1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_FLAGS
#define __VCG_TRI_UPDATE_FLAGS
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \headerfile flag.h vcg/complex/algorithms/update/flag.h
/// \brief Management, updating and computation of per-vertex and per-face flags (like border flags).
/**
This class is used to compute or update some of the flags that can be stored in the mesh components. For now just Border flags (e.g. the flag that tells if a given edge of a face belong to a border of the mesh or not).
*/
template <class UpdateMeshType>
class UpdateFlags
{
public:
typedef UpdateMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
/// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags)
static void Clear(MeshType &m)
{
if(HasPerVertexFlags(m) )
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
(*vi).Flags() = 0;
if(HasPerEdgeFlags(m) )
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
(*ei).Flags() = 0;
if(HasPerFaceFlags(m) )
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
(*fi).Flags() = 0;
if(HasPerTetraFlags(m) )
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
(*ti).Flags() = 0;
}
static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerVertexFlags(m);
int andMask = ~FlagMask;
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() &= andMask ;
}
static void EdgeClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerEdgeFlags(m);
int andMask = ~FlagMask;
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() &= andMask ;
}
static void FaceClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerFaceFlags(m);
int andMask = ~FlagMask;
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() &= andMask ;
}
static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerTetraFlags(m);
int andMask = ~FlagMask;
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() &= andMask ;
}
static void VertexSet(MeshType &m, unsigned int FlagMask)
{
RequirePerVertexFlags(m);
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() |= FlagMask ;
}
static void EdgeSet(MeshType &m, unsigned int FlagMask)
{
RequirePerEdgeFlags(m);
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() |= FlagMask ;
}
static void FaceSet(MeshType &m, unsigned int FlagMask)
{
RequirePerFaceFlags(m);
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ;
}
static void TetraSet(MeshType &m, unsigned int FlagMask)
{
RequirePerTetraFlags(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ;
}
static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);}
static void VertexClearS(MeshType &m) { VertexClear(m,VertexType::SELECTED);}
static void VertexClearB(MeshType &m) { VertexClear(m,VertexType::BORDER);}
static void EdgeClearV(MeshType &m) { EdgeClear(m,EdgeType::VISITED);}
static void FaceClearV(MeshType &m) { FaceClear(m,FaceType::VISITED);}
static void FaceClearB(MeshType &m) { FaceClear(m,FaceType::BORDER012);}
static void FaceClearS(MeshType &m) {FaceClear(m,FaceType::SELECTED);}
static void FaceClearF(MeshType &m) { FaceClear(m,FaceType::FAUX012);}
static void FaceClearFaceEdgeS(MeshType &m) { FaceClear(m,FaceType::FACEEDGESEL012 ); }
static void EdgeSetV(MeshType &m) { EdgeSet(m,EdgeType::VISITED);}
static void VertexSetV(MeshType &m) { VertexSet(m,VertexType::VISITED);}
static void VertexSetS(MeshType &m) { VertexSet(m,VertexType::SELECTED);}
static void VertexSetB(MeshType &m) { VertexSet(m,VertexType::BORDER);}
static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);}
static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);}
static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);}
static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); }
static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); }
static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); }
static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); }
static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); }
static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); }
/// \brief Compute the border flags for the faces using the Face-Face Topology.
/**
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
*/
static void FaceBorderFromFF(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<fi->VN();++j)
{
if(face::IsBorder(*fi,j)) (*fi).SetB(j);
else (*fi).ClearB(j);
}
}
/// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology.
/**
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
*/
static void TetraBorderFromTT(MeshType &m)
{
RequirePerTetraFlags(m);
RequireTTAdjacency(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (IsTTBorder(*ti,j)) (*ti).SetB(j);
else (*ti).ClearB(j);
}
}
static void VertexBorderFromTT(MeshType &m)
{
RequirePerVertexFlags(m);
RequireTTAdjacency(m);
VertexClearB(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (IsTTBorder(*ti,j))
{
for (int i = 0; i < 3; ++i)
ti->V(Tetra::VofF(j, i))->SetB();
}
}
}
static void FaceBorderFromVF(MeshType &m)
{
RequirePerFaceFlags(m);
RequireVFAdjacency(m);
FaceClearB(m);
int visitedBit=VertexType::NewBitFlag();
// Calcolo dei bordi
// per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola
// (o meglio da un numero dispari di facce)
const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2};
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V1(vfi.z)->SetUserBit(visitedBit);
if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V2(vfi.z)->SetUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[vfi.z];
if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3];
}
}
VertexType::DeleteBitFlag(visitedBit);
}
class EdgeSorter
{
public:
VertexPointer v[2]; // Puntatore ai due vertici (Ordinati)
FacePointer f; // Puntatore alla faccia generatrice
int z; // Indice dell'edge nella faccia
EdgeSorter() {} // Nothing to do
void Set( const FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
v[0] = pf->V(nz);
v[1] = pf->V((nz+1)%3);
assert(v[0] != v[1]);
if( v[0] > v[1] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const EdgeSorter & pe ) const {
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const EdgeSorter & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
inline bool operator != ( const EdgeSorter & pe ) const
{
return v[0]!=pe.v[0] || v[1]!=pe.v[1];
}
};
// versione minimale che non calcola i complex flag.
static void VertexBorderFromNone(MeshType &m)
{
RequirePerVertexFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
if( m.fn == 0 )
return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps;
for(ps = e.begin(), pe = e.begin(); pe < e.end(); ++pe) // Scansione vettore ausiliario
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->v[0]->SetB();
ps->v[1]->SetB();
}/* else
if(pe-ps!=2) { // not twomanyfold!
for(;ps!=pe;++ps) {
ps->v[0]->SetB(); // Si settano border anche i complex.
ps->v[1]->SetB();
}
}*/
ps = pe;
}
}
}
/// Computes per-face border flags without requiring any kind of topology
/// It has a O(fn log fn) complexity.
static void FaceBorderFromNone(MeshType &m)
{
RequirePerFaceFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
for(VertexIterator v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearB();
if( m.fn == 0 )
return;
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps;
ps = e.begin();pe=e.begin();
do
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->f->SetB(ps->z);
} /*else
if(pe-ps!=2) { // Caso complex!!
for(;ps!=pe;++ps)
ps->f->SetB(ps->z); // Si settano border anche i complex.
}*/
ps = pe;
}
if(pe==e.end()) break;
++pe;
} while(true);
// TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne);
}
/// Compute the PerVertex Border flag deriving it from the face-face adjacency
static void VertexBorderFromFaceAdj(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
RequireFFAdjacency(m);
// MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( face::IsBorder(*fi,z))
{
(*fi).V0(z)->SetB();
(*fi).V1(z)->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the border flag of faces
static void VertexBorderFromFaceBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( (*fi).IsB(z) )
{
(*fi).V(z)->SetB();
(*fi).V((*fi).Next(z))->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the Edge-Edge adjacency (made for edgemeshes)
static void VertexBorderFromEdgeAdj(MeshType &m)
{
RequirePerVertexFlags(m);
RequireEEAdjacency(m);
VertexClearB(m);
for (EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if (!ei->IsD())
{
for (int z=0; z<2; ++z)
if (edge::IsEdgeBorder(*ei, z))
{
ei->V(z)->SetB();
}
}
}
/// \brief Marks feature edges according to two signed dihedral angles.
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the signed dihedral angle between the normal of two incident faces ,
/// is outside the two given thresholds.
/// In this way all the edges that are almost planar are marked as non selected (e.g. edges to be ignored)
/// Note that it uses the signed dihedral angle convention (negative for concave edges and positive for convex ones);
///
/// Optionally it can also mark as feature edges also the boundary edges.
///
static void FaceEdgeSelSignedCrease(MeshType &m, float AngleRadNeg, float AngleRadPos, bool MarkBorderFlag = false )
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is faux (e.g all crease)
FaceClearFaceEdgeS(m);
// Then mark faux only if the signed angle is the range.
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
{
if(!face::IsBorder(*fi,z) )
{
ScalarType angle = DihedralAngleRad(*fi,z);
if(angle<AngleRadNeg || angle>AngleRadPos)
(*fi).SetFaceEdgeS(z);
}
else
{
if(MarkBorderFlag) (*fi).SetFaceEdgeS(z);
}
}
}
}
/// \brief Selects feature edges according to Face adjacency.
///
static void FaceEdgeSelBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is selected
FaceClearFaceEdgeS(m);
for (FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
{
for (int z=0; z<(*fi).VN(); ++z)
{
if (face::IsBorder(*fi,z))
fi->SetFaceEdgeS(z);
}
}
}
/// \brief Marks feature edges according to a given angle
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the dihedral angle between the normal of two incident faces is larger than ,
/// the given thresholds.
/// In this way all the near planar edges are marked remains not selected (e.g. edges to be ignored)
static void FaceEdgeSelCrease(MeshType &m,float AngleRad)
{
FaceEdgeSelSignedCrease(m,-AngleRad,AngleRad);
}
}; // end class
} // End namespace tri
} // End namespace vcg
#endif
|