1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_HALFEDGE_
#define __VCGLIB_HALFEDGE_
#include <vcg/complex/algorithms/clean.h>
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/algorithms/update/halfedge_topology.h>
namespace vcg
{
namespace tri{
/// \ingroup trimesh
/// \brief This class is used to build edge based data structure from indexed data structure and viceversa
/**
*/
template <class MeshType >
class UpdateHalfEdges{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::HEdgePointer HEdgePointer;
typedef typename MeshType::HEdgeType HEdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::HEdgeIterator HEdgeIterator;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceType FaceType;
struct VertexPairEdgePtr{
VertexPairEdgePtr(VertexPointer _v0,VertexPointer _v1,HEdgePointer _ep):v0(_v0),v1(_v1),ep(_ep){if(v0>v1) std::swap(v0,v1);}
bool operator <(const VertexPairEdgePtr &o) const {return (v0 == o.v0)? (v1<o.v1):(v0<o.v0);}
bool operator ==(const VertexPairEdgePtr &o) const {return (v0 == o.v0)&& (v1==o.v1);}
VertexPointer v0,v1;
HEdgePointer ep;
};
struct FacePtrInt{
FacePtrInt ( FaceType * _f,int _i):f(_f),i(_i){}
FaceType * f;
int i;
};
typedef std::vector<bool> BitVector;
/**
build a half-edge data structure from an indexed data structure. Note that the half-edges are allocated here for the first time.
If you have a mesh where there are already edges, they will be removed and the data lost, so do not use this function
to just "update" the topology of half edges.
**/
static void FromIndexed(MeshType & m){
assert(HasFVAdjacency(m));
assert(HasHOppAdjacency(m));
assert(HasHNextAdjacency(m));
typename MeshType::template PerFaceAttributeHandle<BitVector> flagVisited =
vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<BitVector>(m,"");
std::vector<FacePtrInt > borderEdges;
// allocate all new half edges
FaceIterator fi;
unsigned int n_edges = 0;
// count how many half edge to allocate
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD())
{n_edges+=(*fi).VN();
for(int i = 0; i < (*fi).VN(); ++i)
if(vcg::face::IsBorder<FaceType>((*fi),(i)))
++n_edges;
}
m.hedge.clear();
m.hn = 0;
// allocate the half edges
typename MeshType::HEdgeIterator ei = vcg::tri::Allocator<MeshType>::AddHEdges(m,n_edges);
std::vector<VertexPairEdgePtr> all;
int firstEdge = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)if(!(*fi).IsD()){
assert((*fi).VN()>2);
if(flagVisited[*fi].empty()) {flagVisited[*fi].resize((*fi).VN());}
for(int i = 0; i < (*fi).VN(); ++i,++ei)
{
(*ei).HVp() = (*fi).V(i);
(*ei).HNp() = &m.hedge[firstEdge + (i +1) % (*fi).VN()];
if(MeshType::HEdgeType::HasHFAdjacency())
(*ei).HFp() = &(*fi);
if( MeshType::FaceType::HasFHAdjacency())
(*fi).FHp() = &(*ei);
if(MeshType::HEdgeType::HasHPrevAdjacency())
(*ei).HPp() = &m.hedge[firstEdge + (i +(*fi).VN()-1) % (*fi).VN()];
if(HasVHAdjacency(m))
(*ei).HVp()->VHp() = &(*ei);
all.push_back(VertexPairEdgePtr((*fi).V(i), (*fi).V((*fi).Next(i)),&(*ei)));// it will be used to link the hedges
if( vcg::face::IsBorder<FaceType>((*fi),(i)))
borderEdges.push_back(FacePtrInt(&(*fi),i));
}
firstEdge += (*fi).VN();
}
// add all the border hedges
int borderLength;
typename std::vector<FacePtrInt >::iterator ebi;
for( ebi = borderEdges.begin(); ebi != borderEdges.end(); ++ebi)
if( !flagVisited[(*ebi).f][(*ebi).i])// not already inserted
{
borderLength = 0;
vcg::face::Pos<FaceType> bp((*ebi).f,(*ebi).i);
//FaceType * start = (*ebi).f;
VertexType * start = ((*ebi).f)->V((*ebi).i);
do{
all.push_back( VertexPairEdgePtr ( bp.f->V( bp.f->Next(bp.z) ),bp.f->V( bp.z ),&(*ei)));
(*ei).HVp() = bp.f->V(bp.f->Next(bp.z)) ;
flagVisited[bp.f][bp.z] = true;
++ei;
bp.NextB();
++borderLength;
}while (bp.v != start);
//}while (bp.f != start);
// run over the border edges to link the adjacencies
for(int be = 0; be < borderLength; ++be)
{
if(MeshType::HEdgeType::HasHFAdjacency())
m.hedge[firstEdge + be].HFp() = NULL;
if(MeshType::HEdgeType::HasHPrevAdjacency())
m.hedge[firstEdge + be].HPp() = &m.hedge[firstEdge + (be +borderLength-1) % borderLength];
m.hedge[firstEdge + be].HNp() = &m.hedge[firstEdge + (be +1) % borderLength];
}
firstEdge+=borderLength;
}
vcg::tri::Allocator<MeshType>:: template DeletePerFaceAttribute<BitVector>(m,flagVisited );
std::sort(all.begin(),all.end());
assert(all.size() == n_edges);
for(unsigned int i = 0 ; i < all.size(); )
if(all[i] == all[i+1])
{
all[i].ep->HOp() = all[i+1].ep;
all[i+1].ep->HOp() = all[i].ep;
i+=2;
}
else
{
all[i].ep->HOp() = all[i].ep;
i+=1;
}
if(HasEHAdjacency(m) && HasHEAdjacency(m))
{
assert(m.edge.size() == 0 || m.edge.size() == n_edges/2);
if ( m.edge.size() == 0 )
{
m.en = 0;
// allocate the edges
typename MeshType::EdgeIterator edge_i = vcg::tri::Allocator<MeshType>::AddEdges(m,n_edges/2);
for(ei = m.hedge.begin(); ei != m.hedge.end(); ++ei)
{
if((*ei).HEp() == NULL)
{
(*ei).HEp() = &(*edge_i);
(*ei).HOp()->HEp() = &(*edge_i);
(*edge_i).EHp() = &(*ei);
++edge_i;
}
}
}
else
{
if(HasEVAdjacency(m) && HasHEAdjacency(m) && HasEHAdjacency(m))
{
//update edge relations
for(typename MeshType::EdgeIterator ei1 = m.edge.begin(); ei1 != m.edge.end(); ++ei1 )
{
vector<HEdgePointer> hedges = HalfEdgeTopology<MeshType>::get_incident_hedges((*ei1).V(0));
for(typename vector<HEdgePointer>::iterator hi = hedges.begin(); hi != hedges.end(); ++hi)
{
if((*hi)->HOp()->HVp() == (*ei1).V(1))
{
assert((*hi)->HEp() == NULL);
assert((*hi)->HOp()->HEp() == NULL);
// EH
(*ei1).EHp() = *hi;
// HE
(*hi)->HEp() = &(*ei1);
(*hi)->HOp()->HEp() = &(*ei1);
break;
}
}
}
}
}
}
}
/**
Checks pointers FHEp() are valid
**/
static bool CheckConsistency_FHp(MeshType & m){
assert(MeshType::FaceType::HasFHAdjacency());
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD()){
if((*fi).FHp() < &(*m.hedge.begin())) return false;
if((*fi).FHp() > &(m.hedge.back())) return false;
}
return true;
}
/**
Checks that half edges and face relation are consistent
**/
static bool CheckConsistency(MeshType & m){
assert(MeshType::HEdgeType::HasHNextAdjacency());
assert(MeshType::HEdgeType::HasHOppAdjacency());
assert(MeshType::HEdgeType::HasHVAdjacency());
assert(MeshType::FaceType::HasFHAdjacency());
//bool hasHEF = ( MeshType::HEdgeType::HasHFAdjacency());
bool hasHP = ( MeshType::HEdgeType::HasHPrevAdjacency());
FaceIterator fi;
HEdgePointer ep,ep1;
int cnt = 0;
if( MeshType::HEdgeType::HasHFAdjacency() )
{
int iDb = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi,++iDb)
if(!(*fi).IsD())
{
ep = ep1 = (*fi).FHp();
do{
if(ep->IsD())
return false; // the hedge should not be connected, it has been deleted
if( ! ep->HFp())
return false;
if(ep->HFp() != &(*fi))
return false;// hedge is not pointing to the rigth face
ep = ep->HNp();
if(cnt++ > m.hn)
return false; // hedges are ill connected (HENp())
}while(ep!=ep1);
}
}
HEdgePointer epPrev;
HEdgeIterator hi;
//bool extEdge ;
for( hi = m.hedge.begin(); hi != m.hedge.end(); ++hi)
if(!(*hi).IsD())
{
//cnt = 0;
epPrev = ep = ep1 = &(*hi);
//do{
//extEdge = (ep->HFp()==NULL);
if(hasHP)
{
if( !ep->HPp())
return false;
if( ep->HPp() == ep)
return false; // the previous of an edge cannot be the edge itself
if( ep->HNp()->HPp() != ep)
return false; // next and prev relation are not mutual
if( ep->HPp()->IsD())
return false; //
}
if( ! ep->HOp() )
return false;
if( ep->HOp() == ep)
return false; // opposite relation is not mutual
if( ep->HOp()->IsD())
return false;
if( ep->HOp()->HOp() != ep)
return false; // opposite relation is not mutual
if( HasHFAdjacency(m) )
{
if(ep->HFp())
{
if( ep->HFp()->IsD())
return false; // pointed face must not be deleted
}
}
if( HasHEAdjacency(m) && (m.en!=0))
{
if( ! ep->HEp())
return false; //halfedge must point to an edge
if( ep->HEp()->IsD())
return false; // pointed edge must not be deleted
if(ep->HEp() != ep->HOp()->HEp())
return false; // he and opposite he must point to the same edge
if(ep->HEp()->EHp() != ep && ep->HEp()->EHp() != ep->HOp() )
return false; // halfedge points to an edge not pointing it or its opposite
}
if( !ep->HNp() )
return false;
if( ep->HNp() == ep )
return false; // the next of an hedge cannot be the hedge itself
if( ep->HNp()->IsD())
return false; //
if(hasHP)
if( ep->HNp()->HPp() != ep)
return false; //
if( HasHVAdjacency(m) )
{
if( ! ep->HVp() )
return false; // halfedge must point to a vertex
if( ep->HVp()->IsD() )
return false; // pointed vertex must not be deleted
if( HasVHAdjacency(m) )
if( ! (ep->HVp()->VHp()) )
return false; // halfedge points to a vertex pointing NULL
}
ep = ep->HNp();
if( ep->HVp() != epPrev->HOp()->HVp())
return false;
epPrev = ep;
// if(cnt++ > m.hn)
// return false; // edges are ill connected (HENp())
//}while(ep!=ep1);
}
if(HasEHAdjacency(m) && HasHEAdjacency(m))
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
{
if(!(*ei).IsD())
{
if( !(*ei).EHp())
return false; //edge must have a valid pointer to his halfedge
if( (*ei).EHp()->HEp() != &(*ei) )
return false; // edge's halfedge must point to the edge itself
if( (*ei).EHp()->IsD())
return false;
}
}
if(HasVHAdjacency(m))
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
{
if( !(*vi).IsD() )
if( (*vi).VHp() )
{
if( (*vi).VHp()->HVp() != &(*vi) )
return false;
if( (*vi).VHp()->IsD())
return false;
}
}
return true;
}
/** Set the relations HFp(), FHp() from a loop of edges to a face
*/
private:
static void SetRelationsLoopFace(HEdgeType * e0, FaceType * f){
assert(HEdgeType::HasHNextAdjacency());
assert(FaceType::HasFHAdjacency());
HEdgeType *e = e0;
assert(e!=NULL);
do{ e->HFp() = f; e = e->HNp(); } while(e != e0);
f->FHp() = e0;
}
/**
Merge the two faces. This will probably become a class template or a functor
*/
static void MergeFaces(FaceType *, FaceType *){}
/**
Find previous hedge in the loop
*/
static HEdgeType * PreviousEdge(HEdgeType * e0){
HEdgeType * ep = e0;
do{
if(ep->HNp() == e0) return ep;
ep = ep->HNp();
}while(ep!=e0);
assert(0); // degenerate loop
return 0;
}
public:
/** Adds an edge between the sources of e0 and e1 and set all the topology relations.
If the edges store the pointers to the faces then a new face is created.
<--- e1 ---- X <------e1_HEPp---
^
||
ei0 || ei1
||
v
----e0_HEPp-> X ----- e0 ------>
*/
static void AddHEdge(MeshType &m, HEdgeType * e0, HEdgeType * e1){
assert(e1!=e0->HNp());
assert(e0!=e1->HNp());
bool hasP = MeshType::HEdgeType::HasHPrevAdjacency();
assert(e0->HOp() != e1); // the hedge already exists
assert(e0!=e1->HNp());
std::vector<typename MeshType::HEdgePointer* > toUpdate;
toUpdate.push_back(&e0);
toUpdate.push_back(&e1);
HEdgeIterator ei0 = vcg::tri::Allocator<MeshType>::AddHEdges(m,2,toUpdate);
HEdgeIterator ei1 = ei0; ++ei1;
(*ei0).HNp() = e1;(*ei0).HVp() = e0->HVp();
(*ei1).HNp() = e0;(*ei1).HVp() = e1->HVp();
HEdgePointer e0_HEPp = 0,e1_HEPp = 0,ep =0;
if(hasP){
e0_HEPp = e0->HPp();
e1_HEPp = e1->HPp();
}else{// does not have pointer to previous, it must be computed
ep = e0;
do{
if(ep->HNp() == e0) e0_HEPp = ep;
if(ep->HNp() == e1) e1_HEPp = ep;
ep = ep->HNp();
}while(ep!=e0);
}
if(hasP){
(*ei0).HPp() = e0->HPp();
(*ei1).HPp() = e1->HPp();
e0->HPp() = &(*ei1);
e1->HPp() = &(*ei0);
}
e0_HEPp -> HNp() = &(*ei0);
e1_HEPp -> HNp() = &(*ei1);
(*ei0).HOp() = &(*ei1);
(*ei1).HOp() = &(*ei0);
if( HEdgeType::HasHFAdjacency() && FaceType::HasFHAdjacency()){
vcg::tri::Allocator<MeshType>::AddFaces(m,1);
m.face.back().ImportData(*e0->HFp());
SetRelationsLoopFace(&(*ei0),e1->HFp()); // one loop to the old face
SetRelationsLoopFace(&(*ei1),&m.face.back()); // the other to the new face
}
}
/** Detach the topology relations of a given edge
<--- e->HENPp -X --- <---------eO_HEPp---
^
||
e || e->HEOp()
||
v
----e_HEPp--> X ----- e->HEOp->HENPp() ------>
*/
static void RemoveHEdge(MeshType &m, HEdgeType * e){
assert(MeshType::HEdgeType::HasHNextAdjacency());
assert(MeshType::HEdgeType::HasHOppAdjacency());
assert(MeshType::FaceType::HasFHAdjacency());
bool hasP = MeshType::HEdgeType::HasHPrevAdjacency();
HEdgePointer e_HEPp,eO_HEPp;
if(hasP){
e_HEPp = e->HPp();
eO_HEPp = e->HOp()->HPp();
}else{
e_HEPp = PreviousEdge(e);
eO_HEPp = PreviousEdge(e->HOp());
}
assert(e_HEPp->HNp() == e);
assert(eO_HEPp->HNp() == e->HOp());
e_HEPp->HNp() = e->HOp()->HNp();
eO_HEPp->HNp() = e-> HNp();
if(hasP) {
e->HOp()->HNp()->HPp() = e_HEPp;
e->HNp()->HPp() = eO_HEPp;
e->HPp() = NULL;
e-> HOp()->HPp() = NULL;
}
// take care of the faces
if(MeshType::HEdgeType::HasHFAdjacency()){
MergeFaces(e_HEPp->HFp(),eO_HEPp->HFp());
vcg::tri::Allocator<MeshType>::DeleteFace(m,*eO_HEPp->HFp());
SetRelationsLoopFace(e_HEPp,e_HEPp->HFp());
}
vcg::tri::Allocator<MeshType>::DeleteHEdge(m,*e->HOp());
vcg::tri::Allocator<MeshType>::DeleteHEdge(m,*e);
}
};// end class
template <class MeshType >
struct UpdateIndexed{
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::HEdgePointer HEdgePointer;
typedef typename MeshType::HEdgeType HEdgeType;
typedef typename MeshType::HEdgeIterator HEdgeIterator;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceType FaceType;
struct VertexPairEdgePtr{
VertexPairEdgePtr(VertexPointer _v0,VertexPointer _v1,HEdgePointer _ep):v0(_v0),v1(_v1),ep(_ep){if(v0>v1) std::swap(v0,v1);}
bool operator <(const VertexPairEdgePtr &o) const {return (v0 == o.v0)? (v1<o.v1):(v0<o.v0);}
bool operator ==(const VertexPairEdgePtr &o) const {return (v0 == o.v0)&& (v1==o.v1);}
VertexPointer v0,v1;
HEdgePointer ep;
};
/**
builds an indexed data structure from a half-edge data structure.
Note: if the half edge have the pointer to face
their relation FV (face-vertex) will be computed and the data possibly stored in the
face will be preserved.
**/
static void FromHalfEdges( MeshType & m ){
assert(HasFVAdjacency(m));
assert(MeshType::HEdgeType::HasHNextAdjacency());
assert(MeshType::HEdgeType::HasHVAdjacency());
assert(MeshType::HEdgeType::HasHOppAdjacency());
assert(MeshType::FaceType::HasFHAdjacency());
bool hasHEF;
//bool createFace,hasHEF,hasFHE;
// typename MeshType::template PerHEdgeAttributeHandle<bool> hV = Allocator<MeshType>::template AddPerHEdgeAttribute<bool>(m,"");
typename MeshType::HEdgeIterator ei;
typename MeshType::FacePointer fp;
typename MeshType::FaceIterator fi;
typename MeshType::HEdgePointer ep,epF;
//int vi = 0;
vcg::SimpleTempData<typename MeshType::HEdgeContainer,bool> hV(m.hedge);
hasHEF = (MeshType::HEdgeType::HasHFAdjacency());
assert( !hasHEF || (hasHEF && m.fn>0));
// if the edgetype has the pointer to face
// it is assumed the the edget2face pointer (HEFp) are correct
// and the faces are allocated
for ( ei = m.hedge.begin(); ei != m.hedge.end(); ++ei)
if(!(*ei).IsD()) // it has not been deleted
if(!hasHEF || ( hasHEF && (*ei).HFp()!=NULL)) // if it has a pointer to the face it is
// not null (i.e. it is not a border edge)
if(!hV[(*ei)] ) // it has not be visited yet
{
if(!hasHEF)// if it has
fp = &(* Allocator<MeshType>::AddFaces(m,1));
else
fp = (*ei).HFp();
ep = epF = &(*ei);
std::vector<VertexPointer> vpts;
do{vpts.push_back((*ep).HVp()); ep=ep->HNp();}while(ep!=epF);
//int idbg =fp->VN();
if(size_t(fp->VN()) != vpts.size()){
fp->Dealloc();
fp ->Alloc(vpts.size());
}
//int idbg1 =fp->VN();
for(size_t i = 0; i < vpts.size();++i) fp ->V(i) = vpts[i];// set the pointer from face to vertex
hV[(*ei)] = true;
}
//Allocator<MeshType>::DeletePerHEdgeAttribute(m,hV);
}
};
} // end namespace vcg
}
#endif // __VCGLIB_EDGE_SUPPORT
|