1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef RANSAC_MATCHING_H
#define RANSAC_MATCHING_H
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/update/color.h>
#include<vcg/complex/algorithms/smooth.h>
#include<vcg/space/index/kdtree/kdtree.h>
#include<vcg/space/point_matching.h>
namespace vcg
{
/** BaseFeature a no-feature feature
*
* Basically it serve the purpose of evaluating the ransac framework factoring out the goodness of the feature.
*
*/
template <class MeshType>
class BaseFeature
{
public:
BaseFeature():_v(0) {}
typename MeshType::VertexType *_v;
typename MeshType::CoordType P() {return _v->cP();}
};
template <class MeshType>
class BaseFeatureSet
{
public:
typedef BaseFeature<MeshType> FeatureType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::ScalarType ScalarType;
class Param
{
public:
Param()
{
featureSampleRatio = 0.5; // the number of feature that we choose on the total number of samples.
}
ScalarType featureSampleRatio;
};
std::vector<FeatureType> fixFeatureVec;
std::vector<FeatureType> movFeatureVec;
FeatureType &ff(int i) { return fixFeatureVec[i]; }
FeatureType &mf(int i) { return movFeatureVec[i]; }
int ffNum() const { return fixFeatureVec.size(); }
int mfNum() const { return movFeatureVec.size(); }
void Init(MeshType &fix, MeshType &mov,
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec,
Param &fpp)
{
this->fixFeatureVec.resize(fixSampleVec.size()*fpp.featureSampleRatio);
for(int i=0;i<fixFeatureVec.size();++i)
this->fixFeatureVec[i]._v = fixSampleVec[i];
this->movFeatureVec.resize(movSampleVec.size()*fpp.featureSampleRatio);
for(int i=0;i<movFeatureVec.size();++i)
this->movFeatureVec[i]._v = movSampleVec[i];
printf("Generated %i Features on Fix\n",this->fixFeatureVec.size());
printf("Generated %i Features on Mov\n",this->movFeatureVec.size());
}
// Returns the indexes of all the fix features matching a given one (from mov usually)
// remember that the idea is that
// we are aliging mov (that could be a single map) to fix (that could be a set of already aligned maps)
void getMatchingFixFeatureVec(FeatureType &q, vector<int> &ffiVec, size_t maxMatchingFeature)
{
ffiVec.resize(std::min(fixFeatureVec.size(),maxMatchingFeature));
for(int i=0;i<ffiVec.size();++i)
ffiVec[i]=i;
}
};
/*******************/
template <class MeshType>
class NDFeature
{
public:
NDFeature():_v(0) {}
typename MeshType::VertexType *_v;
typename MeshType::CoordType nd; //
typename MeshType::CoordType P() {return _v->cP();}
};
template <class MeshType>
class NDFeatureSet
{
public:
typedef NDFeature<MeshType> FeatureType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
class Param
{
public:
Param()
{
levAbs=CoordType(0,0,0);
levPerc[0] = 0.01;
levPerc[1] = levPerc[0]*2.0;
levPerc[2] = levPerc[1]*2.0;
}
CoordType levPerc;
CoordType levAbs;
};
std::vector<FeatureType> fixFeatureVec;
std::vector<FeatureType> movFeatureVec;
KdTree<ScalarType> *fixFeatureTree;
FeatureType &ff(int i) { return fixFeatureVec[i]; }
FeatureType &mf(int i) { return movFeatureVec[i]; }
int ffNum() const { return fixFeatureVec.size(); }
int mfNum() const { return movFeatureVec.size(); }
void Init(MeshType &fix, MeshType &mov,
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec, Param &pp)
{
ScalarType dd = std::max(fix.bbox.Diag(),mov.bbox.Diag());
if(pp.levAbs == CoordType(0,0,0))
pp.levAbs= pp.levPerc * dd;
BuildNDFeatureVector(fix,fixSampleVec,pp.levAbs,fixFeatureVec);
BuildNDFeatureVector(mov,movSampleVec,pp.levAbs,movFeatureVec);
ConstDataWrapper<CoordType> cdw( &(fixFeatureVec[0].nd), fixFeatureVec.size(), sizeof(FeatureType));
fixFeatureTree = new KdTree<ScalarType>(cdw);
printf("Generated %i ND Features on Fix\n",this->fixFeatureVec.size());
printf("Generated %i ND Features on Mov\n",this->movFeatureVec.size());
}
static void BuildNDFeatureVector(MeshType &m, std::vector<VertexType *> &sampleVec, Point3f &distLev, std::vector<FeatureType> &featureVec )
{
tri::UpdateNormal<MeshType>::PerVertexNormalized(m);
tri::Smooth<MeshType>::VertexNormalLaplacian(m,10);
VertexConstDataWrapper<MeshType > ww(m);
KdTree<ScalarType> tree(ww);
featureVec.resize(sampleVec.size());
const Point3f sqDistLev(distLev[0]*distLev[0], distLev[1]*distLev[1], distLev[2]*distLev[2]);
for(int i=0;i<sampleVec.size();++i)
{
featureVec[i]._v=sampleVec[i];
std::vector<unsigned int> ptIndVec;
std::vector<ScalarType> sqDistVec;
tree.doQueryDist(sampleVec[i]->P(), distLev[2], ptIndVec, sqDistVec);
Point3f varSum(0,0,0);
Point3i varCnt(0,0,0);
for(int j=0;j<sqDistVec.size();++j)
{
ScalarType nDist = Distance(m.vert[i].N(),m.vert[ptIndVec[j]].N());
if(sqDistVec[j]<sqDistLev[0]) {
varSum[0] += nDist;
++varCnt[0];
}
if(sqDistVec[j]<sqDistLev[1]) {
varSum[1] += nDist;
++varCnt[1];
}
{
varSum[2] += nDist;
++varCnt[2];
}
}
featureVec[i].nd[0] = varSum[0]/ScalarType(varCnt[0]);
featureVec[i].nd[1] = varSum[1]/ScalarType(varCnt[1]);
featureVec[i].nd[2] = varSum[2]/ScalarType(varCnt[2]);
}
}
// Returns the indexes of all the fix features matching a given one (from mov usually)
void getMatchingFixFeatureVec(FeatureType &q, vector<int> &ffiVec, int maxNum)
{
ffiVec.clear();
typename KdTree<ScalarType>::PriorityQueue pq;
this->fixFeatureTree->doQueryK(q.nd,maxNum,pq);
for(int i=0;i<pq.getNofElements();++i)
{
ffiVec.push_back(pq.getIndex(i));
}
}
};
/** Ransac Framework
*
* A ransac framework for mesh-mesh rough alignment.
* Templated on the featureSet
*
* A feature set must expose
* - A method for intializing features on a mesh
* - A method to return up to <k> features matching a given feature
*
* The framework, given two meshes (fix and mov), will search for a triplet of
* matching features that brings mov onto fix.
*
* Validity of a transformation is checked by mean of two poisson disk sampling of the input meshes.
*/
template <class MeshType, class FeatureSetType>
class RansacFramework
{
typedef typename FeatureSetType::FeatureType FeatureType;
typedef typename FeatureSetType::Param FeatureParam;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::BoxType BoxType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef Matrix44<ScalarType> Matrix44Type;
public:
class Param
{
public:
Param()
{
iterMax=100;
samplingRadiusPerc=0.005;
samplingRadiusAbs=0;
evalSize=1000;
inlierRatioThr=0.3;
inlierDistanceThrPerc = 1.5; // the distance between a transformed mov sample and the corresponding on fix should be 1.5 * sampling dist.
congruenceThrPerc = 2.0; // the distance between two matching features must be within 2.0 * sampling distance
minFeatureDistancePerc = 4.0; // the distance between two chosen features must be at least 4.0 * sampling distance
maxMatchingFeatureNum = 100;
areaThrPerc = 20.0; // Triplets that make small triangles are discarded
}
ScalarType inlierRatioThr;
ScalarType inlierDistanceThrPerc;
ScalarType congruenceThrPerc;
ScalarType minFeatureDistancePerc;
ScalarType samplingRadiusPerc;
ScalarType samplingRadiusAbs;
ScalarType areaThrPerc;
int iterMax;
int evalSize;
int maxMatchingFeatureNum;
ScalarType inlierSquareThr() const { return pow(samplingRadiusAbs* inlierDistanceThrPerc,2); }
};
class Candidate
{
public:
int fixInd[3];
int movInd[3];
int inlierNum;
int evalSize;
Matrix44Type Tr;
ScalarType err() const {return float(inlierNum)/float(evalSize);}
bool operator <(const Candidate &cc) const
{
return this->err() > cc.err();
}
};
FeatureSetType FS;
std::vector<Point3f> fixConsensusVec, movConsensusVec;
KdTree<ScalarType> *consensusTree;
// Given three pairs of sufficiently different distances (e.g. the edges of a scalene triangle)
// it finds the permutation that brings the vertexes so that the distances match.
// The meaning of the permutation vector nm0,nm1,nm2 is that the (N)ew index of (M)ov vertx i is the value of nmi
bool FindPermutation(int d01, int d02, int d12, int m01, int m02, int m12, int nm[], Param &pp)
{
ScalarType eps = pp.samplingRadiusAbs*2.0;
if(fabs(d01-m01)<eps) {
if(fabs(d02-m02)<eps) {
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=1;nm[2]=2; return true; }
else return false;
}
if(fabs(d02-m12)<eps) {
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=0;nm[2]=2; return true; }
else return false;
}
}
if(fabs(d01-m02)<eps) {
if(fabs(d02-m01)<eps) {
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=2;nm[2]=1; return true; }
else return false;
}
if(fabs(d02-m12)<eps) {
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=0;nm[2]=1; return true; }
else return false;
}
}
if(fabs(d01-m12)<eps) {
if(fabs(d02-m01)<eps) {
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=2;nm[2]=0; return true; }
else return false;
}
if(fabs(d02-m02)<eps) {
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=1;nm[2]=0; return true; }
else return false;
}
}
return false;
}
// Scan the feature set of
void EvaluateFeature(int testSize, const char *filename, Param &pp)
{
// VertexConstDataWrapper<MeshType> ww(fixM);
// KdTree<ScalarType>(ww) mTree;
MeshType tmpM;
int neededSizeSum=0;
int foundCnt=0;
printf("Testing Feature size %i\n",testSize);
for(int i=0;i<FS.mfNum();++i)
{
int neededSize = testSize;
for(int j=1;j<neededSize;++j)
{
std::vector<int> closeFeatureVec;
FS.getMatchingFixFeatureVec(FS.mf(i), closeFeatureVec, j);
for(int k=0; k<closeFeatureVec.size();++k)
{
if(Distance(FS.mf(i).P(),FS.ff(closeFeatureVec[k]).P() )<pp.samplingRadiusAbs *3.0 )
neededSize = j;
}
}
tri::Allocator<MeshType>::AddVertex(tmpM, FS.mf(i).P());
tmpM.vert.back().Q() = neededSize;
neededSizeSum+=neededSize;
if(neededSize<testSize) foundCnt++;
}
tri::UpdateColor<MeshType>::PerVertexQualityRamp(tmpM);
tri::io::ExporterPLY<MeshType>::Save(tmpM,filename, tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY);
printf("Found %i / %i Average Needed Size %5.2f on %i\n",foundCnt,FS.mfNum(), float(neededSizeSum)/FS.mfNum(),testSize);
}
// The main loop.
// Choose three points on mov that make a scalene triangle
// and search on fix three other points with matchng distances
void Process_SearchEvaluateTriple (vector<Candidate> &cVec, Param &pp)
{
math::MarsenneTwisterRNG rnd;
// ScalarType congruenceEps = pow(pp.samplingRadiusAbs * pp.congruenceThrPerc,2.0f);
ScalarType congruenceEps = pp.samplingRadiusAbs * pp.congruenceThrPerc;
ScalarType minFeatureDistEps = pp.samplingRadiusAbs * pp.minFeatureDistancePerc;
ScalarType minAreaThr = pp.samplingRadiusAbs * pp.samplingRadiusAbs *pp.areaThrPerc;
printf("Starting search congruenceEps = samplingRadiusAbs * 3.0 = %6.2f \n",congruenceEps);
int iterCnt=0;
while ( (iterCnt < pp.iterMax) && (cVec.size()<100) )
{
Candidate c;
// Choose a random pair of features from mov
c.movInd[0] = rnd.generate(FS.mfNum());
c.movInd[1] = rnd.generate(FS.mfNum());
ScalarType d01 = Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[1]).P());
if( d01 > minFeatureDistEps )
{
c.movInd[2] = rnd.generate(FS.mfNum());
ScalarType d02=Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[2]).P());
ScalarType d12=Distance(FS.mf(c.movInd[1]).P(),FS.mf(c.movInd[2]).P());
ScalarType areaTri = DoubleArea(Triangle3<ScalarType>(FS.mf(c.movInd[0]).P(), FS.mf(c.movInd[1]).P(), FS.mf(c.movInd[2]).P() ));
if( ( d02 > minFeatureDistEps ) && // Sample are sufficiently distant
( d12 > minFeatureDistEps ) &&
( areaTri > minAreaThr) &&
( fabs(d01-d02) > congruenceEps ) && // and they make a scalene triangle
( fabs(d01-d12) > congruenceEps ) &&
( fabs(d12-d02) > congruenceEps ) )
{
// Find a congruent triple on mov
printf("Starting search of a [%i] congruent triple for %4i %4i %4i - %6.2f %6.2f %6.2f\n",
iterCnt,c.movInd[0],c.movInd[1],c.movInd[2],d01,d02,d12);
// As a first Step we ask for three vectors of matching features;
std::vector<int> fixFeatureVec0;
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[0]), fixFeatureVec0,pp.maxMatchingFeatureNum);
std::vector<int> fixFeatureVec1;
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[1]), fixFeatureVec1,pp.maxMatchingFeatureNum);
std::vector<int> fixFeatureVec2;
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[2]), fixFeatureVec2,pp.maxMatchingFeatureNum);
int congrNum=0;
int congrGoodNum=0;
for(int i=0;i<fixFeatureVec0.size();++i)
{
if(cVec.size()>100) break;
c.fixInd[0]=fixFeatureVec0[i];
for(int j=0;j<fixFeatureVec1.size();++j)
{
if(cVec.size()>100) break;
c.fixInd[1]=fixFeatureVec1[j];
ScalarType m01 = Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[1]).P());
if( (fabs(m01-d01)<congruenceEps) )
{
// printf("- Found a congruent pair %i %i %6.2f\n", c.movInd[0],c.movInd[1], m01);
++congrNum;
for(int k=0;k<fixFeatureVec2.size();++k)
{
if(cVec.size()>100) break;
c.fixInd[2]=fixFeatureVec2[k];
ScalarType m02=Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[2]).P());
ScalarType m12=Distance(FS.ff(c.fixInd[1]).P(),FS.ff(c.fixInd[2]).P());
if( (fabs(m02-d02)<congruenceEps) && (fabs(m12-d12)<congruenceEps ) )
{
c.Tr = GenerateMatchingMatrix(c,pp);
EvaluateMatrix(c,pp);
if(c.err() > pp.inlierRatioThr ){
printf("- - Found %lu th good congruent triple %i %i %i -- %f / %i \n", cVec.size(), c.movInd[0],c.movInd[1],c.movInd[2],c.err(),pp.evalSize);
// printf(" - %4.3f %4.3f %4.3f - %4.3f %4.3f %4.3f \n",
// FS.ff(c.fixInd[0]).nd[0], FS.ff(c.fixInd[0]).nd[1], FS.ff(c.fixInd[0]).nd[2],
// FS.mf(c.movInd[0]).nd[0], FS.mf(c.movInd[0]).nd[1],FS.mf(c.movInd[0]).nd[2]);
++congrGoodNum;
cVec.push_back(c);
}
}
}
}
}
}
printf("Completed Search of congruent triple (found %i / %i good/congruent)\n",congrGoodNum,congrNum);
}
}
++iterCnt;
} // end While
printf("Found %lu candidates \n",cVec.size());
sort(cVec.begin(),cVec.end());
printf("best candidate %f \n",cVec[0].err());
pp.evalSize = FS.mfNum();
for(int i=0;i<cVec.size();++i)
EvaluateMatrix(cVec[i],pp);
sort(cVec.begin(),cVec.end());
printf("After re-evaluation best is %f",cVec[0].err());
} // end Process
/**
* @brief EvaluateMatrix
* @param c
* @param pp
*
* Evaluate the matrix resulting from a candidate.
* Done using the poisson sampling using only evalSize samples
*
*
*/
void EvaluateMatrix(Candidate &c, Param &pp)
{
c.inlierNum=0;
c.evalSize=pp.evalSize;
ScalarType sqThr = pp.inlierSquareThr();
int mid = pp.evalSize/2;
uint ind;
ScalarType squareDist;
std::vector<Point3f>::iterator pi=movConsensusVec.begin();
for(int j=0;j<2;++j)
{
for(int i=0;i<mid;++i)
{
Point3f qp = c.Tr*(*pi);
consensusTree->doQueryClosest(qp,ind,squareDist);
if(squareDist < sqThr)
++c.inlierNum;
++pi;
}
// Early bailout if after 1/2 of the test we have a very low consensus reject
if((j==0) && (c.inlierNum < mid/10))
{
c.inlierNum *=2;
return;
}
}
}
void DumpInlier(MeshType &m, Candidate &c, Param &pp)
{
ScalarType sqThr = pp.inlierSquareThr();
for(int i=0;i<pp.evalSize;++i)
{
Point3f qp = c.Tr*movConsensusVec[i];
uint ind;
ScalarType squareDist;
consensusTree->doQueryClosest(qp,ind,squareDist);
if(squareDist < sqThr)
tri::Allocator<MeshType>::AddVertex(m,qp);
}
}
// Find the transformation that matches the mov onto the fix
// eg M * piMov = piFix
Matrix44f GenerateMatchingMatrix(Candidate &c, Param pp)
{
std::vector<Point3f> pFix(3);
pFix[0]= FS.ff(c.fixInd[0]).P();
pFix[1]= FS.ff(c.fixInd[1]).P();
pFix[2]= FS.ff(c.fixInd[2]).P();
std::vector<Point3f> pMov(3);
pMov[0]= FS.mf(c.movInd[0]).P();
pMov[1]= FS.mf(c.movInd[1]).P();
pMov[2]= FS.mf(c.movInd[2]).P();
Point3f upFix = vcg::Normal(pFix[0],pFix[1],pFix[2]);
Point3f upMov = vcg::Normal(pMov[0],pMov[1],pMov[2]);
upFix.Normalize();
upMov.Normalize();
upFix *= Distance(pFix[0],pFix[1]);
upMov *= Distance(pMov[0],pMov[1]);
for(int i=0;i<3;++i) pFix.push_back(pFix[i]+upFix);
for(int i=0;i<3;++i) pMov.push_back(pMov[i]+upMov);
Matrix44f res;
ComputeRigidMatchMatrix(pFix,pMov,res);
return res;
}
void Init(MeshType &fixM, MeshType &movM, Param &pp, FeatureParam &fpp)
{
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(fixM);
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(movM);
// First a bit of Sampling
typedef tri::TrivialPointerSampler<MeshType> BaseSampler;
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pdp;
pdp.randomSeed = 0;
pdp.bestSampleChoiceFlag = true;
pdp.bestSamplePoolSize = 20;
int t0=clock();
pp.samplingRadiusAbs = pp.samplingRadiusPerc *fixM.bbox.Diag();
BaseSampler pdSampler;
std::vector<VertexType *> fixSampleVec;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, fixM, pp.samplingRadiusAbs,pdp);
std::swap(pdSampler.sampleVec,fixSampleVec);
std::vector<VertexType *> movSampleVec;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, movM, pp.samplingRadiusAbs,pdp);
std::swap(pdSampler.sampleVec,movSampleVec);
int t1=clock();
printf("Poisson Sampling of surfaces %5.2f ( %iv and %iv) \n",float(t1-t0)/CLOCKS_PER_SEC,fixSampleVec.size(),movSampleVec.size());
printf("Sampling Radius %f \n",pp.samplingRadiusAbs);
for(int i=0;i<fixSampleVec.size();++i)
this->fixConsensusVec.push_back(fixSampleVec[i]->P());
for(int i=0;i<movSampleVec.size();++i)
this->movConsensusVec.push_back(movSampleVec[i]->P());
FS.Init(fixM, movM, fixSampleVec, movSampleVec, fpp);
std::random_shuffle(movConsensusVec.begin(),movConsensusVec.end());
VectorConstDataWrapper<std::vector<CoordType> > ww(fixConsensusVec);
consensusTree = new KdTree<ScalarType>(ww);
}
};
} //end namespace vcg
#endif // RANSAC_MATCHING_H
|