1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_SELECTION
#define __VCG_TRI_UPDATE_SELECTION
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \brief A stack for saving and restoring selection.
/**
This class is used to save the current selection onto a stack for later use.
\todo it should be generalized to other attributes with a templated approach.
*/
template <class ComputeMeshType>
class SelectionStack
{
typedef typename ComputeMeshType::template PerVertexAttributeHandle< bool > vsHandle;
typedef typename ComputeMeshType::template PerEdgeAttributeHandle< bool > esHandle;
typedef typename ComputeMeshType::template PerFaceAttributeHandle< bool > fsHandle;
typedef typename ComputeMeshType::template PerTetraAttributeHandle< bool > tsHandle;
public:
SelectionStack(ComputeMeshType &m)
{
_m=&m;
}
bool push()
{
vsHandle vsH = Allocator<ComputeMeshType>::template AddPerVertexAttribute< bool >(*_m);
esHandle esH = Allocator<ComputeMeshType>::template AddPerEdgeAttribute< bool > (*_m);
fsHandle fsH = Allocator<ComputeMeshType>::template AddPerFaceAttribute< bool > (*_m);
tsHandle tsH = Allocator<ComputeMeshType>::template AddPerTetraAttribute< bool > (*_m);
typename ComputeMeshType::VertexIterator vi;
for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi)
if( !(*vi).IsD() ) vsH[*vi] = (*vi).IsS() ;
typename ComputeMeshType::EdgeIterator ei;
for(ei = _m->edge.begin(); ei != _m->edge.end(); ++ei)
if( !(*ei).IsD() ) esH[*ei] = (*ei).IsS() ;
typename ComputeMeshType::FaceIterator fi;
for(fi = _m->face.begin(); fi != _m->face.end(); ++fi)
if( !(*fi).IsD() ) fsH[*fi] = (*fi).IsS() ;
typename ComputeMeshType::TetraIterator ti;
for(ti = _m->tetra.begin(); ti != _m->tetra.end(); ++ti)
if( !(*ti).IsD() ) tsH[*ti] = (*ti).IsS() ;
vsV.push_back(vsH);
esV.push_back(esH);
fsV.push_back(fsH);
tsV.push_back(tsH);
return true;
}
bool popOr()
{
return pop(true,false);
}
bool popAnd()
{
return pop(false,true);
}
/// It restore a saved selection.
/// The process can be done or in a straightforward manner (e.g. selection values are substituted)
/// or preserving selected or unselected elements (e.g. the restoring is combined in OR/AND)
///
bool pop(bool orFlag=false, bool andFlag=false)
{
if(vsV.empty()) return false;
if(orFlag && andFlag) return false;
vsHandle vsH = vsV.back();
esHandle esH = esV.back();
fsHandle fsH = fsV.back();
tsHandle tsH = tsV.back();
if(! (Allocator<ComputeMeshType>::template IsValidHandle(*_m, vsH))) return false;
for(auto vi = _m->vert.begin(); vi != _m->vert.end(); ++vi)
if( !(*vi).IsD() )
{
if(vsH[*vi]) {
if(!andFlag) (*vi).SetS();
} else {
if(!orFlag) (*vi).ClearS();
}
}
for(auto ei = _m->edge.begin(); ei != _m->edge.end(); ++ei)
if( !(*ei).IsD() )
{
if(esH[*ei]) {
if(!andFlag) (*ei).SetS();
} else {
if(!orFlag) (*ei).ClearS();
}
}
for(auto fi = _m->face.begin(); fi != _m->face.end(); ++fi)
if( !(*fi).IsD() )
{
if(fsH[*fi]) {
if(!andFlag) (*fi).SetS();
} else {
if(!orFlag) (*fi).ClearS();
}
}
for (auto ti = _m->tetra.begin(); ti != _m->tetra.end(); ++ti)
if (!(*ti).IsD())
{
if (tsH[*ti]) {
if (!andFlag) (*ti).SetS();
} else {
if (!orFlag) (*ti).ClearS();
}
}
Allocator<ComputeMeshType>::template DeletePerVertexAttribute<bool>(*_m,vsH);
Allocator<ComputeMeshType>::template DeletePerEdgeAttribute<bool>(*_m,esH);
Allocator<ComputeMeshType>::template DeletePerFaceAttribute<bool>(*_m,fsH);
Allocator<ComputeMeshType>::template DeletePerTetraAttribute<bool>(*_m,tsH);
vsV.pop_back();
esV.pop_back();
fsV.pop_back();
tsV.pop_back();
return true;
}
private:
ComputeMeshType *_m;
std::vector<vsHandle> vsV;
std::vector<esHandle> esV;
std::vector<fsHandle> fsV;
std::vector<tsHandle> tsV;
};
/// \ingroup trimesh
/// \headerfile selection.h vcg/complex/algorithms/update/selection.h
/// \brief Management, updating and conditional computation of selections (per-vertex, per-edge, and per-face).
/**
This class is used to compute or update the selected bit flag that can be stored in the vertex, edge or face component of a mesh.
*/
template <class ComputeMeshType>
class UpdateSelection
{
public:
typedef ComputeMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
typedef typename vcg::Box3<ScalarType> Box3Type;
/// \brief This function select all the vertices.
static size_t VertexAll(MeshType &m)
{
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( !(*vi).IsD() ) (*vi).SetS();
return m.vn;
}
/// \brief This function select all the edges.
static size_t EdgeAll(MeshType &m)
{
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if( !(*ei).IsD() ) (*ei).SetS();
return m.fn;
}
/// \brief This function select all the faces.
static size_t FaceAll(MeshType &m)
{
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() ) (*fi).SetS();
return m.fn;
}
/// \brief This function select all the tetras.
static size_t TetraAll (MeshType & m)
{
ForEachTetra(m, [] (TetraType & t) {
t.SetS();
});
return m.tn;
}
/// \brief This function clear the selection flag for all the vertices.
static size_t VertexClear(MeshType &m)
{
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( !(*vi).IsD() ) (*vi).ClearS();
return 0;
}
/// \brief This function clears the selection flag for all the edges.
static size_t EdgeClear(MeshType &m)
{
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if( !(*ei).IsD() ) (*ei).ClearS();
return 0;
}
/// \brief This function clears the selection flag for all the faces.
static size_t FaceClear(MeshType &m)
{
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() ) (*fi).ClearS();
return 0;
}
/// \brief This function clears the selection flag for all the tetras.
static size_t TetraClear (MeshType & m)
{
ForEachTetra(m, [] (TetraType & t) {
t.ClearS();
});
return 0;
}
/// \brief This function clears the selection flag for all the elements of a mesh (vertices, edges, and faces).
static void Clear(MeshType &m)
{
VertexClear(m);
EdgeClear(m);
FaceClear(m);
TetraClear(m);
}
/// \brief This function returns the number of selected faces.
static size_t FaceCount(MeshType &m)
{
size_t selCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD() && (*fi).IsS()) ++selCnt;
return selCnt;
}
/// \brief This function returns the number of selected edges.
static size_t EdgeCount(MeshType &m)
{
size_t selCnt=0;
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if(!(*ei).IsD() && (*ei).IsS()) ++selCnt;
return selCnt;
}
/// \brief This function returns the number of selected vertices.
static size_t VertexCount(MeshType &m)
{
size_t selCnt=0;
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsS()) ++selCnt;
return selCnt;
}
/// \brief This function returns the number of selected tetras.
static size_t TetraCount (MeshType & m)
{
size_t selCnt = 0;
ForEachTetra(m, [&selCnt] (TetraType & t) {
if (t.IsS())
++selCnt;
});
return selCnt;
}
/// \brief This function inverts the selection flag for all the faces.
static size_t FaceInvert(MeshType &m)
{
size_t selCnt=0;
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if((*fi).IsS()) (*fi).ClearS();
else {
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function inverts the selection flag for all the edges.
static size_t EdgeInvert(MeshType &m)
{
size_t selCnt=0;
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if(!(*ei).IsD())
{
if((*ei).IsS()) (*ei).ClearS();
else {
(*ei).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function inverts the selection flag for all the vertices.
static size_t VertexInvert(MeshType &m)
{
size_t selCnt=0;
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
if((*vi).IsS()) (*vi).ClearS();
else {
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function inverts the selection flag for all the tetras.
static size_t TetraInvert (MeshType & m)
{
size_t selCnt = 0;
ForEachTetra(m, [&selCnt] (TetraType & t) {
if (t.IsS())
t.ClearS();
else
{
t.SetS();
++selCnt;
}
});
return selCnt;
}
/// \brief Select all the vertices that are touched by at least a single selected faces
static size_t VertexFromFaceLoose(MeshType &m, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) VertexClear(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && (*fi).IsS())
for(int i = 0; i < (*fi).VN(); ++i)
if( !(*fi).V(i)->IsS()) { (*fi).V(i)->SetS(); ++selCnt; }
return selCnt;
}
/// \brief Select all the vertices that are touched by at least a single selected edge
static size_t VertexFromEdgeLoose(MeshType &m, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) VertexClear(m);
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if( !(*ei).IsD() && (*ei).IsS())
{
if( !(*ei).V(0)->IsS()) { (*ei).V(0)->SetS(); ++selCnt; }
if( !(*ei).V(1)->IsS()) { (*ei).V(1)->SetS(); ++selCnt; }
}
return selCnt;
}
/// \brief Select ONLY the vertices that are touched ONLY by selected faces
/** In other words this function will select all the vertices having all the faces incident on them selected.
*/
static size_t VertexFromFaceStrict(MeshType &m, bool preserveSelection=false)
{
SelectionStack<MeshType> ss(m);
if(preserveSelection) ss.push();
VertexFromFaceLoose(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && !(*fi).IsS())
for(int i = 0; i < (*fi).VN(); ++i)
(*fi).V(i)->ClearS();
if(preserveSelection) ss.popOr();
return VertexCount(m);
}
/// \brief Select ONLY the faces with ALL the vertices selected
static size_t FaceFromVertexStrict(MeshType &m, bool preserveSelection=false)
{
SelectionStack<MeshType> ss(m);
if(preserveSelection) ss.push();
size_t selCnt=0;
FaceClear(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD())
{
bool selFlag=true;
for(int i = 0; i < (*fi).VN(); ++i)
if(!(*fi).V(i)->IsS())
selFlag =false;
if(selFlag)
{
(*fi).SetS();
++selCnt;
}
}
if(preserveSelection) ss.popOr();
return selCnt;
}
/// \brief Select all the faces with at least one selected vertex
static size_t FaceFromVertexLoose(MeshType &m, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) FaceClear(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD())
{
bool selVert=false;
for(int i = 0; i < (*fi).VN(); ++i)
if((*fi).V(i)->IsS())
selVert=true;
if(selVert) {
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function dilate the face selection by simply first selecting all the vertices touched by the faces and then all the faces touched by these vertices
/// Note: it destroys the vertex selection.
static size_t FaceDilate(MeshType &m)
{
tri::UpdateSelection<MeshType>::VertexFromFaceLoose(m);
return tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m);
}
/// \brief This function erode the face selection by simply first selecting only the vertices completely surrounded by face and then the only faces with all the selected vertices
/// Note: it destroys the vertex selection.
static size_t FaceErode(MeshType &m)
{
tri::UpdateSelection<MeshType>::VertexFromFaceStrict(m);
return tri::UpdateSelection<MeshType>::FaceFromVertexStrict(m);
}
/// \brief This function select the vertices with the border flag set
static size_t VertexFromBorderFlag(MeshType &m, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) VertexClear(m);
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( !(*vi).IsD() )
{
if((*vi).IsB() )
{
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function select the faces that have an edge with the border flag set.
static size_t FaceFromBorderFlag(MeshType &m, bool preserveSelection=false)
{
tri::RequireTriangularMesh(m);
size_t selCnt=0;
if(!preserveSelection) FaceClear(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() )
{
bool bordFlag=false;
for(int i = 0; i < 3; ++i)
if((*fi).IsB(i)) bordFlag=true;
if(bordFlag)
{
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function select the faces that have an edge outside the given range.
/// You can skip the second parameter to choose all the edges smaller than a given lenght
static size_t FaceOutOfRangeEdge(MeshType &m, ScalarType MinEdgeThr, ScalarType MaxEdgeThr=(std::numeric_limits<ScalarType>::max)(), bool preserveSelection=false)
{
if(!preserveSelection) FaceClear(m);
size_t selCnt = 0;
MinEdgeThr=MinEdgeThr*MinEdgeThr;
MaxEdgeThr=MaxEdgeThr*MaxEdgeThr;
for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int i=0;i<(*fi).VN();++i)
{
const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP());
if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) )
{
selCnt++;
(*fi).SetS();
break; // skip the rest of the edges of the tri
}
}
}
return selCnt;
}
/// \brief This function expand current selection to cover the whole connected component.
static size_t FaceConnectedFF(MeshType &m)
{
// it also assumes that the FF adjacency is well computed.
RequireFFAdjacency(m);
UpdateFlags<MeshType>::FaceClearV(m);
std::deque<FacePointer> visitStack;
size_t selCnt=0;
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && (*fi).IsS() && !(*fi).IsV() )
visitStack.push_back(&*fi);
while(!visitStack.empty())
{
FacePointer fp = visitStack.front();
visitStack.pop_front();
assert(!fp->IsV());
fp->SetV();
for(int i=0;i<fp->VN();++i) {
FacePointer ff = fp->FFp(i);
if(! ff->IsS())
{
ff->SetS();
++selCnt;
visitStack.push_back(ff);
assert(!ff->IsV());
}
}
}
return selCnt;
}
/// \brief Select the faces whose quality is in the specified closed interval.
static size_t FaceFromQualityRange(MeshType &m,float minq, float maxq, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) FaceClear(m);
RequirePerFaceQuality(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if( (*fi).Q()>=minq && (*fi).Q()<=maxq )
{
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief Select the vertices whose quality is in the specified closed interval.
static size_t VertexFromQualityRange(MeshType &m,float minq, float maxq, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) VertexClear(m);
RequirePerVertexQuality(m);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
if( (*vi).Q()>=minq && (*vi).Q()<=maxq )
{
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief Select the vertices contained in the specified Box
static size_t VertexInBox( MeshType & m, const Box3Type &bb, bool preserveSelection=false)
{
if(!preserveSelection) VertexClear(m);
int selCnt=0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
{
if(bb.IsIn((*vi).cP()) ) {
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief Select the border vertices that form a corner along the border
/// with an angle that is below a certain threshold (e.g. with 90 will select all the acute angles)
/// It assumes that the Per-Vertex border Flag has been set.
static size_t VertexCornerBorder(MeshType &m, ScalarType angleRad, bool preserveSelection=false)
{
if(!preserveSelection) VertexClear(m);
SimpleTempData<typename MeshType::VertContainer, ScalarType > angleSumH(m.vert,0);
int selCnt=0;
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
angleSumH[vi]=0;
for(auto fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int i=0;i<(*fi).VN();++i)
angleSumH[fi->V(i)] += face::WedgeAngleRad(*fi,i);
}
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
{
if(angleSumH[vi]<angleRad && vi->IsB())
{
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
void VertexNonManifoldEdges(MeshType &m, bool preserveSelection=false)
{
tri::RequireFFAdjacency(m);
if(!preserveSelection) VertexClear(m);
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<fi->VN();++i)
if(!IsManifold(*fi,i)){
(*fi).V0(i)->SetS();
(*fi).V1(i)->SetS();
}
}
}
}; // end class
} // End namespace
} // End namespace
#endif
|