1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/*! \file refine_loop.h
*
* \brief This file contain code for Loop's subdivision scheme for triangular
* mesh and some similar method.
*
*/
#ifndef __VCGLIB_REFINE_LOOP
#define __VCGLIB_REFINE_LOOP
#include <cmath>
#include <vcg/space/point3.h>
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/refine.h>
#include <vcg/complex/algorithms/update/color.h>
namespace vcg{
namespace tri{
/*
Metodo di Loop dalla documentazione "Siggraph 2000 course on subdivision"
d4------d3 d4------d3
/ \ / \ / \ / \ u
/ \ / \ / e4--e3 \ / \
/ \/ \ / / \/ \ \ / \
d5------d1------d2 -> d5--e5--d1--e2--d2 l--M--r
\ /\ / \ \ /\ / / \ /
\ / \ / \ e6--e7 / \ /
\ / \ / \ / \ / d
d6------d7 d6------d7
*******************************************************
*/
/*!
* \brief Weight class for classical Loop's scheme.
*
* See Zorin, D. & Schröeder, P.: Subdivision for modeling and animation. Proc. ACM SIGGRAPH [Courses], 2000
*/
template<class SCALAR_TYPE>
struct LoopWeight {
inline SCALAR_TYPE beta(int k) {
return (k>3)?(5.0/8.0 - std::pow((3.0/8.0 + std::cos(2.0*M_PI/SCALAR_TYPE(k))/4.0),2))/SCALAR_TYPE(k):3.0/16.0;
}
inline SCALAR_TYPE incidentRegular(int) {
return 3.0/8.0;
}
inline SCALAR_TYPE incidentIrregular(int) {
return 3.0/8.0;
}
inline SCALAR_TYPE opposite(int) {
return 1.0/8.0;
}
};
/*!
* \brief Modified Loop's weight to optimise continuity.
*
* See Barthe, L. & Kobbelt, L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design, 2004, 21, 561-583
*/
template<class SCALAR_TYPE>
struct RegularLoopWeight {
inline SCALAR_TYPE beta(int k) {
static SCALAR_TYPE bkPolar[] = {
.32517,
.49954,
.59549,
.625,
.63873,
.64643,
.65127,
.67358,
.68678,
.69908
};
return (k<=12 && k>=3)?(1.0-bkPolar[k-3])/k:LoopWeight<SCALAR_TYPE>().beta(k);
}
inline SCALAR_TYPE incidentRegular(int k) {
return 1.0 - incidentIrregular(k) - opposite(k)*2;
}
inline SCALAR_TYPE incidentIrregular(int k) {
static SCALAR_TYPE bkPolar[] = {
.15658,
.25029,
.34547,
.375,
.38877,
.39644,
.40132,
.42198,
.43423,
.44579
};
return (k<=12 && k>=3)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().incidentIrregular(k);
}
inline SCALAR_TYPE opposite(int k) {
static SCALAR_TYPE bkPolar[] = {
.14427,
.12524,
.11182,
.125,
.14771,
.1768,
.21092,
.20354,
.20505,
.19828
};
return (k<=12 && k >= 3)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().opposite(k);
}
};
template<class SCALAR_TYPE>
struct ContinuityLoopWeight {
inline SCALAR_TYPE beta(int k) {
static SCALAR_TYPE bkPolar[] = {
.32517,
.50033,
.59464,
.625,
.63903,
.67821,
.6866,
.69248,
.69678,
.70014
};
return (k<=12 && k>= 3)?(1.0-bkPolar[k-3])/k:LoopWeight<SCALAR_TYPE>().beta(k);
}
inline SCALAR_TYPE incidentRegular(int k) {
return 1.0 - incidentIrregular(k) - opposite(k)*2;
}
inline SCALAR_TYPE incidentIrregular(int k) {
static SCALAR_TYPE bkPolar[] = {
.15658,
.26721,
.33539,
.375,
.36909,
.25579,
.2521,
.24926,
.24706,
.2452
};
return (k<=12 && k>=3)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().incidentIrregular(k);
}
inline SCALAR_TYPE opposite(int k) {
static SCALAR_TYPE bkPolar[] = {
.14427,
.12495,
.11252,
.125,
.14673,
.16074,
.18939,
.2222,
.25894,
.29934
};
return (k<=12 && k >= 3)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().opposite(k);
}
};
// Centroid and LS3Projection classes may be pettre placed in an other file. (which one ?)
/*!
* \brief Allow to compute classical Loop subdivision surface with the same code than LS3.
*/
template<class MESH_TYPE, class LSCALAR_TYPE = typename MESH_TYPE::ScalarType>
struct Centroid {
typedef typename MESH_TYPE::ScalarType Scalar;
typedef typename MESH_TYPE::CoordType CoordType;
typedef LSCALAR_TYPE LScalar;
typedef vcg::Point3<LScalar> LVector;
LVector sumP;
LScalar sumW;
Centroid() { reset(); }
inline void reset() {
sumP.SetZero();
sumW = 0.;
}
inline void addVertex(const typename MESH_TYPE::VertexType &v, LScalar w) {
LVector p(v.cP().X(), v.cP().Y(), v.cP().Z());
sumP += p * w;
sumW += w;
}
inline void project(std::pair<CoordType,CoordType> &nv) const {
LVector position = sumP / sumW;
nv.first = CoordType(position.X(), position.Y(), position.Z());
}
};
/*! Implementation of the APSS projection for the LS3 scheme.
*
* See Gael Guennebaud and Marcel Germann and Markus Gross
* Dynamic sampling and rendering of algebraic point set surfaces.
* Computer Graphics Forum (Proceedings of Eurographics 2008), 2008, 27, 653-662
* and Simon Boye and Gael Guennebaud and Christophe Schlick
* Least squares subdivision surfaces
* Computer Graphics Forum, 2010
*/
template<class MESH_TYPE, class LSCALAR_TYPE = typename MESH_TYPE::ScalarType>
struct LS3Projection {
typedef typename MESH_TYPE::ScalarType Scalar;
typedef typename MESH_TYPE::CoordType CoordType;
typedef LSCALAR_TYPE LScalar;
typedef vcg::Point3<LScalar> LVector;
Scalar beta;
LVector sumP;
LVector sumN;
LScalar sumDotPN;
LScalar sumDotPP;
LScalar sumW;
inline LS3Projection(Scalar beta = 1.0) : beta(beta) { reset(); }
inline void reset() {
sumP.SetZero();
sumN.SetZero();
sumDotPN = 0.;
sumDotPP = 0.;
sumW = 0.;
}
inline void addVertex(const typename MESH_TYPE::VertexType &v, LScalar w) {
LVector p(v.cP().X(), v.cP().Y(), v.cP().Z());
LVector n(v.cN().X(), v.cN().Y(), v.cN().Z());
sumP += p * w;
sumN += n * w;
sumDotPN += w * n.dot(p);
sumDotPP += w * vcg::SquaredNorm(p);
sumW += w;
}
void project(std::pair<CoordType,CoordType> &nv) const {
LScalar invSumW = Scalar(1)/sumW;
LScalar aux4 = beta * LScalar(0.5) *
(sumDotPN - invSumW*sumP.dot(sumN))
/(sumDotPP - invSumW*vcg::SquaredNorm(sumP));
LVector uLinear = (sumN-sumP*(Scalar(2)*aux4))*invSumW;
LScalar uConstant = -invSumW*(uLinear.dot(sumP) + sumDotPP*aux4);
LScalar uQuad = aux4;
LVector orig = sumP*invSumW;
// finalize
LVector position;
LVector normal;
if (fabs(uQuad)>1e-7)
{
LScalar b = 1./uQuad;
LVector center = uLinear*(-0.5*b);
LScalar radius = sqrt( vcg::SquaredNorm(center) - b*uConstant );
normal = orig - center;
normal.Normalize();
position = center + normal * radius;
normal = uLinear + position * (LScalar(2) * uQuad);
normal.Normalize();
}
else if (uQuad==0.)
{
LScalar s = LScalar(1)/vcg::Norm(uLinear);
assert(!vcg::math::IsNAN(s) && "normal should not have zero len!");
uLinear *= s;
uConstant *= s;
normal = uLinear;
position = orig - uLinear * (orig.dot(uLinear) + uConstant);
}
else
{
// normalize the gradient
LScalar f = 1./sqrt(vcg::SquaredNorm(uLinear) - Scalar(4)*uConstant*uQuad);
uConstant *= f;
uLinear *= f;
uQuad *= f;
// Newton iterations
LVector grad;
LVector dir = uLinear+orig*(2.*uQuad);
LScalar ilg = 1./vcg::Norm(dir);
dir *= ilg;
LScalar ad = uConstant + uLinear.dot(orig) + uQuad * vcg::SquaredNorm(orig);
LScalar delta = -ad*std::min<Scalar>(ilg,1.);
LVector p = orig + dir*delta;
for (int i=0 ; i<2 ; ++i)
{
grad = uLinear+p*(2.*uQuad);
ilg = 1./vcg::Norm(grad);
delta = -(uConstant + uLinear.dot(p) + uQuad * vcg::SquaredNorm(p))*std::min<Scalar>(ilg,1.);
p += dir*delta;
}
position = p;
normal = uLinear + position * (Scalar(2) * uQuad);
normal.Normalize();
}
nv.first = CoordType(position.X(), position.Y(), position.Z());
nv.second = CoordType(normal.X(), normal.Y(), normal.Z());
}
};
template<class MESH_TYPE, class METHOD_TYPE=Centroid<MESH_TYPE>, class WEIGHT_TYPE=LoopWeight<typename MESH_TYPE::ScalarType> >
struct OddPointLoopGeneric : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::VertexType>
{
typedef METHOD_TYPE Projection;
typedef WEIGHT_TYPE Weight;
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
typedef typename MESH_TYPE::CoordType CoordType;
MESH_TYPE &m;
Projection proj;
Weight weight;
ValenceAttr *valence;
inline OddPointLoopGeneric(MESH_TYPE &_m, Projection proj = Projection(), Weight weight = Weight()) :
m(_m), proj(proj), weight(weight), valence(0) {}
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
proj.reset();
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
typename MESH_TYPE::VertexType *l,*r,*u,*d;
l = he.v;
he.FlipV();
r = he.v;
if( tri::HasPerVertexColor(m))
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
if (he.IsBorder()) {
proj.addVertex(*l, 0.5);
proj.addVertex(*r, 0.5);
std::pair<CoordType,CoordType>pp;
proj.project(pp);
nv.P()=pp.first;
nv.N()=pp.second;
}
else {
he.FlipE(); he.FlipV();
u = he.v;
he.FlipV(); he.FlipE();
assert(he.v == r); // back to r
he.FlipF(); he.FlipE(); he.FlipV();
d = he.v;
if(valence && ((*valence)[l]==6 || (*valence)[r]==6)) {
int extra = ((*valence)[l]==6)?(*valence)[r]:(*valence)[l];
proj.addVertex(*l, ((*valence)[l]==6)?weight.incidentRegular(extra):weight.incidentIrregular(extra));
proj.addVertex(*r, ((*valence)[r]==6)?weight.incidentRegular(extra):weight.incidentIrregular(extra));
proj.addVertex(*u, weight.opposite(extra));
proj.addVertex(*d, weight.opposite(extra));
}
// unhandled case that append only at first subdivision step: use Loop's weights
else {
proj.addVertex(*l, 3.0/8.0);
proj.addVertex(*r, 3.0/8.0);
proj.addVertex(*u, 1.0/8.0);
proj.addVertex(*d, 1.0/8.0);
}
std::pair<CoordType,CoordType>pp;
proj.project(pp);
nv.P()=pp.first;
nv.N()=pp.second;
// proj.project(nv);
}
}
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
inline void setValenceAttr(ValenceAttr *valence) {
this->valence = valence;
}
};
template<class MESH_TYPE, class METHOD_TYPE=Centroid<MESH_TYPE>, class WEIGHT_TYPE=LoopWeight<typename MESH_TYPE::ScalarType> >
struct EvenPointLoopGeneric : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::VertexType>
{
typedef METHOD_TYPE Projection;
typedef WEIGHT_TYPE Weight;
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
typedef typename MESH_TYPE::CoordType CoordType;
Projection proj;
Weight weight;
ValenceAttr *valence;
inline EvenPointLoopGeneric(Projection proj = Projection(), Weight weight = Weight()) :
proj(proj), weight(weight), valence(0) {}
void operator()(std::pair<CoordType,CoordType> &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
proj.reset();
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
typename MESH_TYPE::VertexType *r, *l, *curr;
curr = he.v;
face::Pos<typename MESH_TYPE::FaceType> heStart = he;
// compute valence of this vertex or find a border
int k = 0;
do {
he.NextE();
k++;
} while(!he.IsBorder() && he != heStart);
if (he.IsBorder()) { // Border rule
// consider valence of borders as if they are half+1 of an inner vertex. not perfect, but better than nothing.
if(valence) {
k = 0;
do {
he.NextE();
k++;
} while(!he.IsBorder());
(*valence)[he.V()] = std::max(2*(k-1), 3);
// (*valence)[he.V()] = 6;
}
he.FlipV();
r = he.v;
he.FlipV();
he.NextB();
l = he.v;
proj.addVertex(*curr, 3.0/4.0);
proj.addVertex(*l, 1.0/8.0);
proj.addVertex(*r, 1.0/8.0);
// std::pair<Point3f,Point3f>pp;
proj.project(nv);
// nv.P()=pp.first;
// nv.N()=pp.second;
// proj.project(nv);
}
else { // Inner rule
// assert(!he.v->IsB()); border flag no longer updated (useless)
if(valence)
(*valence)[he.V()] = k;
typename MESH_TYPE::ScalarType beta = weight.beta(k);
proj.addVertex(*curr, 1.0 - (typename MESH_TYPE::ScalarType)(k) * beta);
do {
proj.addVertex(*he.VFlip(), beta);
he.NextE();
} while(he != heStart);
proj.project(nv);
}
} // end of operator()
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
{
Color4<typename MESH_TYPE::ScalarType> cc;
return cc.lerp(c0,c1,0.5f);
}
Color4b WedgeInterp(Color4b &c0, Color4b &c1)
{
Color4b cc;
cc.lerp(c0,c1,0.5f);
return cc;
}
template<class FL_TYPE>
TexCoord2<FL_TYPE,1> WedgeInterp(TexCoord2<FL_TYPE,1> &t0, TexCoord2<FL_TYPE,1> &t1)
{
TexCoord2<FL_TYPE,1> tmp;
// assert(t0.n()== t1.n());
tmp.n()=t0.n();
tmp.t()=(t0.t()+t1.t())/2.0;
return tmp;
}
inline void setValenceAttr(ValenceAttr *valence) {
this->valence = valence;
}
};
template<class MESH_TYPE>
struct OddPointLoop : OddPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >
{
OddPointLoop(MESH_TYPE &_m):OddPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >(_m){}
};
template<class MESH_TYPE>
struct EvenPointLoop : EvenPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >
{
};
template<class MESH_TYPE,class ODD_VERT, class EVEN_VERT>
bool RefineOddEven(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even,float length,
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
{
EdgeLen <MESH_TYPE, typename MESH_TYPE::ScalarType> ep(length);
return RefineOddEvenE(m, odd, even, ep, RefineSelected, cbOdd, cbEven);
}
/*!
* \brief Perform diadic subdivision using given rules for odd and even vertices.
*/
template<class MESH_TYPE, class ODD_VERT, class EVEN_VERT, class PREDICATE>
bool RefineOddEvenE(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even, PREDICATE edgePred,
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
{
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
// momentaneamente le callback sono identiche, almeno cbOdd deve essere passata
cbEven = cbOdd;
// to mark visited vertices
int evenFlag = MESH_TYPE::VertexType::NewBitFlag();
for (int i = 0; i < m.vn ; i++ ) {
m.vert[i].ClearUserBit(evenFlag);
}
int j = 0;
// di texture per wedge (uno per ogni edge)
ValenceAttr valence = vcg::tri::Allocator<MESH_TYPE>:: template AddPerVertexAttribute<int>(m);
odd.setValenceAttr(&valence);
even.setValenceAttr(&valence);
// store updated vertices
std::vector<bool> updatedList(m.vn, false);
//std::vector<typename MESH_TYPE::VertexType> newEven(m.vn);
std::vector<std::pair<typename MESH_TYPE::CoordType, typename MESH_TYPE::CoordType> > newEven(m.vn);
typename MESH_TYPE::VertexIterator vi;
typename MESH_TYPE::FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD() && (!RefineSelected || (*fi).IsS())){ //itero facce
for (int i = 0; i < 3; i++) { //itero vert
if ( !(*fi).V(i)->IsUserBit(evenFlag) && ! (*fi).V(i)->IsD() ) {
(*fi).V(i)->SetUserBit(evenFlag);
// use face selection, not vertex selection, to be coherent with RefineE
//if (RefineSelected && !(*fi).V(i)->IsS() )
// break;
face::Pos<typename MESH_TYPE::FaceType>aux (&(*fi),i);
if( tri::HasPerVertexColor(m) ) {
(*fi).V(i)->C().lerp((*fi).V0(i)->C() , (*fi).V1(i)->C(),0.5f);
}
if (cbEven) {
(*cbEven)(int(100.0f * (float)j / (float)m.fn),"Refining");
j++;
}
int index = tri::Index(m, (*fi).V(i));
updatedList[index] = true;
even(newEven[index], aux);
}
}
}
MESH_TYPE::VertexType::DeleteBitFlag(evenFlag);
// Now apply the stored normal and position to the initial vertex set (note that newEven is << m.vert)
RefineE< MESH_TYPE, ODD_VERT > (m, odd, edgePred, RefineSelected, cbOdd);
for(size_t i=0;i<newEven.size();++i) {
if(updatedList[i]) {
m.vert[i].P()=newEven[i].first;
m.vert[i].N()=newEven[i].second;
}
}
odd.setValenceAttr(0);
even.setValenceAttr(0);
vcg::tri::Allocator<MESH_TYPE>::DeletePerVertexAttribute(m, valence);
return true;
}
} // namespace tri
} // namespace vcg
#endif
|