File: polygon_polychord_collapse.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (1985 lines) | stat: -rw-r--r-- 88,784 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
#ifndef POLYGON_POLYCHORD_COLLAPSE_H
#define POLYGON_POLYCHORD_COLLAPSE_H

#include <list>
#include <unordered_map>
#include <vcg/complex/complex.h>
#include <vcg/simplex/face/jumping_pos.h>

namespace vcg {
namespace tri {
/** \addtogroup trimesh */

/**
* @brief The PolychordCollapse class provides methods to semplify a quad mesh, by collapsing the polychords.
*
* This class is an implementation of a method very similar to that for mesh semplification proposed
* by Daniels et al. in "Quadrilateral mesh simplification", see http://www.cs.utah.edu/~jdaniels/research/asia2008_qms.htm
* The main function is PolychordCollapse::CollapsePolychord() which deletes all the quadrilateral faces in a polychord.
* The polychords that can be collapsed in this case are those forming a closed loop (a ring) or that start and end to
* mesh borders. A way to preserve the structure of the singularities is also provided.
* The convenient method PolychordCollapse::CollapseAllPolychords() finds and collapses all the polychords on a mesh.
* The input mesh should be polygonal, i.e. it should have the vcg::face::PolyInfo component. Even though a generic
* triangle mesh can be given, actually the class does not perform any collapsing operation since it sees only triangles,
* in fact it does not consider faux edges.
*/
template < typename PolyMeshType >
class PolychordCollapse {
public:
  typedef typename PolyMeshType::CoordType      CoordType;
  typedef typename PolyMeshType::VertexType     VertexType;
  typedef typename PolyMeshType::VertexPointer  VertexPointer;
  typedef typename PolyMeshType::VertexIterator VertexIterator;
  typedef typename PolyMeshType::FaceType       FaceType;
  typedef typename PolyMeshType::FacePointer    FacePointer;
  typedef typename PolyMeshType::FaceIterator   FaceIterator;

  /**
  * @brief The PC_ResultCode enum codifies the result type of a polychord collapse operation.
  */
  enum PC_ResultCode {
    PC_SUCCESS          = 0x000,
    PC_NOTMANIF         = 0x001,
    PC_NOTQUAD          = 0x002,
    PC_NOLINKCOND       = 0x004,
    PC_SINGSIDEA        = 0x008,
    PC_SINGSIDEB        = 0x010,
    PC_SINGBOTH         = 0x020,
    PC_SELFINTERSECT    = 0x040,
    PC_NOMOREMANIF      = 0x080,
    PC_VOID             = 0x100,
    PC_OTHER            = 0x100
  };

  /**
  * @brief The PC_Chord struct identifies a coord of a polychord passing through a quad.
  */
  struct PC_Chord {
    unsigned long mark;
    PC_ResultCode q;
    PC_Chord * prev;
    PC_Chord * next;
    PC_Chord() : mark(std::numeric_limits<unsigned long>::max()), q(PC_VOID), prev(NULL), next(NULL) { }
    inline void Reset() {
      mark = std::numeric_limits<unsigned long>::max();
      q = PC_VOID;
      prev = next = NULL;
    }
  };

  /**
  * @brief The PC_Chords class gives efficient access to each coord (relative to a face).
  */
  class PC_Chords {
  public:
    /**
     * @brief PC_Chords constructor.
     * @note Since each face corresponds to two chords, the actual size of the vector of chords is 2*mesh.face.size().
     * @param mesh
     */
    PC_Chords (const PolyMeshType &mesh) : _Chords(2*mesh.face.size()), _currentChord(NULL) {
      Reset(mesh);
    }

    /**
     * @brief ResetMarks
     */
    void ResetMarks() {
      for (size_t i = 0; i < _Chords.size(); ++i)
        _Chords.at(i).mark = std::numeric_limits<unsigned long>::max();
    }

    /**
     * @brief Reset rearrages the container.
     * @note Since each face corresponds to two chords, the actual size of the vector of chords is 2*mesh.face.size().
     * @param mesh
     */
    void Reset(const PolyMeshType &mesh) {
      _Chords.resize(2*mesh.face.size());
      for (size_t j = 0; j < _Chords.size(); ++j)
        _Chords[j].Reset();
      _currentChord = NULL;

      PC_Chord *chord = NULL;
      long long j = 0;
      for (size_t i = 0; i < _Chords.size(); ++i) {
        // set the prev
        chord = NULL;
        if ((long long)i-1 >= 0) {
          chord = &_Chords[i-1];
          if (vcg::tri::HasPerFaceFlags(mesh)) {
            j = i-1;
            while (j >= 0 && mesh.face[j/2].IsD())
              --j;
            if (j >= 0)
              chord = &_Chords[j];
            else
              chord = NULL;
          }
        }
        _Chords[i].prev = chord;

        // set the next
        chord = NULL;
        if (i+1 < _Chords.size()) {
          chord = &_Chords[i+1];
          if (vcg::tri::HasPerFaceFlags(mesh)) {
            j = i+1;
            while (j < (long long)_Chords.size() && mesh.face[j/2].IsD())
              ++j;
            if (j < (long long)_Chords.size())
              chord = &_Chords[j];
            else
              chord = NULL;
          }
        }
        _Chords[i].next = chord;
      }
      if (mesh.face.size() > 0) {
        // set the current coord (first - not deleted - face)
        _currentChord = &_Chords[0];
        if (vcg::tri::HasPerFaceFlags(mesh) && mesh.face[0].IsD())
          _currentChord = _currentChord->next;
      }
    }

    /**
     * @brief operator [], given a face index and an offset, it returns (a reference to) its corresponding PC_Chord.
     * @param face_edge A std::pair<size_t, unsigned char>(face_index, offset). The offset should be 0 or 1.
     * @return A reference to the corresponding PC_Chord.
     */
    inline PC_Chord & operator[] (const std::pair<size_t, unsigned char> &face_edge) {
      assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _Chords.size());
      return _Chords[2*face_edge.first + face_edge.second];
    }
    /**
     * @brief operator [], given a face index and an offset, it returns (a const reference to) its corresponding PC_Chord.
     * @param face_edge A std::pair<size_t, unsigned char>(face_index, offset). The offset should be 0 or 1.
     * @return A reference to the corresponding PC_Chord.
     */
    inline const PC_Chord & operator[] (const std::pair<size_t, unsigned char> &face_edge) const {
      assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _Chords.size());
      return _Chords[2*face_edge.first + face_edge.second];
    }

    /**
     * @brief operator [], given a coord, it returns its corresponding face index and edge.
     * @param coord The coord pointer.
     * @return A std::pair <size_t, unsigned char>(face_index, offset) with offset being 0 or 1.
     */
    inline std::pair<size_t, unsigned char> operator[] (PC_Chord const * const coord) {
      assert(coord >= &_Chords[0] && coord < &_Chords[0]+_Chords.size());
      return std::pair<size_t, unsigned char>((coord - &_Chords[0])/2, (coord - &_Chords[0])%2);
    }

    /**
     * @brief UpdateCoord updates the coord information and links.
     * @param coord The coord to update.
     * @param mark The mark of the polychord.
     * @param resultCode The code for the type of the polychord.
     */
    inline void UpdateCoord (PC_Chord &coord, const unsigned long mark, const PC_ResultCode resultCode) {
      // update prev and next
      if (coord.q == PC_VOID) {
        if (coord.prev != NULL && &coord != _currentChord)
          coord.prev->next = coord.next;
        if (coord.next != NULL && &coord != _currentChord)
          coord.next->prev = coord.prev;
      }
      coord.mark = mark;
      coord.q = resultCode;
    }

    /**
     * @brief Next, if it's not at the end, it goes to the next coord.
     */
    inline void Next () {
      if (_currentChord != NULL)
        _currentChord = _currentChord->next;
    }

    /**
     * @brief GetCurrent returns the current FaceType pointer and edge.
     * @param face_edge A std::pair where to store the FaceType pointer and the edge index.
     */
    inline void GetCurrent (std::pair<size_t, unsigned char> &face_edge) {
      if (_currentChord != NULL) {
        face_edge.first = (_currentChord - &_Chords[0])/2;
        face_edge.second = (_currentChord - &_Chords[0])%2;
      } else {
        face_edge.first = std::numeric_limits<size_t>::max();
        face_edge.second = 0;
      }
    }

    /**
     * @brief End says if an end has been reached.
     * @return true if an end has been reached, false otherwise.
     */
    inline bool End () {
      return _currentChord == NULL;
    }

  private:
    std::vector<PC_Chord>   _Chords;
    PC_Chord                *_currentChord;
  };

  /**
   * @brief The LinkCondition class provides a tool to check if a polychord satisfies the link conditions.
   */
  class LinkConditions {
  private:
    typedef long int                LCVertexIndex;
    typedef std::set<LCVertexIndex> LCVertexStar;   ///< define the star of a vertex
    typedef long int                LCEdgeIndex;
    typedef std::set<LCEdgeIndex>   LCEdgeStar;     ///< define the set of edges whose star involves a vertex

    /**
     * @brief The LCVertex struct represents a vertex for the Link Conditions.
     */
    struct LCVertex {
      LCVertexStar star;  // vertex star
      LCEdgeStar edges;   // list of edges whose star involves this vertex
      LCVertex(){}        // default constructor
      LCVertex(const LCVertex &lcVertex) {  // copy constructor
        star = lcVertex.star;
        edges = lcVertex.edges;
      }
      LCVertex & operator=(const LCVertex &lcVertex) { // assignment operator
        star = lcVertex.star;
        edges = lcVertex.edges;
        return *this;
      }
      void reset() { star.clear(); edges.clear(); } // reset
    };

    /**
     * @brief The LCEdge struct represents an edge for the Link Conditions.
     */
    struct LCEdge {
      LCVertexIndex v1, v2;       // endpoints
      LCVertexStar star;          // edge star
      LCEdge() {v1 = v2 = -1;}    // default contructor
      LCEdge(const LCEdge &lcEdge) {  // copy constructor
        v1 = lcEdge.v1;
        v2 = lcEdge.v2;
        star = lcEdge.star;
      }
      LCEdge & operator=(const LCEdge &lcEdge) {  // assignment operator
        v1 = lcEdge.v1;
        v2 = lcEdge.v2;
        star = lcEdge.star;
        return *this;
      }
      void reset() {  // reset
        v1 = -1;
        v2 = -1;
        star.clear();
      }
    };

  public:
    /**
     * @brief LinkCondition constructor.
     * @param size The number of vertices of the mesh.
     */
    LinkConditions (const size_t size) : _lcVertices(size) { }

    /**
     * @brief Resize just resets the size of the container.
     * @param size
     */
    inline void Resize(const size_t size) {
      _lcVertices.resize(size);
      LC_ResetStars();
    }

    /**
     * @brief CheckLinkConditions checks if collapsing the polychord starting from startPos
     * satisfies the link conditions.
     * @warning The polychord starts from startPos and ends to itself (if it's a loop) or to a border. In the latter case,
     * call this method starting from the opposite border of the strip of quads.
     * @param mesh The mesh for getting the vertex index.
     * @param startPos The starting position of the polychord.
     * @return true if satisfied, false otherwise.
     */
    bool CheckLinkConditions (const PolyMeshType &mesh, const vcg::face::Pos<FaceType> &startPos) {
      assert(!startPos.IsNull());
      assert(mesh.vert.size() == _lcVertices.size());
      std::vector<LCEdge> lcEdges;
      LCVertexStar intersection;

      // reset the stars
      LC_ResetStars();

      // compute the stars
      LC_computeStars(mesh, startPos, lcEdges);

      // for each edge e = (v1,v2)
      // if intersection( star(v1) , star(v2) ) == star(e)
      //      then collapse e
      // else
      //      return false (i.e. link conditions not satisfied)
      for (size_t e = 0; e < lcEdges.size(); e++) {
        // compute the intersetion
        intersection.clear();
        std::set_intersection(_lcVertices[lcEdges[e].v1].star.begin(), _lcVertices[lcEdges[e].v1].star.end(),
                              _lcVertices[lcEdges[e].v2].star.begin(), _lcVertices[lcEdges[e].v2].star.end(),
                              std::inserter(intersection, intersection.end()));

        // if intersection( star(v1) , star(v2) ) != star(e) then return false
        if (intersection != lcEdges[e].star)
            return false;

        // else simulate the collapse
        LC_SimulateEdgeCollapse(lcEdges, e);
      }
      // at this point all collapses are possible, thus return true
      return true;
    }

  private:
    /**
     * @brief LC_ResetStars resets the stars on a polychord.
     */
    void LC_ResetStars() {
      for (size_t v = 0; v < _lcVertices.size(); ++v)
        _lcVertices[v].reset();
    }

    /**
     * @brief LC_computeStars computes the stars of edges and vertices of the polychord from the starting pos
     * either to itself (if it's a loop) or to the border edge.
     * @param mesh The mesh for getting the vertex index.
     * @param startPos Starting position.
     * @param lcEdges Vector of edge stars.
     */
    void LC_computeStars (const PolyMeshType &mesh, const vcg::face::Pos<FaceType> &startPos, std::vector<LCEdge> &lcEdges) {
      assert(!startPos.IsNull());
      assert(mesh.vert.size() == _lcVertices.size());
      vcg::face::Pos<FaceType> runPos = startPos;
      vcg::face::JumpingPos<FaceType> vStarPos;
      vcg::face::Pos<FaceType> eStarPos;
      LCEdgeIndex edgeInd = -1;
      size_t nEdges = 0;

      // count how many edges
      do {
        ++nEdges;
        // go on the next edge
        runPos.FlipE();
        runPos.FlipV();
        runPos.FlipE();
        runPos.FlipF();
      } while (runPos != startPos && !runPos.IsBorder());
      if (runPos.IsBorder())
        ++nEdges;

      // resize the vector of edges
      lcEdges.resize(nEdges);
      for (size_t e = 0; e < nEdges; ++e)
        lcEdges[e].reset();

      /// compute the star of all the vertices and edges seen from the polychord
      runPos = startPos;
      do {
        // access the next lcedge
        edgeInd++;
        // set lcvertices references
        lcEdges[edgeInd].v1 = vcg::tri::Index(mesh, runPos.V());
        lcEdges[edgeInd].v2 = vcg::tri::Index(mesh, runPos.VFlip());
        // add this edge to its vertices edge-stars
        _lcVertices[lcEdges[edgeInd].v1].edges.insert(edgeInd);
        _lcVertices[lcEdges[edgeInd].v2].edges.insert(edgeInd);
        // compute the star of this edge
        lcEdges[edgeInd].star.insert(lcEdges[edgeInd].v1);  // its endpoints, clearly
        lcEdges[edgeInd].star.insert(lcEdges[edgeInd].v2);  // its endpoints, clearly
        // navigate over the other vertices of this facet
        eStarPos = runPos;
        eStarPos.FlipE();
        eStarPos.FlipV();
        while (eStarPos.V() != runPos.VFlip()) {
          // add current vertex to the star of this edge
          lcEdges[edgeInd].star.insert(vcg::tri::Index(mesh, eStarPos.V()));
          // add this edge to the edge-star of the current vertex
          _lcVertices[vcg::tri::Index(mesh, eStarPos.V())].edges.insert(edgeInd);
          // go on
          eStarPos.FlipE();
          eStarPos.FlipV();
        }
        // go on the opposite facet
        if (!runPos.IsBorder()) {
          eStarPos = runPos;
          eStarPos.FlipF();
          eStarPos.FlipE();
          eStarPos.FlipV();
          while (eStarPos.V() != runPos.VFlip()) {
            // add current vertex to the star of this edge
            lcEdges[edgeInd].star.insert(vcg::tri::Index(mesh, eStarPos.V()));
            // add this edge to the edge-star of the current vertex
            _lcVertices[vcg::tri::Index(mesh, eStarPos.V())].edges.insert(edgeInd);
            // go on
            eStarPos.FlipE();
            eStarPos.FlipV();
          }
        }

        // compute the star of vertex v2
        runPos.FlipV();
        vStarPos.Set(runPos.F(), runPos.E(), runPos.V());
        // v2 is in its star
        _lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
        do {
          vStarPos.FlipV();
          vStarPos.FlipE();
          while (vStarPos.V() != runPos.V()) {
            // add the current vertex to the v2 star
            _lcVertices[vcg::tri::Index(mesh, runPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
            // add v2 to the star of the current vertex
            _lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, runPos.V()));
            vStarPos.FlipV();
            vStarPos.FlipE();
          }
          vStarPos.NextFE();
        } while (vStarPos != runPos);

        // compute the star of vertex v1
        runPos.FlipV();
        vStarPos.Set(runPos.F(), runPos.E(), runPos.V());
        // v1 is in its star
        _lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
        do {
          vStarPos.FlipV();
          vStarPos.FlipE();
          while (vStarPos.V() != runPos.V()) {
            // add the current vertex to the v2 star
            _lcVertices[vcg::tri::Index(mesh, runPos.V())].star.insert(vcg::tri::Index(mesh, vStarPos.V()));
            // add v2 to the star of the current vertex
            _lcVertices[vcg::tri::Index(mesh, vStarPos.V())].star.insert(vcg::tri::Index(mesh, runPos.V()));
            vStarPos.FlipV();
            vStarPos.FlipE();
          }
          vStarPos.NextFE();
        } while (vStarPos != runPos);

        // when arrive to a border, stop
        if (runPos != startPos && runPos.IsBorder())
          break;

        // go on the next edge
        runPos.FlipE();
        runPos.FlipV();
        runPos.FlipE();
        runPos.FlipF();
      } while (runPos != startPos);

      // check if the starting pos or the border has been reached
      assert(runPos == startPos || runPos.IsBorder());
    }

    /**
     * @brief LC_SimulateEdgeCollapse simulates an edge collapse by updating the stars involved.
     * @param lcEdges The vector of edges.
     * @param edgeInd The in dex of the edge to collapse.
     */
    void LC_SimulateEdgeCollapse (std::vector<LCEdge> &lcEdges, const LCEdgeIndex edgeInd) {
      // let v1 and v2 be the two end points
      LCVertexIndex v1 = lcEdges[edgeInd].v1;
      LCVertexIndex v2 = lcEdges[edgeInd].v2;
      LCVertexIndex v = -1;

      /// v2 merges into v1:
      // star(v1) = star(v1) U star(v2)
      _lcVertices[v1].star.insert(_lcVertices[v2].star.begin(), _lcVertices[v2].star.end());
      _lcVertices[v1].star.erase(v2);     // remove v2 from v1-star
      _lcVertices[v2].star.erase(v1);     // remove v1 from v2-star
      // foreach v | v2 \in star(v) [i.e. v \in star(v2)]
      //      star(v) = star(v) U {v1} \ {v2}
      for (typename LCVertexStar::iterator vIt = _lcVertices[v2].star.begin(); vIt != _lcVertices[v2].star.end(); ++vIt) {
        v = *vIt;
        if (v == v2)  // skip v2 itself
          continue;
        _lcVertices[v].star.insert(v1);
        _lcVertices[v].star.erase(v2);
      }
      /// update the star of the edges which include v1 and v2 in their star
      // foreach e | v1 \in star(e) ^ v2 \in star(e)
      //      star(e) = star(e) \ {v1,v2} U {v1}
      for (typename LCEdgeStar::iterator eIt = _lcVertices[v1].edges.begin(); eIt != _lcVertices[v1].edges.end(); ++eIt)
        lcEdges[*eIt].star.erase(v2);
      for (typename LCEdgeStar::iterator eIt = _lcVertices[v2].edges.begin(); eIt != _lcVertices[v2].edges.end(); ++eIt) {
        lcEdges[*eIt].star.erase(v2);
        lcEdges[*eIt].star.insert(v1);
      }
    }

    /**
     * @brief _lcVertices is a vector of vertex stars for the link conditions.
     */
    std::vector<LCVertex> _lcVertices;
  };


  // PolychordCollapse's methods begin here::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

//  /**
//   * @brief CheckConsistent checks for consistency. ONLY FOR DEBUG.
//   * @param mesh
//   * @return
//   */
//  static bool CheckConsistent(PolyMeshType &mesh) {
//    vcg::tri::RequirePerFaceFlags(mesh);
//    vcg::tri::RequirePerFaceColor(mesh);
//    for (size_t f = 0; f < mesh.face.size(); ++f) {
//      if (!mesh.face[f].IsD()) {
//        for (int v = 0; v < mesh.face[f].VN(); ++v) {
//          if (!vcg::face::IsBorder(mesh.face[f], v)) {
//            if (mesh.face[f].FFp(v)->IsD()) {
//              mesh.face[f].C() = vcg::Color4b(vcg::Color4b::Magenta);
//              return false;
//            }
//            if (mesh.face[f].FFp(v)->FFp(mesh.face[f].FFi(v)) != &mesh.face[f]) {
//              mesh.face[f].C() = vcg::Color4b(vcg::Color4b::Yellow);
//              return false;
//            }
//          }
//        }
//      }
//    }
//    return true;
//  }

  /**
   * @brief MarkPolychords marks the chords of the polychord starting at startPos.
   * @param mesh The input mesh.
   * @param startPos The starting position.
   * @param chords The vector of chords.
   * @param mark The current mark, used to identify quads already visited.
   */
  static void MarkPolychords(const PolyMeshType &mesh,
                             const vcg::face::Pos<FaceType> &startPos,
                             PC_Chords &chords,
                             const unsigned long mark) {
    vcg::face::Pos<FaceType> runPos = startPos;
    std::pair<size_t, unsigned char> face_edge(std::numeric_limits<size_t>::max(), 0);
    do {
      assert(runPos.F()->VN() == 4);
      face_edge.first = vcg::tri::Index(mesh, runPos.F());
      face_edge.second = runPos.E() % 2;
      chords[face_edge].mark = mark;
      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (runPos != startPos && !runPos.IsBorder());
  }

  /**
   * @brief CollapsePolychord performs all checks and then collapses the polychord.
   *
   * @warning This function deletes faces and vertices by calling
   * vcg::tri::Allocator<PolyMeshType>::DeleteFace() and
   * vcg::tri::Allocator<PolyMeshType>::DeleteVertex().
   * The object PC_Chords chords is used to track the polychords, and it has got
   * a size proportional to that of the mesh face container. If you actually
   * delete faces and vertices by calling vcg::tri::Allocator<PolyMeshType>::CompactFaceVector()
   * and vcg::tri::Allocator<PolyMeshType>::CompactVertexVector() after this function,
   * object PC_Chords chords then is not valid any more, so you MUST rearrange it
   * by calling PC_Chords.Reset(). For the same reason, you MUST rearrange LinkConditions linkConditions
   * by calling LinkConditions.Resize().
   * However, for efficiency, you SHOULD compact vertex and face containers at the end of all your
   * polychord collapsing operations, without having to rearrange chords and linkConditions.
   * The function CollapseAllPolychords() does this for you.
   *
   * @note Vertex flags, face flags, FF adjacency and FV adjacency are required. Not anything else.
   * Such components are automatically updated here. If the mesh has other components that may be
   * affected by this editing, you should update them later by yourself.
   *
   * @param mesh The polygonal mesh used for getting the face index and deleting the faces
   * (it SHOULD have the vcg::face::PolyInfo component).
   * @param pos Position of the polychord.
   * @param mark Mark for the current polychord.
   * @param chords Vector of chords.
   * @param linkConditions Link conditions checker.
   * @param checkSing true if singularities on both sides are not allowed.
   * @return A PC_ResultCode resulting from checks or PC_SUCCESS if the collapse has been performed.
   */
  static PC_ResultCode CollapsePolychord (PolyMeshType &mesh,
                                          const vcg::face::Pos<FaceType> &pos,
                                          const unsigned long mark,
                                          PC_Chords &chords,
                                          LinkConditions &linkConditions,
                                          const bool checkSing = true) {
    vcg::tri::RequireFFAdjacency(mesh);

    if (mesh.IsEmpty())
      return PC_VOID;

    if (pos.IsNull())
      return PC_VOID;

    vcg::face::Pos<FaceType> tempPos, startPos;

    // check if the sequence of facets is a polychord and find the starting coord
    PC_ResultCode resultCode = CheckPolychordFindStartPosition(pos, startPos, checkSing);
    // if not successful, visit the sequence for marking it and return
    if (resultCode != PC_SUCCESS && resultCode != PC_SINGSIDEA && resultCode != PC_SINGSIDEB) {
      // if not manifold, visit the entire polychord ending on the non-manifold edge
      if (resultCode == PC_NOTMANIF) {
        tempPos = pos;
        VisitPolychord(mesh, tempPos, chords, mark, resultCode);
        if (tempPos.IsManifold() && !tempPos.IsBorder()) {
          tempPos.FlipF();
          VisitPolychord(mesh, tempPos, chords, mark, resultCode);
        }
        return resultCode;
      }
      // if not quad, visit all the polychords passing through this coord
      if (resultCode == PC_NOTQUAD) {
        tempPos = startPos;
        do {
          if (!tempPos.IsBorder()) {
            tempPos.FlipF();
            VisitPolychord(mesh, tempPos, chords, mark, resultCode);
            tempPos.FlipF();
          }
          tempPos.FlipV();
          tempPos.FlipE();
        } while (tempPos != startPos);
        VisitPolychord(mesh, startPos, chords, mark, resultCode);
        return resultCode;
      }
      VisitPolychord(mesh, startPos, chords, mark, resultCode);
      return resultCode;
    }
    // check if the link conditions are satisfied
    // if not satisfied, visit the sequence for marking it and return
    if (!linkConditions.CheckLinkConditions(mesh, startPos)) {
      VisitPolychord(mesh, startPos, chords, mark, PC_NOLINKCOND);
      return PC_NOLINKCOND;
    }
    // mark the polychord's chords
    MarkPolychords(mesh, startPos, chords, mark);
    // check if the polychord does not intersect itself
    // if it self-intersects, visit the polychord for marking it and return
    if (IsPolychordSelfIntersecting(mesh, startPos, chords, mark)) {
      VisitPolychord(mesh, startPos, chords, mark, PC_SELFINTERSECT);
      return PC_SELFINTERSECT;
    }
    // check if manifoldness remains
    // if it will loose manifoldness, visit the sequence for marking it and return
    if (!WillPolychordBeManifold(mesh, startPos, chords, mark)) {
      VisitPolychord(mesh, startPos, chords, mark, PC_NOMOREMANIF);
      return PC_NOMOREMANIF;
    }
    // at this point the polychord is collapsable, visit it for marking
    VisitPolychord(mesh, startPos, chords, mark, PC_SUCCESS);

    // now collapse
    CoordType point;
//    int valenceA = 0, valenceB = 0;
    vcg::face::Pos<FaceType> runPos = startPos;
    vcg::face::JumpingPos<FaceType> tmpPos;
//    bool onSideA = false, onSideB = false;
    vcg::face::Pos<FaceType> sideA, sideB;
    typedef std::queue<VertexPointer *> FacesVertex;
    typedef std::pair<VertexPointer, FacesVertex> FacesVertexPair;
    typedef std::queue<FacesVertexPair> FacesVertexPairQueue;
    FacesVertexPairQueue vQueue;
    typedef std::pair<FacePointer *, FacePointer> FFpPair;
    typedef std::pair<char *, char> FFiPair;
    typedef std::pair<FFpPair, FFiPair> FFPair;
    typedef std::queue<FFPair> FFQueue;
    FFQueue ffQueue;
    std::queue<VertexPointer> verticesToDeleteQueue;
    std::queue<FacePointer> facesToDeleteQueue;

    runPos = startPos;
    do {
      // compute new vertex
      point = (runPos.V()->P() + runPos.VFlip()->P()) / 2.f;
      if (checkSing) {
        if (resultCode == PC_SINGSIDEA)
          point = runPos.V()->P();
        else if (resultCode == PC_SINGSIDEB)
          point = runPos.VFlip()->P();
      }
      runPos.V()->P() = point;
      // list the vertex pointer of the faces on the other side to be updated
      vQueue.push(FacesVertexPair());
      vQueue.back().first = runPos.V();
      tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
      tmpPos.FlipV();
      tmpPos.NextFE();    // go to next face
      while (tmpPos.F() != runPos.F()) {
        if (tmpPos.F() != runPos.FFlip())
          vQueue.back().second.push(&tmpPos.F()->V(tmpPos.VInd()));
        tmpPos.NextFE();    // go to next face
      }

      // enqueue to delete the other vertex
      verticesToDeleteQueue.push(runPos.VFlip());

      // list the adjacencies
      sideA = runPos;
      sideA.FlipE();
      sideA.FlipF();
      sideB = runPos;
      sideB.FlipV();
      sideB.FlipE();
      sideB.FlipF();
      // first side
      if (!sideA.IsBorder()) {
        ffQueue.push(FFPair(FFpPair(),FFiPair()));
        ffQueue.back().first.first = &sideA.F()->FFp(sideA.E());
        ffQueue.back().second.first = &sideA.F()->FFi(sideA.E());
        if (!sideB.IsBorder()) {
          ffQueue.back().first.second = sideB.F();
          ffQueue.back().second.second = sideB.E();
        } else {
          ffQueue.back().first.second = sideA.F();
          ffQueue.back().second.second = sideA.E();
        }
      }
      // second side
      if (!sideB.IsBorder()) {
        ffQueue.push(FFPair(FFpPair(),FFiPair()));
        ffQueue.back().first.first = &sideB.F()->FFp(sideB.E());
        ffQueue.back().second.first = &sideB.F()->FFi(sideB.E());
        if (!sideA.IsBorder()) {
          ffQueue.back().first.second = sideA.F();
          ffQueue.back().second.second = sideA.E();
        } else {
          ffQueue.back().first.second = sideB.F();
          ffQueue.back().second.second = sideB.E();
        }
      }

      // enqueue to delete the face
      facesToDeleteQueue.push(runPos.F());

      // go on next edge/face
      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (runPos != startPos && !runPos.IsBorder());
    assert(runPos == startPos || vcg::face::IsBorder(*startPos.F(),startPos.E()));
    if (runPos.IsBorder()) {
      // compute new vertex on the last (border) edge
      point = (runPos.V()->P() + runPos.VFlip()->P()) / 2.f;
      if (checkSing) {
        if (resultCode == PC_SINGSIDEA)
          point = runPos.V()->P();
        else if (resultCode == PC_SINGSIDEB)
          point = runPos.VFlip()->P();
      }
      runPos.V()->P() = point;
      // list the vertex pointer of the faces on the other side to be updated
      vQueue.push(FacesVertexPair());
      vQueue.back().first = runPos.V();
      tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
      tmpPos.FlipV();
      tmpPos.NextFE();    // go to next face
      while (tmpPos.F() != runPos.F()) {
        vQueue.back().second.push(&tmpPos.F()->V(tmpPos.VInd()));
        tmpPos.NextFE();
      }

      // enqueue to delete the other vertex
      verticesToDeleteQueue.push(runPos.VFlip());
    }

    // update vertices
    while (!vQueue.empty()) {
      while (!vQueue.front().second.empty()) {
        *vQueue.front().second.front() = vQueue.front().first;
        vQueue.front().second.pop();
      }
      vQueue.pop();
    }

    // update adjacencies
    while (!ffQueue.empty()) {
      *ffQueue.front().first.first = ffQueue.front().first.second;
      *ffQueue.front().second.first = ffQueue.front().second.second;
      ffQueue.pop();
    }

    // delete faces
    while (!facesToDeleteQueue.empty()) {
      vcg::tri::Allocator<PolyMeshType>::DeleteFace(mesh, *facesToDeleteQueue.front());
      facesToDeleteQueue.pop();
    }

    // delete vertices
    while (!verticesToDeleteQueue.empty()) {
      vcg::tri::Allocator<PolyMeshType>::DeleteVertex(mesh, *verticesToDeleteQueue.front());
      verticesToDeleteQueue.pop();
    }

    return PC_SUCCESS;
  }

  /**
   * @brief CollapseAllPolychords finds and collapses all the polychords.
   * @param mesh The input polygonal mesh (it SHOULD have the vcg::face::PolyInfo component).
   * @param checkSing true if singularities on both sides of a polychord are not allowed.
   */
  static void CollapseAllPolychords (PolyMeshType &mesh, const bool checkSing = true) {
    vcg::tri::RequireFFAdjacency(mesh);

    if (mesh.IsEmpty())
      return;

    vcg::face::Pos<FaceType> pos;
    PC_ResultCode resultCode;
    std::pair<size_t, unsigned char> face_edge;
    // construct the link conditions checker
    LinkConditions linkConditions(mesh.vert.size());
    // construct the vector of chords
    PC_Chords chords(mesh);
    unsigned long mark = 0;

    // iterate over all the chords
    while (!chords.End()) {
      // get the current coord
      chords.GetCurrent(face_edge);
      resultCode = chords[face_edge].q;
      assert(resultCode == PC_VOID);
      // construct a pos on the face and edge of the current coord
      pos.Set(&mesh.face[face_edge.first], face_edge.second, mesh.face[face_edge.first].V(face_edge.second));
      // (try to) collapse the polychord
      resultCode = CollapsePolychord(mesh, pos, mark, chords, linkConditions, checkSing);
      // go to the next coord
      chords.Next();

      // increment the mark
      ++mark;
      if (mark == std::numeric_limits<unsigned long>::max()) {
        chords.ResetMarks();
        mark = 0;
      }
    }
  }

  /**
   * @brief FindPolychords lists all the valid polychords starting position of a mesh.
   * @param mesh The input mesh.
   * @param polychords The container of results.
   * @param loopsOnly true if closed polychords only must be listed, false for all polychords.
   */
  static void FindPolychords (PolyMeshType &mesh, std::deque< vcg::face::Pos<FaceType> > &polychords, const bool loopsOnly = false) {
    vcg::tri::RequireFFAdjacency(mesh);

    polychords.clear();

    if (mesh.IsEmpty())
      return;

    vcg::face::Pos<FaceType> pos, startPos;
    PC_ResultCode resultCode;
    std::pair<size_t, unsigned char> face_edge;
    // construct the vector of chords
    PC_Chords chords(mesh);
    unsigned long mark = 0;

    // iterate over all the chords
    while (!chords.End()) {
      // get the current coord
      chords.GetCurrent(face_edge);
      // construct a pos on the face and edge of the current coord
      pos.Set(&mesh.face[face_edge.first], face_edge.second, mesh.face[face_edge.first].V(face_edge.second));

      // check and find start pos
      resultCode = CheckPolychordFindStartPosition(pos, startPos, false);
      // visit the polychord
      if (resultCode == PC_SUCCESS || resultCode == PC_SINGBOTH || resultCode == PC_SINGSIDEA || resultCode == PC_SINGSIDEB) {
        VisitPolychord(mesh, startPos, chords, mark, PC_OTHER);
        // store a new polychord
        if (!loopsOnly)
          polychords.push_back(startPos);
        else if (!startPos.IsBorder())
          polychords.push_back(startPos);
      } else {
        if (resultCode == PC_NOTMANIF) {
          pos = startPos;
          VisitPolychord(mesh, pos, chords, mark, resultCode);
          if (pos.IsManifold() && !pos.IsBorder()) {
            pos.FlipF();
            VisitPolychord(mesh, pos, chords, mark, resultCode);
          }
        } else if (resultCode == PC_NOTQUAD) {
          // if not quad, visit all the polychords passing through this coord
          pos = startPos;
          do {
            if (!pos.IsBorder()) {
              pos.FlipF();
              VisitPolychord(mesh, pos, chords, mark, resultCode);
              pos.FlipF();
            }
            pos.FlipV();
            pos.FlipE();
          } while (pos != startPos);
          VisitPolychord(mesh, startPos, chords, mark, resultCode);
        }
        VisitPolychord(mesh, startPos, chords, mark, resultCode);
      }

      // go to the next coord
      chords.Next();
      // increment the mark
      ++mark;
      if (mark == std::numeric_limits<unsigned long>::max()) {
        chords.ResetMarks();
        mark = 0;
      }
    }
  }

  /**
   * @brief SplitPolychord splits a polychord into n polychords by inserting all the needed faces.
   * @param mesh is the input polygonal mesh.
   * @param pos is a position into the polychord (not necessarily the starting border). It will be updated with changes.
   * @param n is the number of polychords to replace the input one.
   * @param facesToUpdate is a vector of face pointers to be updated after re-allocation.
   * @param verticesToUpdate is a vector of vertex pointers to be updated after re-allocation.
   */
  static void SplitPolychord (PolyMeshType &mesh, vcg::face::Pos<FaceType> &pos, const size_t n,
                              std::vector<FacePointer *> &facesToUpdate, std::vector<VertexPointer *> &verticesToUpdate) {
    vcg::tri::RequireFFAdjacency(mesh);
    vcg::tri::RequirePerFaceFlags(mesh);

    if (mesh.IsEmpty())
      return;
    if (pos.IsNull())
      return;
    if (n <= 1)
      return;

    // remember which face vertex has pos, for later updating
    int posVInd = pos.VInd();

    vcg::face::Pos<FaceType> startPos, runPos;
    PC_ResultCode result = CheckPolychordFindStartPosition(pos, startPos, false);
    if (result != PC_SUCCESS && result != PC_SINGBOTH && result != PC_SINGSIDEA && result != PC_SINGSIDEB)
      return;

    // since every face has an orientation, ensure that the new polychords are inserted on the right of the starting pos
    startPos.FlipE();
    int e = startPos.E();
    startPos.FlipE();
    if (startPos.F()->Next(startPos.E()) == e)
      startPos.FlipV();

    // clear flags
    vcg::tri::UpdateFlags<PolyMeshType>::FaceClearV(mesh);
    vcg::tri::UpdateFlags<PolyMeshType>::FaceClearS(mesh);

    // count how many faces there are
    size_t fn1 = 0, fn2 = 0;
    runPos = startPos;
    do {
      // increase the number of faces
      if (runPos.F()->IsV()) {
        ++fn2;
        --fn1;
        runPos.F()->SetS();
      } else {
        ++fn1;
        runPos.F()->SetV();
      }

      // go onto the next face
      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (!runPos.IsBorder() && runPos != startPos);

    // clear flags
    runPos = startPos;
    do {
      // clear visited
      runPos.F()->ClearV();
      // go onto the next face
      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (!runPos.IsBorder() && runPos != startPos);

    // compute the number of faces and vertices that must be added to the mesh in order to insert the new polychords
    size_t FN = fn1 * (n - 1) + fn2 * (n * n - 1);
    size_t VN = fn1 * (n - 1) + fn2 * (n + 1) * (n - 1);
    if (startPos.IsBorder())
      VN += n - 1;

    // add the pos to update face and vertex pointer to the list of things to update after re-allocation
    facesToUpdate.push_back(&pos.F());
    verticesToUpdate.push_back(&pos.V());
    // add the starting position's face and vertex pointers to the list of things to update after re-allocation
    facesToUpdate.push_back(&startPos.F());
    verticesToUpdate.push_back(&startPos.V());

    runPos.SetNull();
    // add faces to the mesh
    FaceIterator firstAddedFaceIt = vcg::tri::Allocator<PolyMeshType>::AddFaces(mesh, FN, facesToUpdate);
    // add vertices to the mesh
    VertexIterator firstAddedVertexIt = vcg::tri::Allocator<PolyMeshType>::AddVertices(mesh, VN, verticesToUpdate);

    // delete the added starting position's face and vertex pointers
    facesToUpdate.pop_back();
    verticesToUpdate.pop_back();
    // delete the added pos to update face and vertex pointers
    facesToUpdate.pop_back();
    verticesToUpdate.pop_back();

    // allocate and initialize 4 vertices and ffAdj for each new face
    for (FaceIterator fIt = firstAddedFaceIt; fIt != mesh.face.end(); ++fIt) {
      fIt->Alloc(4);
      for (size_t j = 0; j < 4; ++j) {
        fIt->FFp(j) = &*fIt;
        fIt->FFi(j) = j;
      }
    }

    // two structures to store temporary face data and splitting information
    struct FaceData {
      FacePointer                 faceP;
      std::vector<FacePointer>    ffpAdj;
      std::vector<int>            ffiAdj;
      std::vector<VertexPointer>  fvpAdj;
      FaceData() : faceP(0), ffpAdj(4, 0), ffiAdj(4, 0), fvpAdj(4, 0) { }
    };
    struct FaceSubdivision {
      int                                   firstEdge;
      int                                   firstVertex;
      std::vector< std::vector<FaceData> >  subfaces;
    };
#if __cplusplus >= 201103L
    std::unordered_map<FacePointer,FaceSubdivision>                     faceSubdivisions;
    typename std::unordered_map<FacePointer,FaceSubdivision>::iterator  faceSubdivisionsIt;
    typename std::unordered_map<FacePointer,FaceSubdivision>::iterator  faceSubdivisionsPrevIt;
    typename std::unordered_map<FacePointer,FaceSubdivision>::iterator  faceSubdivisionsNeighbourIt;
#else
    std::map<FacePointer,FaceSubdivision                                faceSubdivisions;
    typename std::map<FacePointer,FaceSubdivision>::iterator            faceSubdivisionsIt;
    typename std::map<FacePointer,FaceSubdivision>::iterator            faceSubdivisionsPrevIt;
    typename std::map<FacePointer,FaceSubdivision>::iterator            faceSubdivisionsNeighbourIt;
#endif
    // structure to store temporary data to assign at external faces (close to polychord)
    struct ExternalFaceData {
      FacePointer faceTo;
      FacePointer faceFrom;
      int         edgeTo;
      int         edgeFrom;
      ExternalFaceData() : faceTo(0), faceFrom(0), edgeTo(0), edgeFrom(0) { }
      ExternalFaceData(const FacePointer &ft,
                       const FacePointer &ff,
                       const int et,
                       const int ef) : faceTo(ft), faceFrom(ff), edgeTo(et), edgeFrom(ef) { }
    };
    std::list<ExternalFaceData>                                         externalFaces;
    typename std::list<ExternalFaceData>::iterator                      externalFacesIt;

    int leftEdge, rightEdge, topEdge, bottomEdge, blVInd, brVInd, tlVInd, trVInd;
    int pleftEdge, prightEdge, ptopEdge, pbottomEdge, pblVInd, pbrVInd, ptlVInd, ptrVInd;
    CoordType fromPoint, toPoint;
    FacePointer faceP;
    // first pass: make subdivisions
    runPos = startPos;
    do {
      // create temporary data
      if (!runPos.F()->IsV()) {
        runPos.F()->SetV();
        faceSubdivisionsIt = faceSubdivisions.insert(std::make_pair(runPos.F(), FaceSubdivision())).first;
        faceSubdivisionsIt->second.firstEdge = runPos.E();
        faceSubdivisionsIt->second.firstVertex = runPos.VInd();
        if (runPos.F()->IsS())
          faceSubdivisionsIt->second.subfaces.resize(n, std::vector<FaceData>(n));
        else
          faceSubdivisionsIt->second.subfaces.resize(1, std::vector<FaceData>(n));
        // assign face pointers
        faceSubdivisionsIt->second.subfaces.at(0).at(0).faceP = runPos.F();
        for (size_t j = 1; j < n; ++j, ++firstAddedFaceIt)
          faceSubdivisionsIt->second.subfaces.at(0).at(j).faceP = &*firstAddedFaceIt;
        for (size_t i = 1; i < faceSubdivisionsIt->second.subfaces.size(); ++i)
          for (size_t j = 0; j < n; ++j, ++firstAddedFaceIt)
            faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP = &*firstAddedFaceIt;
        // internal face pointers adj
        rightEdge = runPos.F()->Next(runPos.E());
        leftEdge = runPos.F()->Prev(runPos.E());
        for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size(); ++i)
          for (size_t j = 0; j < n - 1; ++j) {
            faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj[rightEdge] = faceSubdivisionsIt->second.subfaces.at(i).at(j+1).faceP;
            faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj[rightEdge] = leftEdge;
            faceSubdivisionsIt->second.subfaces.at(i).at(j+1).ffpAdj[leftEdge] = faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP;
            faceSubdivisionsIt->second.subfaces.at(i).at(j+1).ffiAdj[leftEdge] = rightEdge;
          }
        topEdge = runPos.F()->Next(rightEdge);
        bottomEdge = runPos.E();
        for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size() - 1; ++i)
          for (size_t j = 0; j < n; ++j) {
            faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj[topEdge] = faceSubdivisionsIt->second.subfaces.at(i+1).at(j).faceP;
            faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj[topEdge] = bottomEdge;
            faceSubdivisionsIt->second.subfaces.at(i+1).at(j).ffpAdj[bottomEdge] = faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP;
            faceSubdivisionsIt->second.subfaces.at(i+1).at(j).ffiAdj[bottomEdge] = topEdge;
          }
        // assign old vertex pointers
        blVInd = runPos.VInd();
        brVInd = runPos.F()->Next(blVInd);
        trVInd = runPos.F()->Next(brVInd);
        tlVInd = runPos.F()->Next(trVInd);
        faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd) = runPos.F()->V(blVInd);
        faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd) = runPos.F()->V(brVInd);
        faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd) = runPos.F()->V(trVInd);
        faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd) = runPos.F()->V(tlVInd);
        // assign new internal vertex pointers
        for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size() - 1; ++i)
          for (size_t j = 0; j < n - 1; ++j, ++firstAddedVertexIt) {
            faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.at(trVInd) = &*firstAddedVertexIt;
            faceSubdivisionsIt->second.subfaces.at(i).at(j+1).fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
            faceSubdivisionsIt->second.subfaces.at(i+1).at(j).fvpAdj.at(brVInd) = &*firstAddedVertexIt;
            faceSubdivisionsIt->second.subfaces.at(i+1).at(j+1).fvpAdj.at(blVInd) = &*firstAddedVertexIt;
          }
      }

      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (!runPos.IsBorder() && runPos != startPos);

    // update subdivision iterator
    if (runPos.IsBorder())
      faceSubdivisionsIt = faceSubdivisions.end();

    // second pass: assign edge vertices and subdivisions-to-subdivisions face-face adjacency
    runPos = startPos;
    do {
      // get current and previous subdivision
      faceSubdivisionsPrevIt = faceSubdivisionsIt;
      faceSubdivisionsIt = faceSubdivisions.find(runPos.F());

      // get original indices
      bottomEdge = faceSubdivisionsIt->second.firstEdge;
      rightEdge = runPos.F()->Next(bottomEdge);
      topEdge = runPos.F()->Next(rightEdge);
      leftEdge = runPos.F()->Next(topEdge);
      blVInd = faceSubdivisionsIt->second.firstVertex;
      brVInd = runPos.F()->Next(blVInd);
      trVInd = runPos.F()->Next(brVInd);
      tlVInd = runPos.F()->Next(trVInd);
      if (faceSubdivisionsPrevIt != faceSubdivisions.end()) {
        pbottomEdge = faceSubdivisionsPrevIt->second.firstEdge;
        prightEdge = runPos.FFlip()->Next(pbottomEdge);
        ptopEdge = runPos.FFlip()->Next(prightEdge);
        pleftEdge = runPos.FFlip()->Next(ptopEdge);
        pblVInd = faceSubdivisionsPrevIt->second.firstVertex;
        pbrVInd = runPos.F()->Next(pblVInd);
        ptrVInd = runPos.F()->Next(pbrVInd);
        ptlVInd = runPos.F()->Next(ptrVInd);
      }

      // assign bottom edge vertices (and vertex adjacency with the previous subdivision) and face-to-face adjacency
      if (runPos.E() == bottomEdge) {
        // get pre-existing coords
        fromPoint = faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd)->P();
        toPoint = faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd)->P();
        // assign new vertices
        for (size_t j = 0; j < n - 1; ++j, ++firstAddedVertexIt) {
          firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (j + 1) / n;
          faceSubdivisionsIt->second.subfaces.front().at(j).fvpAdj.at(brVInd) = &*firstAddedVertexIt;
          faceSubdivisionsIt->second.subfaces.front().at(j+1).fvpAdj.at(blVInd) = &*firstAddedVertexIt;
        }
        if (faceSubdivisionsPrevIt != faceSubdivisions.end()) {
          if (runPos.F()->FFi(bottomEdge) == ptopEdge) {
            // update face-to-vertex adjacency
            for (size_t j = 0; j < n - 1; ++j) {
              faceSubdivisionsPrevIt->second.subfaces.back().at(j).fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.front().at(j).fvpAdj.at(brVInd);
              faceSubdivisionsPrevIt->second.subfaces.back().at(j+1).fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.front().at(j+1).fvpAdj.at(blVInd);
            }
            // update face-to-face adjacency
            for (size_t j = 0; j < n; ++j) {
              faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsPrevIt->second.subfaces.back().at(j).faceP;
              faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = ptopEdge;
              faceSubdivisionsPrevIt->second.subfaces.back().at(j).ffpAdj.at(ptopEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
              faceSubdivisionsPrevIt->second.subfaces.back().at(j).ffiAdj.at(ptopEdge) = bottomEdge;
            }
          } else if (runPos.F()->FFi(bottomEdge) == prightEdge) {
            // update face-to-vertex adjacency
            for (size_t i = 0; i < n - 1; ++i) {
              faceSubdivisionsPrevIt->second.subfaces.at(i).back().fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-1).fvpAdj.at(blVInd);
              faceSubdivisionsPrevIt->second.subfaces.at(i+1).back().fvpAdj.at(pbrVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-2).fvpAdj.at(brVInd);
            }
            // update face-to-face adjacency
            for (size_t j = 0; j < n; ++j) {
              faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsPrevIt->second.subfaces.at(n-j-1).back().faceP;
              faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = prightEdge;
              faceSubdivisionsPrevIt->second.subfaces.at(n-j-1).back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
              faceSubdivisionsPrevIt->second.subfaces.at(n-j-1).back().ffiAdj.at(prightEdge) = bottomEdge;
            }
          } else {
            // must be pleftEdge
            // update face-to-vertex adjacency
            for (size_t i = 0; i < n - 1; ++i) {
              faceSubdivisionsPrevIt->second.subfaces.at(i).front().fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.front().at(i).fvpAdj.at(brVInd);
              faceSubdivisionsPrevIt->second.subfaces.at(i+1).front().fvpAdj.at(pblVInd) = faceSubdivisionsIt->second.subfaces.front().at(i+1).fvpAdj.at(blVInd);
            }
            // update face-to-face adjacency
            for (size_t j = 0; j < n; ++j) {
              faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsPrevIt->second.subfaces.at(j).front().faceP;
              faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = pleftEdge;
              faceSubdivisionsPrevIt->second.subfaces.at(j).front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
              faceSubdivisionsPrevIt->second.subfaces.at(j).front().ffiAdj.at(pleftEdge) = bottomEdge;
            }
          }
        } else {
          // must be on border
          // update face-to-face adjacency
          for (size_t j = 0; j < n; ++j) {
            faceSubdivisionsIt->second.subfaces.front().at(j).ffpAdj.at(bottomEdge) = faceSubdivisionsIt->second.subfaces.front().at(j).faceP;
            faceSubdivisionsIt->second.subfaces.front().at(j).ffiAdj.at(bottomEdge) = bottomEdge;
          }
        }
      } else if (runPos.E() == leftEdge) {
        // get pre-existing coords
        fromPoint = faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd)->P();
        toPoint = faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd)->P();
        // assign new vertices
        for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
          firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
          faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
          faceSubdivisionsIt->second.subfaces.at(i+1).front().fvpAdj.at(blVInd) = &*firstAddedVertexIt;
        }
        // can't be on border
        if (runPos.F()->FFi(leftEdge) == ptopEdge) {
          // update face-to-vertex adjacency
          for (size_t j = 0; j < n - 1; ++j) {
            faceSubdivisionsPrevIt->second.subfaces.back().at(j).fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(n-j-1).front().fvpAdj.at(blVInd);
            faceSubdivisionsPrevIt->second.subfaces.back().at(j+1).fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.at(n-j-2).front().fvpAdj.at(tlVInd);
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsPrevIt->second.subfaces.back().at(n-i-1).faceP;
            faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = ptopEdge;
            faceSubdivisionsPrevIt->second.subfaces.back().at(n-i-1).ffpAdj.at(ptopEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
            faceSubdivisionsPrevIt->second.subfaces.back().at(n-i-1).ffiAdj.at(ptopEdge) = leftEdge;
          }
        } else if (runPos.F()->FFi(leftEdge) == prightEdge) {
          // update face-to-vertex adjacency
          for (size_t i = 0; i < n - 1; ++i) {
            faceSubdivisionsPrevIt->second.subfaces.at(i).back().fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(tlVInd);
            faceSubdivisionsPrevIt->second.subfaces.at(i+1).back().fvpAdj.at(pbrVInd) = faceSubdivisionsIt->second.subfaces.at(i+1).front().fvpAdj.at(blVInd);
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsPrevIt->second.subfaces.at(i).back().faceP;
            faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = prightEdge;
            faceSubdivisionsPrevIt->second.subfaces.at(i).back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
            faceSubdivisionsPrevIt->second.subfaces.at(i).back().ffiAdj.at(prightEdge) = leftEdge;
          }
        } else {
          // must be runPos.F()->FFi(leftEdge) == pleftEdge
          // update face-to-vertex adjacency
          for (size_t i = 0; i < n - 1; ++i) {
            faceSubdivisionsPrevIt->second.subfaces.at(i).front().fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-1).fvpAdj.at(blVInd);
            faceSubdivisionsPrevIt->second.subfaces.at(i+1).front().fvpAdj.at(pblVInd) = faceSubdivisionsIt->second.subfaces.front().at(n-i-2).fvpAdj.at(tlVInd);
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).front().faceP;
            faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = pleftEdge;
            faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
            faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).front().ffiAdj.at(pleftEdge) = leftEdge;
          }
        }
      } else {
        // must be runPos.E() == rightEdge
        // get pre-existing coords
        fromPoint = faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd)->P();
        toPoint = faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd)->P();
        // assign new vertices
        for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
          firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
          faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(trVInd) = &*firstAddedVertexIt;
          faceSubdivisionsIt->second.subfaces.at(i+1).back().fvpAdj.at(brVInd) = &*firstAddedVertexIt;
        }
        // can't be on border
        if (runPos.F()->FFi(rightEdge) == ptopEdge) {
          // update face-to-vertex adjacency
          for (size_t j = 0; j < n - 1; ++j) {
            faceSubdivisionsPrevIt->second.subfaces.back().at(j).fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(j).back().fvpAdj.at(trVInd);
            faceSubdivisionsPrevIt->second.subfaces.back().at(j+1).fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.at(j+1).back().fvpAdj.at(brVInd);
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsPrevIt->second.subfaces.back().at(i).faceP;
            faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = ptopEdge;
            faceSubdivisionsPrevIt->second.subfaces.back().at(i).ffpAdj.at(ptopEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
            faceSubdivisionsPrevIt->second.subfaces.back().at(i).ffiAdj.at(ptopEdge) = rightEdge;
          }
        } else if (runPos.F()->FFi(rightEdge) == prightEdge) {
          // update face-to-vertex adjacency
          for (size_t i = 0; i < n - 1; ++i) {
            faceSubdivisionsPrevIt->second.subfaces.at(i).back().fvpAdj.at(ptrVInd) = faceSubdivisionsIt->second.subfaces.at(n-i-1).back().fvpAdj.at(brVInd);
            faceSubdivisionsPrevIt->second.subfaces.at(i+1).back().fvpAdj.at(pbrVInd) = faceSubdivisionsIt->second.subfaces.at(n-i-2).back().fvpAdj.at(trVInd);
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).back().faceP;
            faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = prightEdge;
            faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
            faceSubdivisionsPrevIt->second.subfaces.at(n-i-1).back().ffiAdj.at(prightEdge) = rightEdge;
          }
        } else {
          // must be runPos.F()->FFi(rightEdge) == pleftEdge
          // update face-to-vertex adjacency
          for (size_t i = 0; i < n - 1; ++i) {
            faceSubdivisionsPrevIt->second.subfaces.at(i).front().fvpAdj.at(ptlVInd) = faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(trVInd);
            faceSubdivisionsPrevIt->second.subfaces.at(i+1).front().fvpAdj.at(pblVInd) = faceSubdivisionsIt->second.subfaces.at(i+1).back().fvpAdj.at(brVInd);
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsPrevIt->second.subfaces.at(i).front().faceP;
            faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = pleftEdge;
            faceSubdivisionsPrevIt->second.subfaces.at(i).front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
            faceSubdivisionsPrevIt->second.subfaces.at(i).front().ffiAdj.at(pleftEdge) = rightEdge;
          }
        }
      }

      // update subdivision's left and right sides face-to-face adjacency
      // go on left edge
      runPos.FlipE();
      runPos.FlipV();
      if (runPos.IsBorder()) {
        if (!runPos.F()->IsS()) {
          // must be runPos.E() == leftEdge and faceSubdivisionsIt->second.subfaces.size() == 1
          faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = faceSubdivisionsIt->second.subfaces.front().front().faceP;
          faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = leftEdge;
        }
      } else if (!runPos.FFlip()->IsV()) {
        // must be runPos.E() == leftEdge and faceSubdivisionsIt->second.subfaces.size() == 1
        assert(faceSubdivisionsIt->second.subfaces.size() == 1);
        faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = runPos.FFlip();
        faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = runPos.F()->FFi(leftEdge);
        externalFaces.push_back(ExternalFaceData(runPos.FFlip(),
                                                 faceSubdivisionsIt->second.subfaces.front().front().faceP,
                                                 runPos.F()->FFi(leftEdge),
                                                 leftEdge));
      } else if (!runPos.FFlip()->IsS() && !runPos.F()->IsS()) {
        // must be runPos.E() == leftEdge and faceSubdivisionsIt->second.subfaces.size() == 1
        faceSubdivisionsNeighbourIt = faceSubdivisions.find(runPos.FFlip());
        // must be faceSubdivisionsNeighbourIt != faceSubdivisions.end() and faceSubdivisionsNeighbourIt->second.subfaces.size() == 1
        pbottomEdge = faceSubdivisionsNeighbourIt->second.firstEdge;
        prightEdge = runPos.FFlip()->Next(pbottomEdge);
        ptopEdge = runPos.FFlip()->Next(prightEdge);
        pleftEdge = runPos.FFlip()->Next(ptopEdge);
        if (runPos.F()->FFi(leftEdge) == pleftEdge) {
          faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().front().faceP;
          faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = pleftEdge;
          faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.front().front().faceP;
          faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffiAdj.at(pleftEdge) = leftEdge;
        } else {
          // must be runPos.F()->FFi(leftEdge) == prightEdge
          faceSubdivisionsIt->second.subfaces.front().front().ffpAdj.at(leftEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().back().faceP;
          faceSubdivisionsIt->second.subfaces.front().front().ffiAdj.at(leftEdge) = prightEdge;
          faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.front().front().faceP;
          faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffiAdj.at(prightEdge) = leftEdge;
        }
      }
      // go on right edge
      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      if (runPos.IsBorder()) {
        if (!runPos.F()->IsS()) {
          // must be runPos.E() == rightEdge and faceSubdivisionsIt->second.subfaces.size() == 1
          faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = faceSubdivisionsIt->second.subfaces.front().back().faceP;
          faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = rightEdge;
        }
      } else if (!runPos.FFlip()->IsV()) {
        // must be runPos.E() == rightEdge and faceSubdivisionsIt->second.subfaces.size() == 1
        faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = runPos.FFlip();
        faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = runPos.F()->FFi(rightEdge);
        externalFaces.push_back(ExternalFaceData(runPos.FFlip(),
                                                 faceSubdivisionsIt->second.subfaces.front().back().faceP,
                                                 runPos.F()->FFi(rightEdge),
                                                 rightEdge));
      } else if (!runPos.FFlip()->IsS() && !runPos.F()->IsS()) {
        // must be runPos.E() == rightEdge and faceSubdivisionsIt->second.subfaces.size() == 1
        faceSubdivisionsNeighbourIt = faceSubdivisions.find(runPos.FFlip());
        // must be faceSubdivisionsNeighbourIt != faceSubdivisions.end() and faceSubdivisionsNeighbourIt->second.subfaces.size() == 1
        pbottomEdge = faceSubdivisionsNeighbourIt->second.firstEdge;
        prightEdge = runPos.FFlip()->Next(pbottomEdge);
        ptopEdge = runPos.FFlip()->Next(prightEdge);
        pleftEdge = runPos.FFlip()->Next(ptopEdge);
        if (runPos.F()->FFi(rightEdge) == pleftEdge) {
          faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().front().faceP;
          faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = pleftEdge;
          faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffpAdj.at(pleftEdge) = faceSubdivisionsIt->second.subfaces.front().back().faceP;
          faceSubdivisionsNeighbourIt->second.subfaces.front().front().ffiAdj.at(pleftEdge) = rightEdge;
        } else {
          // must be runPos.F()->FFi(rightEdge) == prightEdge
          faceSubdivisionsIt->second.subfaces.front().back().ffpAdj.at(rightEdge) = faceSubdivisionsNeighbourIt->second.subfaces.front().back().faceP;
          faceSubdivisionsIt->second.subfaces.front().back().ffiAdj.at(rightEdge) = prightEdge;
          faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffpAdj.at(prightEdge) = faceSubdivisionsIt->second.subfaces.front().back().faceP;
          faceSubdivisionsNeighbourIt->second.subfaces.front().back().ffiAdj.at(prightEdge) = rightEdge;
        }
      }

      // go on top edge
      runPos.FlipE();
      runPos.FlipV();
      if (runPos.IsBorder()) {
        // assign top edge vertices and face-to-border adjacency
        if (runPos.E() == topEdge) {
          // get pre-existing coords
          fromPoint = faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd)->P();
          toPoint = faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd)->P();
          // assign new vertices
          for (size_t j = 0; j < n - 1; ++j, ++firstAddedVertexIt) {
            firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (j + 1) / n;
            faceSubdivisionsIt->second.subfaces.back().at(j).fvpAdj.at(trVInd) = &*firstAddedVertexIt;
            faceSubdivisionsIt->second.subfaces.back().at(j+1).fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
          }
          // update face-to-face adjacency
          for (size_t j = 0; j < n; ++j) {
            faceSubdivisionsIt->second.subfaces.back().at(j).ffpAdj.at(topEdge) = faceSubdivisionsIt->second.subfaces.back().at(j).faceP;
            faceSubdivisionsIt->second.subfaces.back().at(j).ffiAdj.at(topEdge) = topEdge;
          }
        } else if (runPos.E() == leftEdge) {
          // get pre-existing coords
          fromPoint = faceSubdivisionsIt->second.subfaces.front().front().fvpAdj.at(blVInd)->P();
          toPoint = faceSubdivisionsIt->second.subfaces.back().front().fvpAdj.at(tlVInd)->P();
          // assign new vertices
          for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
            firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
            faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(tlVInd) = &*firstAddedVertexIt;
            faceSubdivisionsIt->second.subfaces.at(i+1).front().fvpAdj.at(blVInd) = &*firstAddedVertexIt;
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).front().ffpAdj.at(leftEdge) = faceSubdivisionsIt->second.subfaces.at(i).front().faceP;
            faceSubdivisionsIt->second.subfaces.at(i).front().ffiAdj.at(leftEdge) = leftEdge;
          }
        } else {
          // must be runPos.E() == rightEdge
          // get pre-existing coords
          fromPoint = faceSubdivisionsIt->second.subfaces.front().back().fvpAdj.at(brVInd)->P();
          toPoint = faceSubdivisionsIt->second.subfaces.back().back().fvpAdj.at(trVInd)->P();
          // assign new vertices
          for (size_t i = 0; i < n - 1; ++i, ++firstAddedVertexIt) {
            firstAddedVertexIt->P() = fromPoint + (toPoint - fromPoint) * (i + 1) / n;
            faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(trVInd) = &*firstAddedVertexIt;
            faceSubdivisionsIt->second.subfaces.at(i+1).back().fvpAdj.at(brVInd) = &*firstAddedVertexIt;
          }
          // update face-to-face adjacency
          for (size_t i = 0; i < n; ++i) {
            faceSubdivisionsIt->second.subfaces.at(i).back().ffpAdj.at(rightEdge) = faceSubdivisionsIt->second.subfaces.at(i).back().faceP;
            faceSubdivisionsIt->second.subfaces.at(i).back().ffiAdj.at(rightEdge) = rightEdge;
          }
        }
      } else {
        // go onto the next face
        runPos.FlipF();
      }
    } while (!runPos.IsBorder() && runPos != startPos);

    // final pass: compute coords of new internal vertices, copy all data into mesh and clear flags
    for (faceSubdivisionsIt = faceSubdivisions.begin(); faceSubdivisionsIt != faceSubdivisions.end(); ++faceSubdivisionsIt) {
      // clear flags
      faceSubdivisionsIt->first->ClearV();
      if (faceSubdivisionsIt->first->IsS())
        faceSubdivisionsIt->first->ClearS();

      // get vertex indices
      blVInd = faceSubdivisionsIt->second.firstVertex;
      brVInd = faceSubdivisionsIt->first->Next(blVInd);

      // compute coords on bottom side and internal, horizontally
      for (size_t i = 1; i < faceSubdivisionsIt->second.subfaces.size(); ++i) {
        fromPoint = faceSubdivisionsIt->second.subfaces.at(i).front().fvpAdj.at(blVInd)->P();
        toPoint = faceSubdivisionsIt->second.subfaces.at(i).back().fvpAdj.at(brVInd)->P();
        for (size_t j = 1; j < n; ++j)
          faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.at(blVInd)->P() = fromPoint + (toPoint - fromPoint) * j / n;
      }

      // finally, copy data into mesh
      for (size_t i = 0; i < faceSubdivisionsIt->second.subfaces.size(); ++i)
        for (size_t j = 0; j < n; ++j) {
          faceP = faceSubdivisionsIt->second.subfaces.at(i).at(j).faceP;
          for (size_t k = 0; k < faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj.size(); ++k)
            faceP->FFp(k) = faceSubdivisionsIt->second.subfaces.at(i).at(j).ffpAdj.at(k);
          for (size_t k = 0; k < faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj.size(); ++k)
            faceP->FFi(k) = faceSubdivisionsIt->second.subfaces.at(i).at(j).ffiAdj.at(k);
          for (size_t k = 0; k < faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.size(); ++k)
            faceP->V(k) = faceSubdivisionsIt->second.subfaces.at(i).at(j).fvpAdj.at(k);
        }
    }
    // very last step: update external faces adjacency
    for (externalFacesIt = externalFaces.begin(); externalFacesIt != externalFaces.end(); ++externalFacesIt) {
      externalFacesIt->faceTo->FFp(externalFacesIt->edgeTo) = externalFacesIt->faceFrom;
      externalFacesIt->faceTo->FFi(externalFacesIt->edgeTo) = externalFacesIt->edgeFrom;
    }
    // very very last step: update pos
    pos.V() = pos.F()->V(posVInd);
  }

  /**
   * @brief SplitPolychord splits a polychord into n polychords by inserting all the needed faces.
   * @param mesh is the input polygonal mesh.
   * @param pos is a position into the polychord (not necessarily the starting border). It will be updated with changes.
   * @param n is the number of polychords to replace the input one.
   */
  static void SplitPolychord (PolyMeshType &mesh, vcg::face::Pos<FaceType> &pos, const size_t n) {
    std::vector<FacePointer *> facesToUpdate;
    std::vector<VertexPointer *> verticesToUpdate;
    SplitPolychord(mesh, pos, n, facesToUpdate, verticesToUpdate);
  }

  /**
   * @brief CheckPolychordFindStartPosition checks if it's a collapsable polychord.
   * @param pos Input The starting position.
   * @param startPos Output the new starting position (in case of borders).
   * @param checkSing true if singularities on both sides are not allowed.
   * @return PC_SUCCESS if it's a collapsable polychord, otherwise the code for the cause (startPos is on it).
   */
  static PC_ResultCode CheckPolychordFindStartPosition (const vcg::face::Pos<FaceType> &pos,
                                                        vcg::face::Pos<FaceType> &startPos,
                                                        const bool checkSing = true) {
    assert(!pos.IsNull());
    int valence = 0;
    bool singSideA = false, singSideB = false;
    bool borderSideA = false, borderSideB = false;
    bool polyBorderFound = false;
    vcg::face::JumpingPos<FaceType> jmpPos;

    startPos = pos;
    do {
      // check if it is a quad
      if (startPos.F()->VN() != 4)
        return PC_NOTQUAD;
      // check manifoldness
      if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
        return PC_NOTMANIF;
      startPos.FlipV();
      if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
        return PC_NOTMANIF;
      startPos.FlipV();

      // check if side A is on border
      startPos.FlipE();
      if (startPos.IsBorder())
        borderSideA = true;
      startPos.FlipE();
      // check if side B is on border
      startPos.FlipV();
      startPos.FlipE();
      if (startPos.IsBorder())
        borderSideB = true;
      startPos.FlipE();
      startPos.FlipV();

      // check if singularities are not in both sides
      if (checkSing) {
        // compute the valence of the vertex on side B
        startPos.FlipV();
        valence = startPos.NumberOfIncidentVertices();
        // if the vertex is on border increment its valence by 1 (virtually connect it to a dummy vertex)
        jmpPos.Set(startPos.F(), startPos.E(), startPos.V());
        if (jmpPos.FindBorder())
          ++valence;
        if (valence != 4)
          singSideB = true;
        // a 2-valence internl vertex cause a polychord to touch itself, producing non-2manifoldness
        // in that case, a 2-valence vertex is dealt as 2 singularities in both sides
        if (valence == 2 && !borderSideB)
          singSideA = true;
        // compute the valence of the vertex on side A
        startPos.FlipV();
        valence = startPos.NumberOfIncidentVertices();
        // if the vertex is on border increment its valence by 1 (virtually connect it to a dummy vertex)
        jmpPos.Set(startPos.F(), startPos.E(), startPos.V());
        if (jmpPos.FindBorder())
          ++valence;
        if (valence != 4)
          singSideA = true;
        // a 2-valence internal vertex cause a polychord to touch itself, producing non-2manifoldness
        // in that case, a 2-valence vertex is dealt as 2 singularities in both sides
        if (valence == 2 && !borderSideA)
          singSideB = true;
      }

      // if the first border has been reached, go on the other direction to find the other border
      if (startPos != pos && startPos.IsBorder() && !polyBorderFound) {
        startPos = pos;
        startPos.FlipF();
        polyBorderFound = true;
      }

      // if the other border has been reached, return
      if (polyBorderFound && startPos.IsBorder())
        break;

      // go to the next edge
      startPos.FlipE();
      startPos.FlipV();
      startPos.FlipE();
      // check manifoldness
      if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
        return PC_NOTMANIF;
      startPos.FlipV();
      if (IsVertexAdjacentToAnyNonManifoldEdge(startPos))
        return PC_NOTMANIF;
      startPos.FlipV();
      // go to the next face
      startPos.FlipF();
    } while (startPos != pos);

    // polychord with singularities on both sides can not collapse
    if ((singSideA && singSideB) ||
        (singSideA && borderSideB) ||
        (singSideB && borderSideA))
      return PC_SINGBOTH;

    // polychords that are rings and have borders on both sides can not collapse
    if (!polyBorderFound && borderSideA && borderSideB)
      return PC_SINGBOTH;

    // if there are singularities or borders on the side A, remember to keep coordinates on it
    if (singSideA || borderSideA)
      return PC_SINGSIDEA;
    // if there are singularities or borders on the side B, remember to keep coordinates on it
    if (singSideB || borderSideB)
      return PC_SINGSIDEB;

    return PC_SUCCESS;
  }

  /**
   * @brief VisitPolychord updates the information of a polychord.
   * @param mesh The mesh used for getting the face index.
   * @param startPos The starting position.
   * @param chords The vector of chords.
   * @param mark The mark.
   * @param q The visiting type.
   */
  static void VisitPolychord (const PolyMeshType &mesh,
                              const vcg::face::Pos<FaceType> &startPos,
                              PC_Chords &chords,
                              const unsigned long mark,
                              const PC_ResultCode q) {
    assert(!startPos.IsNull());
    vcg::face::Pos<FaceType> tmpPos, runPos = startPos;
    std::pair<size_t, unsigned char> face_edge(std::numeric_limits<size_t>::max(), 0);

    // follow the sequence of quads
    do {
      // check manifoldness
      tmpPos = runPos;
      do {
        if (runPos.F()->VN() != 4)  // non-quads are not visited
          return;
        if (!tmpPos.IsManifold()) {
          // update current coord
          face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
          face_edge.second = tmpPos.E()%2;
          chords.UpdateCoord(chords[face_edge], mark, q);
          face_edge.second = (tmpPos.E()+1)%2;
          chords.UpdateCoord(chords[face_edge], mark, q);
          return;
        }
        tmpPos.FlipV();
        tmpPos.FlipE();
      } while (tmpPos != runPos);

      // update current coord
      face_edge.first = vcg::tri::Index(mesh, runPos.F());
      face_edge.second = runPos.E()%2;
      chords.UpdateCoord(chords[face_edge], mark, q);
      // if the polychord has to collapse, i.e. q == PC_SUCCESS, also visit the orthogonal coord
      if (q == PC_SUCCESS) {
        face_edge.second = (runPos.E()+1)%2;
        chords.UpdateCoord(chords[face_edge], mark, q);
      }

      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (runPos != startPos && !runPos.IsBorder() && runPos.F()->VN() == 4);
    assert(runPos == startPos || vcg::face::IsBorder(*startPos.F(),startPos.E())
           || runPos.F()->VN() != 4 || startPos.FFlip()->VN() != 4);
  }

  /**
   * @brief IsVertexAdjacentToAnyNonManifoldEdge checks if a vertex is adjacent to any non-manifold edge.
   * @param pos The starting position.
   * @return true if adjacent to non-manifold edges, false otherwise.
   */
  static bool IsVertexAdjacentToAnyNonManifoldEdge (const vcg::face::Pos<FaceType> &pos) {
    assert(!pos.IsNull());
    vcg::face::JumpingPos<FaceType> jmpPos;
    jmpPos.Set(pos.F(), pos.E(), pos.V());
    do {
      assert(!jmpPos.FFlip()->IsD());
      if (!jmpPos.IsManifold())
        return true;
      jmpPos.NextFE();
    } while (jmpPos != pos);
    return false;
  }

  /**
   * @brief IsPolychordSelfIntersecting checks if the input polychord intersects itself.
   * @warning Don't call this function without being sure that it's a polychord
   * (i.e. call CheckPolychordFindStartPoint() before calling IsPolychordSelfIntersecting().
   * @param mesh The mesh used for getting the face index.
   * @param startPos The starting position.
   * @param chords The vector of chords.
   * @param mark The current mark, used to identify quads already visited.
   * @return true if it intersects itself, false otherwise.
   */
  static bool IsPolychordSelfIntersecting (const PolyMeshType &mesh,
                                           const vcg::face::Pos<FaceType> &startPos,
                                           const PC_Chords &chords,
                                           const unsigned long mark) {
    assert(!startPos.IsNull());
    vcg::face::Pos<FaceType> runPos = startPos;
    vcg::face::Pos<FaceType> tmpPos;
    std::pair<size_t, unsigned char> face_edge(std::numeric_limits<size_t>::max(), 0);
    do {
      assert(runPos.F()->VN() == 4);
      // check if we've already crossed this face
      face_edge.first = vcg::tri::Index(mesh, runPos.F());
      face_edge.second = (runPos.E()+1)%2;
      if (chords[face_edge].mark == mark)
        return true;
      // if this coord is adjacent to another coord of the same polychord
      // i.e., this polychord touches itself without intersecting
      // it might cause a wrong collapse, producing holes and non-2manifoldness
      tmpPos = runPos;
      tmpPos.FlipE();
      if (!tmpPos.IsBorder()) {
        tmpPos.FlipF();
        face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge.second = (tmpPos.E()+1)%2;
        if (chords[face_edge].mark == mark)
          return true;
        // this should never hapen:
        face_edge.second = tmpPos.E()%2;
        if (chords[face_edge].mark == mark)
          return true;
      }
      tmpPos = runPos;
      tmpPos.FlipV();
      tmpPos.FlipE();
      if (!tmpPos.IsBorder()) {
        tmpPos.FlipF();
        face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge.second = (tmpPos.E()+1)%2;
        if (chords[face_edge].mark == mark)
          return true;
        // this should never hapen:
        face_edge.second = tmpPos.E()%2;
        if (chords[face_edge].mark == mark)
          return true;
      }
      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (runPos != startPos && !runPos.IsBorder());

    return false;
  }

  /**
   * @brief WillPolychordBeManifold checks whether a polychord starting at startPos would cause non-manifoldness
   * if it was collapsed.
   * @note VisitPolychord() should be called before this method.
   * @param mesh The input mesh.
   * @param startPos The starting Pos.
   * @param chords The vector of chords.
   * @param mark The current mark, used to identify quads already visited.
   * @return true if manifoldness remains, false otherwise.
   */
  static bool WillPolychordBeManifold(const PolyMeshType &mesh,
                                      const vcg::face::Pos<FaceType> &startPos,
                                      PC_Chords &chords,
                                      const unsigned long mark) {
    assert(!startPos.IsNull());
    vcg::face::Pos<FaceType> runPos = startPos;
    vcg::face::JumpingPos<FaceType> tmpPos;
    std::pair<size_t, unsigned char> face_edge1(std::numeric_limits<size_t>::max(), 0);
    std::pair<size_t, unsigned char> face_edge2(std::numeric_limits<size_t>::max(), 0);
    bool in = true;
    unsigned int nTraversal = 0;

    // second step: check
    runPos = startPos;
    do {
      face_edge1.first = vcg::tri::Index(mesh, runPos.F());
      face_edge1.second = runPos.E() % 2;
      assert(chords[face_edge1].mark == mark);
      // check one vertex
      runPos.FlipV();
      in = true;
      nTraversal = 0;
      tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
      do {
        if (tmpPos.IsBorder() && in) {
          in = false;
          nTraversal++;
        }
        // go to next edge
        tmpPos.NextFE();
        // check if this face is already visited
        face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge1.second = tmpPos.E() % 2;
        face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge2.second = (tmpPos.E() + 1) % 2;
        if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
          in = false;
          ++nTraversal;
        } else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
          in = true;
          ++nTraversal;
        }
      } while (tmpPos != runPos);
      assert(in);
      assert(nTraversal % 2 == 0);
      if (nTraversal > 2)
        return false;

      // check other vertex
      runPos.FlipV();
      in = true;
      nTraversal = 0;
      tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
      do {
        if (tmpPos.IsBorder() && in) {
          in = false;
          ++nTraversal;
        }
        // go to next edge
        tmpPos.NextFE();
        // check if this face is already visited
        face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge1.second = tmpPos.E() % 2;
        face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge2.second = (tmpPos.E() + 1) % 2;
        if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
          in = false;
          nTraversal++;
        } else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
          in = true;
          ++nTraversal;
        }
      } while (tmpPos != runPos);
      assert(in);
      assert(nTraversal % 2 == 0);
      if (nTraversal > 2)
        return false;

      runPos.FlipE();
      runPos.FlipV();
      runPos.FlipE();
      runPos.FlipF();
    } while (runPos != startPos && !runPos.IsBorder());
    if (runPos.IsBorder()) {
      // check one vertex
      runPos.FlipV();
      in = true;
      nTraversal = 0;
      tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
      do {
        if (tmpPos.IsBorder() && in) {
          in = false;
          ++nTraversal;
        }
        // go to next edge
        tmpPos.NextFE();
        // check if this face is already visited
        face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge1.second = tmpPos.E() % 2;
        face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge2.second = (tmpPos.E() + 1) % 2;
        if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
          in = false;
          ++nTraversal;
        } else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
          in = true;
          ++nTraversal;
        }
      } while (tmpPos != runPos);
      assert(in);
      assert(nTraversal % 2 == 0);
      if (nTraversal > 2)
        return false;

      // check other vertex
      runPos.FlipV();
      in = true;
      nTraversal = 0;
      tmpPos.Set(runPos.F(), runPos.E(), runPos.V());
      do {
        if (tmpPos.IsBorder() && in) {
          in = false;
          ++nTraversal;
        }
        // go to next edge
        tmpPos.NextFE();
        // check if this face is already visited
        face_edge1.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge1.second = tmpPos.E() % 2;
        face_edge2.first = vcg::tri::Index(mesh, tmpPos.F());
        face_edge2.second = (tmpPos.E() + 1) % 2;
        if (in && chords[face_edge1].mark != mark && chords[face_edge2].mark != mark) {
          in = false;
          ++nTraversal;
        } else if (!in && (chords[face_edge1].mark == mark || chords[face_edge2].mark == mark)) {
          in = true;
          ++nTraversal;
        }
      } while (tmpPos != runPos);
      assert(in);
      assert(nTraversal % 2 == 0);
      if (nTraversal > 2)
        return false;
    }

    return true;
  }
};

}
}

#endif // POLYGON_Polychord_COLLAPSE_H