDEB)
return;
// since every face has an orientation, ensure that the new polychords are inserted on the right of the starting pos
startPos.FlipE();
int e = startPos.E();
startPos.FlipE();
if (startPos.F()->Next(startPos.E()) == e)
startPos.FlipV();
// clear flags
vcg::tri::UpdateFlags<PolyMeshType>::FaceClearV(mesh);
vcg::tri::UpdateFlags<PolyMeshType>::FaceClearS(mesh);
// count how many faces there are
size_t fn1 = 0, fn2 = 0;
runPos = startPos;
do {
// increase the number of faces
if (runPos.F()->IsV()) {
++fn2;
--fn1;
runPos.F()->SetS();
} else {
++fn1;
runPos.F()->SetV();
}
// go onto the next face
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (!runPos.IsBorder() && runPos != startPos);
// clear flags
runPos = startPos;
do {
// clear visited
runPos.F()->ClearV();
// go onto the next face
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (!runPos.IsBorder() && runPos != startPos);
// compute the number of faces and vertices that must be added to the mesh in order to insert the new polychords
size_t FN = fn1 * (n - 1) + fn2 * (n * n - 1);
size_t VN = fn1 * (n - 1) + fn2 * (n + 1) * (n - 1);
if (startPos.IsBorder())
VN += n - 1;
// add the pos to update face and vertex pointer to the list of things to update after re-allocation
facesToUpdate.push_back(&pos.F());
verticesToUpdate.push_back(&pos.V());
// add the starting position's face and vertex pointers to the list of things to update after re-allocation
facesToUpdate.push_back(&startPos.F());
verticesToUpdate.push_back(&startPos.V());
runPos.SetNull();
// add faces to the mesh
FaceIterator firstAddedFaceIt = vcg::tri::Allocator<PolyMeshType>::AddFaces(mesh, FN, facesToUpdate);
// add vertices to the mesh
VertexIterator firstAddedVertexIt = vcg::tri::Allocator<PolyMeshType>::AddVertices(mesh, VN, verticesToUpdate);
// delete the added starting position's face and vertex pointers
facesToUpdate.pop_back();
verticesToUpdate.pop_back();
// delete the added pos to update face and vertex pointers
facesToUpdate.pop_back();
verticesToUpdate.pop_back();
// allocate and initialize 4 vertices and ffAdj for each new face
for (FaceIterator fIt = firstAddedFaceIt; fIt != mesh.face.end(); ++fIt) {
fIt->Alloc(4);
for (size_t j = 0; j < 4; ++j) {
fIt->FFp(j) = &*fIt;
fIt->FFi(j) = j;
}
}
// two structures to store temporary face data and splitting information
struct FaceData {
FacePointer faceP;
std::vector<FacePointer> ffpAdj;
std::vector<int> ffiAdj;
std::vector<VertexPointer> fvpAdj;
FaceData() : faceP(0), ffpAdj(4, 0), ffiAdj(4, 0), fvpAdj(4, 0) { }
};
struct FaceSubdivision {
int firstEdge;
int firstVertex;
std::vector< std::vector<FaceData> > subfaces;
};
#if __cplusplus >= 201103L
std::unordered_map<FacePointer,FaceSubdivision> faceSubdivisions;
typename std::unordered_map<FacePointer,FaceSubdivision>::iterator faceSubdivisionsIt;
typename std::unordered_map<FacePointer,FaceSubdivision>::iterator faceSubdivisionsPrevIt;
typename std::unordered_map<FacePointer,FaceSubdivision>::iterator faceSubdivisionsNeighbourIt;
#else
std::map<FacePointer,FaceSubdivision faceSubdivisions;
typename std::map<FacePointer,FaceSubdivision>::iterator faceSubdivisionsIt;
typename std::map<FacePointer,FaceSubdivision>::iterator faceSubdivisionsPrevIt;
typename std::map<FacePointer,FaceSubdivision>::iterator faceSubdivisionsNeighbourIt;
#endif
// structure to store temporary data to assign at external faces (close to polychord)
struct ExternalFaceData {
FacePointer faceTo;
FacePointer faceFrom;
int edgeTo;
int edgeFrom;
ExternalFaceData() : faceTo(0), faceFrom(0), edgeTo(0), edgeFrom(0) { }
ExternalFaceData(const FacePointer &ft,
const FacePointer &ff,
const int et,
const int ef) : faceTo(ft), faceFrom(ff), edgeTo(et), edgeFrom(ef) { }
};
std::list<ExternalFaceData> externalFaces;
typename std::list<ExternalFaceData>::iterator externalFacesIt;
int leftEdge, rightEdge, topEdge, bottomEdge, blVInd, brVInd, tlVInd, trVInd;
int pleftEdge, prightEdge, ptopEdge, pbottomEdge, pblVInd, pbrVInd, ptlVInd, ptrVInd;
CoordType fromPoint, toPoint;
FacePointer faceP;
// first pass: make subdivisions
runPos = startPos;
do {
// create temporary data
if (!runPos.F()->IsV()) {
runPos.F()->SetV();
faceSubdivisionsIt = faceSubdivisions.insert(std::make_pair(runPos.F(), FaceSubdivision())).first;
faceSubdivisionsIt->second.firstEdge = runPos.E();
faceSubdivisionsIt->second.firstVertex = runPos.VInd();
if (runPos.F()->IsS())
faceSubdivisionsIt->second.subfaces.resize(n, std::vector<FaceData>(n));
else
faceSubdivisionsIt->second.subfaces.resize(1, std::vector<FaceData>(n));
// assign face pointers
faceSubdivisionsIt->second.subfaces.at(0).at(0).faceP = runPos.F();
for (size_t j = 1; j < n; ++j, ++firstAddedFaceIt)
faceSubdivisionsIt->second.subfaces.at(0).at(j).faceP = &*firstAddedFaceIt;
for (size_t i = 1; i < faceSubdivisionsIt->second.subfaces.size(); ++i)
for (size_t j = 0; j < n; ++j, ++firstAddedFaceIt)
faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP = &*firstAddedFaceIt;
// internal face pointers adj
rightEdge = runPos.F()->Next(runPos.E());
leftEdge = runPos.F()->Prev(runPos.E());
for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size(); ++i)
for (size_t j = 0; j < n - 1; ++j) {
faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj[rightEdge] = faceSubdivisionsIt->second.subfaces.at(i).at(j+1).faceP;
faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj[rightEdge] = leftEdge;
faceSubdivisionsIt->second.subfaces.at(i).at(j+1).ffpAdj[leftEdge] = faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP;
faceSubdivisionsIt->second.subfaces.at(i).at(j+1).ffiAdj[leftEdge] = rightEdge;
}
topEdge = runPos.F()->Next(rightEdge);
bottomEdge = runPos.E();
for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size() - 1; ++i)
for (size_t j = 0; j < n; ++j) {
faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj[topEdge] = faceSubdivisionsIt->second.subfaces.at(i+1).at(j).faceP;
faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj[topEdge] = bottomEdge;
faceSubdivisionsIt->second.subfaces.at(i+1).at(j).ffpAdj[bottomEdge] = faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP;
faceSubdivisionsIt->second.subfaces.at(i+1).at(j).ffiAdj[bottomEdge] = topEdge;
}
// assign old vertex pointers
blVInd = runPos.VInd();
brVInd = runPos.F()->Next(blVInd);
trVInd = runPos.F()->Next(brVInd);
tlVInd = runPos.F()->Next(trVInd);
faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd) = runPos.F()->V(blVInd);
faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd) = runPos.F()->V(brVInd);
faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd) = runPos.F()->V(trVInd);
faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd) = runPos.F()->V(tlVInd);
// assign new internal vertex pointers
for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size() - 1; ++i)
for (size_t j = 0; j < n - 1; ++j, ++firstAddedVertexIt) {
faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.at(trVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i).at(j+1).fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i+1).at(j).fvpAdj.at(brVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i+1).at(j+1).fvpAdj.at(blVInd) = &*firstAddedVertexIt;
}
}
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (!runPos.IsBorder() && runPos != startPos);
// update subdivision iterator
if (runPos.IsBorder())
faceSubdivisionsIt = faceSubdivisions.end();
// second pass: assign edge vertices and subdivisions-to-subdivisions face-face adjacency
runPos = startPos;
do {
// get current and previous subdivision
faceSubdivisionsPrevIt = faceSubdivisionsIt;
faceSubdivisionsIt = faceSubdivisions.find(runPos.F());
// get original indices
bottomEdge = faceSubdivisionsIt->second.firstEdge;
rightEdge = runPos.F()->Next(bottomEdge);
topEdge = runPos.F()->Next(rightEdge);
leftEdge = runPos.F()->Next(topEdge);
blVInd = faceSubdivisionsIt->second.firstVertex;
brVInd = runPos.F()->Next(blVInd);
trVInd = runPos.F()->Next(brVInd);
tlVInd = runPos.F()->Next(trVInd);
if (faceSubdivisionsPrevIt != faceSubdivisions.end()) {
pbottomEdge = faceSubdivisionsPrevIt->second.firstEdge;
prightEdge = runPos.FFlip()->Next(pbottomEdge);
ptopEdge = runPos.FFlip()->Next(prightEdge);
pleftEdge = runPos.FFlip()->Next(ptopEdge);
pblVInd = faceSubdivisionsPrevIt->second.firstVertex;
pbrVInd = runPos.F()->Next(pblVInd);
ptrVInd = runPos.F()->Next(pbrVInd);
ptlVInd = runPos.F()->Next(ptrVInd);
}
// assign bottom edge vertices (and vertex adjacency with the previous subdivision) and face-to-face adjacency
if (runPos.E() == bottomEdge) {
// get pre-existing coords
fromPoint = faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd)->P();
// assign new vertices
for (size_t j = 0; j < n - 1; ++j, ++firstAddedVertexIt) {
firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (j + 1) / n;
faceSubdivisionsIt->second.subfaces.front().at(j).fvpAdj.at(brVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.front().at(j+1).fvpAdj.at(blVInd) = &*firstAddedVertexIt;
}
if (faceSubdivisionsPrevIt != faceSubdivisions.end()) {
if (runPos.F()->FFi(bottomEdge) == ptopEdge) {
// update face-to-vertex adjacency
for (size_t j = 0; j < n - 1; ++j) {
faceSubdivisionsPrevIt->second.subfaces.back().at(j).fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.front().at(j).fvpAdj.at(brVInd);
faceSubdivisionsPrevIt->second.subfaces.back().at(j+1).fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.front().at(j+1).fvpAdj.at(blVInd);
}
// update face-to-face adjacency
for (size_t j = 0; j < n; ++j) {
faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsPrevIt->second.subfaces.back().at(j).faceP;
faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = ptopEdge;
faceSubdivisionsPrevIt->second.subfaces.back().at(j).ffpAdj.at(ptopEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
faceSubdivisionsPrevIt->second.subfaces.back().at(j).ffiAdj.at(ptopEdge) = bottomEdge;
}
} else if (runPos.F()->FFi(bottomEdge) == prightEdge) {
// update face-to-vertex adjacency
for (size_t i = 0; i < n - 1; ++i) {
faceSubdivisionsPrevIt->second.subfaces.at(i).back().fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-1).fvpAdj.at(blVInd);
faceSubdivisionsPrevIt->second.subfaces.at(i+1).back().fvpAdj.at(pbrVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-2).fvpAdj.at(brVInd);
}
// update face-to-face adjacency
for (size_t j = 0; j < n; ++j) {
faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsPrevIt->second.subfaces.at(n-j-1).back().faceP;
faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = prightEdge;
faceSubdivisionsPrevIt->second.subfaces.at(n-j-1).back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
faceSubdivisionsPrevIt->second.subfaces.at(n-j-1).back().ffiAdj.at(prightEdge) = bottomEdge;
}
} else {
// must be pleftEdge
// update face-to-vertex adjacency
for (size_t i = 0; i < n - 1; ++i) {
faceSubdivisionsPrevIt->second.subfaces.at(i).front().fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.front().at(i).fvpAdj.at(brVInd);
faceSubdivisionsPrevIt->second.subfaces.at(i+1).front().fvpAdj.at(pblVInd) = faceSubdivisionsIt->second.subfaces.front().at(i+1).fvpAdj.at(blVInd);
}
// update face-to-face adjacency
for (size_t j = 0; j < n; ++j) {
faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsPrevIt->second.subfaces.at(j).front().faceP;
faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = pleftEdge;
faceSubdivisionsPrevIt->second.subfaces.at(j).front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
faceSubdivisionsPrevIt->second.subfaces.at(j).front().ffiAdj.at(pleftEdge) = bottomEdge;
}
}
} else {
// must be on border
// update face-to-face adjacency
for (size_t j = 0; j < n; ++j) {
faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = bottomEdge;
}
}
} else if (runPos.E() == leftEdge) {
// get pre-existing coords
fromPoint = faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd)->P();
// assign new vertices
for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i+1).front().fvpAdj.at(blVInd) = &*firstAddedVertexIt;
}
// can't be on border
if (runPos.F()->FFi(leftEdge) == ptopEdge) {
// update face-to-vertex adjacency
for (size_t j = 0; j < n - 1; ++j) {
faceSubdivisionsPrevIt->second.subfaces.back().at(j).fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(n-j-1).front().fvpAdj.at(blVInd);
faceSubdivisionsPrevIt->second.subfaces.back().at(j+1).fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.at(n-j-2).front().fvpAdj.at(tlVInd);
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsPrevIt->second.subfaces.back().at(n-i-1).faceP;
faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = ptopEdge;
faceSubdivisionsPrevIt->second.subfaces.back().at(n-i-1).ffpAdj.at(ptopEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
faceSubdivisionsPrevIt->second.subfaces.back().at(n-i-1).ffiAdj.at(ptopEdge) = leftEdge;
}
} else if (runPos.F()->FFi(leftEdge) == prightEdge) {
// update face-to-vertex adjacency
for (size_t i = 0; i < n - 1; ++i) {
faceSubdivisionsPrevIt->second.subfaces.at(i).back().fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(tlVInd);
faceSubdivisionsPrevIt->second.subfaces.at(i+1).back().fvpAdj.at(pbrVInd) = faceSubdivisionsIt->second.subfaces.at(i+1).front().fvpAdj.at(blVInd);
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsPrevIt->second.subfaces.at(i).back().faceP;
faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = prightEdge;
faceSubdivisionsPrevIt->second.subfaces.at(i).back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
faceSubdivisionsPrevIt->second.subfaces.at(i).back().ffiAdj.at(prightEdge) = leftEdge;
}
} else {
// must be runPos.F()->FFi(leftEdge) == pleftEdge
// update face-to-vertex adjacency
for (size_t i = 0; i < n - 1; ++i) {
faceSubdivisionsPrevIt->second.subfaces.at(i).front().fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-1).fvpAdj.at(blVInd);
faceSubdivisionsPrevIt->second.subfaces.at(i+1).front().fvpAdj.at(pblVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-2).fvpAdj.at(tlVInd);
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).front().faceP;
faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = pleftEdge;
faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).front().ffiAdj.at(pleftEdge) = leftEdge;
}
}
} else {
// must be runPos.E() == rightEdge
// get pre-existing coords
fromPoint = faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd)->P();
// assign new vertices
for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(trVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i+1).back().fvpAdj.at(brVInd) = &*firstAddedVertexIt;
}
// can't be on border
if (runPos.F()->FFi(rightEdge) == ptopEdge) {
// update face-to-vertex adjacency
for (size_t j = 0; j < n - 1; ++j) {
faceSubdivisionsPrevIt->second.subfaces.back().at(j).fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(j).back().fvpAdj.at(trVInd);
faceSubdivisionsPrevIt->second.subfaces.back().at(j+1).fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.at(j+1).back().fvpAdj.at(brVInd);
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsPrevIt->second.subfaces.back().at(i).faceP;
faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = ptopEdge;
faceSubdivisionsPrevIt->second.subfaces.back().at(i).ffpAdj.at(ptopEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
faceSubdivisionsPrevIt->second.subfaces.back().at(i).ffiAdj.at(ptopEdge) = rightEdge;
}
} else if (runPos.F()->FFi(rightEdge) == prightEdge) {
// update face-to-vertex adjacency
for (size_t i = 0; i < n - 1; ++i) {
faceSubdivisionsPrevIt->second.subfaces.at(i).back().fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(n-i-1).back().fvpAdj.at(brVInd);
faceSubdivisionsPrevIt->second.subfaces.at(i+1).back().fvpAdj.at(pbrVInd) = faceSubdivisionsIt->second.subfaces.at(n-i-2).back().fvpAdj.at(trVInd);
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).back().faceP;
faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = prightEdge;
faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).back().ffiAdj.at(prightEdge) = rightEdge;
}
} else {
// must be runPos.F()->FFi(rightEdge) == pleftEdge
// update face-to-vertex adjacency
for (size_t i = 0; i < n - 1; ++i) {
faceSubdivisionsPrevIt->second.subfaces.at(i).front().fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(trVInd);
faceSubdivisionsPrevIt->second.subfaces.at(i+1).front().fvpAdj.at(pblVInd) = faceSubdivisionsIt->second.subfaces.at(i+1).back().fvpAdj.at(brVInd);
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsPrevIt->second.subfaces.at(i).front().faceP;
faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = pleftEdge;
faceSubdivisionsPrevIt->second.subfaces.at(i).front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
faceSubdivisionsPrevIt->second.subfaces.at(i).front().ffiAdj.at(pleftEdge) = rightEdge;
}
}
}
// update subdivision's left and right sides face-to-face adjacency
// go on left edge
runPos.FlipE();
runPos.FlipV();
if (runPos.IsBorder()) {
if (!runPos.F()->IsS()) {
// must be runPos.E() == leftEdge and faceSubdivisionsIt->second.subfaces.size() == 1
faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = faceSubdivisionsIt->second.subfaces.front().front().faceP;
faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = leftEdge;
}
} else if (!runPos.FFlip()->IsV()) {
// must be runPos.E() == leftEdge and faceSubdivisionsIt->second.subfaces.size() == 1
assert(faceSubdivisionsIt->second.subfaces.size() == 1);
faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = runPos.FFlip();
faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = runPos.F()->FFi(leftEdge);
externalFaces.push_back(ExternalFaceData(runPos.FFlip(),
faceSubdivisionsIt->second.subfaces.front().front().faceP,
runPos.F()->FFi(leftEdge),
leftEdge));
} else if (!runPos.FFlip()->IsS() && !runPos.F()->IsS()) {
// must be runPos.E() == leftEdge and faceSubdivisionsIt->second.subfaces.size() == 1
faceSubdivisionsNeighbourIt = faceSubdivisions.find(runPos.FFlip());
// must be faceSubdivisionsNeighbourIt != faceSubdivisions.end() and faceSubdivisionsNeighbourIt->second.subfaces.size() == 1
pbottomEdge = faceSubdivisionsNeighbourIt->second.firstEdge;
prightEdge = runPos.FFlip()->Next(pbottomEdge);
ptopEdge = runPos.FFlip()->Next(prightEdge);
pleftEdge = runPos.FFlip()->Next(ptopEdge);
if (runPos.F()->FFi(leftEdge) == pleftEdge) {
faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().front().faceP;
faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = pleftEdge;
faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.front().front().faceP;
faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffiAdj.at(pleftEdge) = leftEdge;
} else {
// must be runPos.F()->FFi(leftEdge) == prightEdge
faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().back().faceP;
faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = prightEdge;
faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.front().front().faceP;
faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffiAdj.at(prightEdge) = leftEdge;
}
}
// go on right edge
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
if (runPos.IsBorder()) {
if (!runPos.F()->IsS()) {
// must be runPos.E() == rightEdge and faceSubdivisionsIt->second.subfaces.size() == 1
faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = faceSubdivisionsIt->second.subfaces.front().back().faceP;
faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = rightEdge;
}
} else if (!runPos.FFlip()->IsV()) {
// must be runPos.E() == rightEdge and faceSubdivisionsIt->second.subfaces.size() == 1
faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = runPos.FFlip();
faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = runPos.F()->FFi(rightEdge);
externalFaces.push_back(ExternalFaceData(runPos.FFlip(),
faceSubdivisionsIt->second.subfaces.front().back().faceP,
runPos.F()->FFi(rightEdge),
rightEdge));
} else if (!runPos.FFlip()->IsS() && !runPos.F()->IsS()) {
// must be runPos.E() == rightEdge and faceSubdivisionsIt->second.subfaces.size() == 1
faceSubdivisionsNeighbourIt = faceSubdivisions.find(runPos.FFlip());
// must be faceSubdivisionsNeighbourIt != faceSubdivisions.end() and faceSubdivisionsNeighbourIt->second.subfaces.size() == 1
pbottomEdge = faceSubdivisionsNeighbourIt->second.firstEdge;
prightEdge = runPos.FFlip()->Next(pbottomEdge);
ptopEdge = runPos.FFlip()->Next(prightEdge);
pleftEdge = runPos.FFlip()->Next(ptopEdge);
if (runPos.F()->FFi(rightEdge) == pleftEdge) {
faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().front().faceP;
faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = pleftEdge;
faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.front().back().faceP;
faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffiAdj.at(pleftEdge) = rightEdge;
} else {
// must be runPos.F()->FFi(rightEdge) == prightEdge
faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().back().faceP;
faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = prightEdge;
faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.front().back().faceP;
faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffiAdj.at(prightEdge) = rightEdge;
}
}
// go on top edge
runPos.FlipE();
runPos.FlipV();
if (runPos.IsBorder()) {
// assign top edge vertices and face-to-border adjacency
if (runPos.E() == topEdge) {
// get pre-existing coords
fromPoint = faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd)->P();
// assign new vertices
for (size_t j = 0; j < n - 1; ++j, ++firstAddedVertexIt) {
firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (j + 1) / n;
faceSubdivisionsIt->second.subfaces.back().at(j).fvpAdj.at(trVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.back().at(j+1).fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
}
// update face-to-face adjacency
for (size_t j = 0; j < n; ++j) {
faceSubdivisionsIt->second.subfaces.back().at(j).ffpAdj.at(topEdge) = faceSubdivisionsIt->second.subfaces.back().at(j).faceP;
faceSubdivisionsIt->second.subfaces.back().at(j).ffiAdj.at(topEdge) = topEdge;
}
} else if (runPos.E() == leftEdge) {
// get pre-existing coords
fromPoint = faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd)->P();
// assign new vertices
for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i+1).front().fvpAdj.at(blVInd) = &*firstAddedVertexIt;
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = leftEdge;
}
} else {
// must be runPos.E() == rightEdge
// get pre-existing coords
fromPoint = faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd)->P();
// assign new vertices
for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(trVInd) = &*firstAddedVertexIt;
faceSubdivisionsIt->second.subfaces.at(i+1).back().fvpAdj.at(brVInd) = &*firstAddedVertexIt;
}
// update face-to-face adjacency
for (size_t i = 0; i < n; ++i) {
faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = rightEdge;
}
}
} else {
// go onto the next face
runPos.FlipF();
}
} while (!runPos.IsBorder() && runPos != startPos);
// final pass: compute coords of new internal vertices, copy all data into mesh and clear flags
for (faceSubdivisionsIt = faceSubdivisions.begin(); faceSubdivisionsIt != faceSubdivisions.end(); ++faceSubdivisionsIt) {
// clear flags
faceSubdivisionsIt->first->ClearV();
if (faceSubdivisionsIt->first->IsS())
faceSubdivisionsIt->first->ClearS();
// get vertex indices
blVInd = faceSubdivisionsIt->second.firstVertex;
brVInd = faceSubdivisionsIt->first->Next(blVInd);
// compute coords on bottom side and internal, horizontally
for (size_t i = 1; i < faceSubdivisionsIt->second.subfaces.size(); ++i) {
fromPoint = faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(blVInd)->P();
toPoint = faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(brVInd)->P();
for (size_t j = 1; j < n; ++j)
faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.at(blVInd)->P() = fromPoint + (toPoint - fromPoint) * j / n;
}
// finally, copy data into mesh
for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size(); ++i)
for (size_t j = 0; j < n; ++j) {
faceP = faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP;
for (size_t k = 0; k < faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj.size(); ++k)
faceP->FFp(k) = faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj.at(k);
for (size_t k = 0; k < faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj.size(); ++k)
faceP->FFi(k) = faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj.at(k);
for (size_t k = 0; k < faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.size(); ++k)
faceP->V(k) = faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.at(k);
}
}
// very last step: update external faces adjacency
for (externalFacesIt = externalFaces.begin(); externalFacesIt != externalFaces.end(); ++externalFacesIt) {
externalFacesIt->faceTo->FFp(externalFacesIt->edgeTo) = externalFacesIt->faceFrom;
externalFacesIt->faceTo->FFi(externalFacesIt->edgeTo) = externalFacesIt->edgeFrom;
}
// very very last step: update pos
pos.V() = pos.F()->V(posVInd);
}
/**
* @brief SplitPolychord splits a polychord into n polychords by inserting all the needed faces.
* @param mesh is the input polygonal mesh.
* @param pos is a position into the polychord (not necessarily the starting border). It will be updated with changes.
* @param n is the number of polychords to replace the input one.
*/
static void SplitPolychord (PolyMeshType &mesh, vcg::face::Pos<FaceType> &pos, const size_t n) {
std::vector<FacePointer *> facesToUpdate;
std::vector<VertexPointer *> verticesToUpdate;
SplitPolychord(mesh, pos, n, facesToUpdate, verticesToUpdate);
}
/**
* @brief CheckPolychordFindStartPosition checks if it's a collapsable polychord.
* @param pos Input The starting position.
* @param startPos Output the new starting position (in case of borders).
* @param checkSing true if singularities on both sides are not allowed.
* @return PC_SUCCESS if it's a collapsable polychord, otherwise the code for the cause (startPos is on it).
*/
static PC_ResultCode CheckPolychordFindStartPosition (const vcg::face::Pos<FaceType> &pos,
vcg::face::Pos<FaceType> &startPos,
const bool checkSing = true) {
assert(!pos.IsNull());
int valence = 0;
bool singSideA = false, singSideB = false;
bool borderSideA = false, borderSideB = false;
bool polyBorderFound = false;
vcg::face::JumpingPos<FaceType> jmpPos;
startPos = pos;
do {
// check if it is a quad
if (startPos.F()->VN() != 4)
return PC_NOTQUAD;
// check manifoldness
if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
return PC_NOTMANIF;
startPos.FlipV();
if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
return PC_NOTMANIF;
startPos.FlipV();
// check if side A is on border
startPos.FlipE();
if (startPos.IsBorder())
borderSideA = true;
startPos.FlipE();
// check if side B is on border
startPos.FlipV();
startPos.FlipE();
if (startPos.IsBorder())
borderSideB = true;
startPos.FlipE();
startPos.FlipV();
// check if singularities are not in both sides
if (checkSing) {
// compute the valence of the vertex on side B
startPos.FlipV();
valence = startPos.NumberOfIncidentVertices();
// if the vertex is on border increment its valence by 1 (virtually connect it to a dummy vertex)
jmpPos.Set(startPos.F(), startPos.E(), startPos.V());
if (jmpPos.FindBorder())
++valence;
if (valence != 4)
singSideB = true;
// a 2-valence internl vertex cause a polychord to touch itself, producing non-2manifoldness
// in that case, a 2-valence vertex is dealt as 2 singularities in both sides
if (valence == 2 && !borderSideB)
singSideA = true;
// compute the valence of the vertex on side A
startPos.FlipV();
valence = startPos.NumberOfIncidentVertices();
// if the vertex is on border increment its valence by 1 (virtually connect it to a dummy vertex)
jmpPos.Set(startPos.F(), startPos.E(), startPos.V());
if (jmpPos.FindBorder())
++valence;
if (valence != 4)
singSideA = true;
// a 2-valence internal vertex cause a polychord to touch itself, producing non-2manifoldness
// in that case, a 2-valence vertex is dealt as 2 singularities in both sides
if (valence == 2 && !borderSideA)
singSideB = true;
}
// if the first border has been reached, go on the other direction to find the other border
if (startPos != pos && startPos.IsBorder() && !polyBorderFound) {
startPos = pos;
startPos.FlipF();
polyBorderFound = true;
}
// if the other border has been reached, return
if (polyBorderFound && startPos.IsBorder())
break;
// go to the next edge
startPos.FlipE();
startPos.FlipV();
startPos.FlipE();
// check manifoldness
if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
return PC_NOTMANIF;
startPos.FlipV();
if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
return PC_NOTMANIF;
startPos.FlipV();
// go to the next face
startPos.FlipF();
} while (startPos != pos);
// polychord with singularities on both sides can not collapse
if ((singSideA && singSideB) ||
(singSideA && borderSideB) ||
(singSideB && borderSideA))
return PC_SINGBOTH;
// polychords that are rings and have borders on both sides can not collapse
if (!polyBorderFound && borderSideA && borderSideB)
return PC_SINGBOTH;
// if there are singularities or borders on the side A, remember to keep coordinates on it
if (singSideA || borderSideA)
return PC_SINGSIDEA;
// if there are singularities or borders on the side B, remember to keep coordinates on it
if (singSideB || borderSideB)
return PC_SINGSIDEB;
return PC_SUCCESS;
}
/**
* @brief VisitPolychord updates the information of a polychord.
* @param mesh The mesh used for getting the face index.
* @param startPos The starting position.
* @param chords The vector of chords.
* @param mark The mark.
* @param q The visiting type.
*/
static void VisitPolychord (const PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &startPos,
PC_Chords &chords,
const unsigned long mark,
const PC_ResultCode q) {
assert(!startPos.IsNull());
vcg::face::Pos<FaceType> tmpPos, runPos = startPos;
std::pair<size_t, unsigned char> face_edge(std::numeric_limits<size_t>::max(), 0);
// follow the sequence of quads
do {
// check manifoldness
tmpPos = runPos;
do {
if (runPos.F()->VN() != 4) // non-quads are not visited
return;
if (!tmpPos.IsManifold()) {
// update current coord
face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge.second = tmpPos.E()%2;
chords.UpdateCoord(chords[face_edge], mark, q);
face_edge.second = (tmpPos.E()+1)%2;
chords.UpdateCoord(chords[face_edge], mark, q);
return;
}
tmpPos.FlipV();
tmpPos.FlipE();
} while (tmpPos != runPos);
// update current coord
face_edge.first = vcg::tri::Index(mesh, runPos.F());
face_edge.second = runPos.E()%2;
chords.UpdateCoord(chords[face_edge], mark, q);
// if the polychord has to collapse, i.e. q == PC_SUCCESS, also visit the orthogonal coord
if (q == PC_SUCCESS) {
face_edge.second = (runPos.E()+1)%2;
chords.UpdateCoord(chords[face_edge], mark, q);
}
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos && !runPos.IsBorder() && runPos.F()->VN() == 4);
assert(runPos == startPos || vcg::face::IsBorder(*startPos.F(),startPos.E())
|| runPos.F()->VN() != 4 || startPos.FFlip()->VN() != 4);
}
/**
* @brief IsVertexAdjacentToAnyNonManifoldEdge checks if a vertex is adjacent to any non-manifold edge.
* @param pos The starting position.
* @return true if adjacent to non-manifold edges, false otherwise.
*/
static bool IsVertexAdjacentToAnyNonManifoldEdge (const vcg::face::Pos<FaceType> &pos) {
assert(!pos.IsNull());
vcg::face::JumpingPos<FaceType> jmpPos;
jmpPos.Set(pos.F(), pos.E(), pos.V());
do {
assert(!jmpPos.FFlip()->IsD());
if (!jmpPos.IsManifold())
return true;
jmpPos.NextFE();
} while (jmpPos != pos);
return false;
}
/**
* @brief IsPolychordSelfIntersecting checks if the input polychord intersects itself.
* @warning Don't call this function without being sure that it's a polychord
* (i.e. call CheckPolychordFindStartPoint() before calling IsPolychordSelfIntersecting().
* @param mesh The mesh used for getting the face index.
* @param startPos The starting position.
* @param chords The vector of chords.
* @param mark The current mark, used to identify quads already visited.
* @return true if it intersects itself, false otherwise.
*/
static bool IsPolychordSelfIntersecting (const PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &startPos,
const PC_Chords &chords,
const unsigned long mark) {
assert(!startPos.IsNull());
vcg::face::Pos<FaceType> runPos = startPos;
vcg::face::Pos<FaceType> tmpPos;
std::pair<size_t, unsigned char> face_edge(std::numeric_limits<size_t>::max(), 0);
do {
assert(runPos.F()->VN() == 4);
// check if we've already crossed this face
face_edge.first = vcg::tri::Index(mesh, runPos.F());
face_edge.second = (runPos.E()+1)%2;
if (chords[face_edge].mark == mark)
return true;
// if this coord is adjacent to another coord of the same polychord
// i.e., this polychord touches itself without intersecting
// it might cause a wrong collapse, producing holes and non-2manifoldness
tmpPos = runPos;
tmpPos.FlipE();
if (!tmpPos.IsBorder()) {
tmpPos.FlipF();
face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge.second = (tmpPos.E()+1)%2;
if (chords[face_edge].mark == mark)
return true;
// this should never hapen:
face_edge.second = tmpPos.E()%2;
if (chords[face_edge].mark == mark)
return true;
}
tmpPos = runPos;
tmpPos.FlipV();
tmpPos.FlipE();
if (!tmpPos.IsBorder()) {
tmpPos.FlipF();
face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge.second = (tmpPos.E()+1)%2;
if (chords[face_edge].mark == mark)
return true;
// this should never hapen:
face_edge.second = tmpPos.E()%2;
if (chords[face_edge].mark == mark)
return true;
}
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos && !runPos.IsBorder());
return false;
}
/**
* @brief WillPolychordBeManifold checks whether a polychord starting at startPos would cause non-manifoldness
* if it was collapsed.
* @note VisitPolychord() should be called before this method.
* @param mesh The input mesh.
* @param startPos The starting Pos.
* @param chords The vector of chords.
* @param mark The current mark, used to identify quads already visited.
* @return true if manifoldness remains, false otherwise.
*/
static bool WillPolychordBeManifold(const PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &startPos,
PC_Chords &chords,
const unsigned long mark) {
assert(!startPos.IsNull());
vcg::face::Pos<FaceType> runPos = startPos;
vcg::face::JumpingPos<FaceType> tmpPos;
std::pair<size_t, unsigned char> face_edge1(std::numeric_limits<size_t>::max(), 0);
std::pair<size_t, unsigned char> face_edge2(std::numeric_limits<size_t>::max(), 0);
bool in = true;
unsigned int nTraversal = 0;
// second step: check
runPos = startPos;
do {
face_edge1.first = vcg::tri::Index(mesh, runPos.F());
face_edge1.second = runPos.E() % 2;
assert(chords[face_edge1].mark == mark);
// check one vertex
runPos.FlipV();
in = true;
nTraversal = 0;
tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
do {
if (tmpPos.IsBorder() && in) {
in = false;
nTraversal++;
}
// go to next edge
tmpPos.NextFE();
// check if this face is already visited
face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge1.second = tmpPos.E() % 2;
face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge2.second = (tmpPos.E() + 1) % 2;
if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
in = false;
++nTraversal;
} else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
in = true;
++nTraversal;
}
} while (tmpPos != runPos);
assert(in);
assert(nTraversal % 2 == 0);
if (nTraversal > 2)
return false;
// check other vertex
runPos.FlipV();
in = true;
nTraversal = 0;
tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
do {
if (tmpPos.IsBorder() && in) {
in = false;
++nTraversal;
}
// go to next edge
tmpPos.NextFE();
// check if this face is already visited
face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge1.second = tmpPos.E() % 2;
face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge2.second = (tmpPos.E() + 1) % 2;
if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
in = false;
nTraversal++;
} else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
in = true;
++nTraversal;
}
} while (tmpPos != runPos);
assert(in);
assert(nTraversal % 2 == 0);
if (nTraversal > 2)
return false;
runPos.FlipE();
runPos.FlipV();
runPos.FlipE();
runPos.FlipF();
} while (runPos != startPos && !runPos.IsBorder());
if (runPos.IsBorder()) {
// check one vertex
runPos.FlipV();
in = true;
nTraversal = 0;
tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
do {
if (tmpPos.IsBorder() && in) {
in = false;
++nTraversal;
}
// go to next edge
tmpPos.NextFE();
// check if this face is already visited
face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge1.second = tmpPos.E() % 2;
face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge2.second = (tmpPos.E() + 1) % 2;
if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
in = false;
++nTraversal;
} else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
in = true;
++nTraversal;
}
} while (tmpPos != runPos);
assert(in);
assert(nTraversal % 2 == 0);
if (nTraversal > 2)
return false;
// check other vertex
runPos.FlipV();
in = true;
nTraversal = 0;
tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
do {
if (tmpPos.IsBorder() && in) {
in = false;
++nTraversal;
}
// go to next edge
tmpPos.NextFE();
// check if this face is already visited
face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge1.second = tmpPos.E() % 2;
face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge2.second = (tmpPos.E() + 1) % 2;
if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
in = false;
++nTraversal;
} else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
in = true;
++nTraversal;
}
} while (tmpPos != runPos);
assert(in);
assert(nTraversal % 2 == 0);
if (nTraversal > 2)
return false;
}
return true;
}
};
}
}
#endif // POLYGON_Polychord_COLLAPSE_H
|