1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_TOPOLOGY
#define __VCG_TRI_UPDATE_TOPOLOGY
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Generation of per-vertex and per-face topological information.
template <class UpdateMeshType>
class UpdateTopology
{
public:
typedef UpdateMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Auxiliary data structure for computing tetra tetra adjacency information.
/**
* It identifies a face, storing three vertex pointers and a tetra pointer where it belongs.
*/
class PFace
{
public:
VertexPointer v[3]; //three ordered vertex pointers, identify a face
TetraPointer t; //the pointer to the tetra where this face belongs
int z; //index in [0..3] of the face in the tetra
bool isBorder;
PFace () {}
PFace (TetraPointer tp, const int nz) { this->Set(tp, nz); }
void Set (TetraPointer tp /*the tetra pointer*/, const int nz /*the face index*/)
{
assert (tp != 0);
assert (nz >= 0 && nz < 4);
v[0] = tp->cV(Tetra::VofF(nz, 0));
v[1] = tp->cV(Tetra::VofF(nz, 1));
v[2] = tp->cV(Tetra::VofF(nz, 2));
assert(v[0] != v[1] && v[1] != v[2]); //no degenerate faces
if (v[0] > v[1])
std::swap(v[0], v[1]);
if (v[1] > v[2])
std::swap(v[1], v[2]);
if (v[0] > v[1])
std::swap(v[0], v[1]);
t = tp;
z = nz;
}
inline bool operator < (const PFace & pf) const
{
if (v[0] < pf.v[0])
return true;
else
{
if (v[0] > pf.v[0]) return false;
if (v[1] < pf.v[1])
return true;
else
{
if (v[1] > pf.v[1]) return false;
return (v[2] < pf.v[2]);
}
}
}
inline bool operator == (const PFace & pf) const
{
return v[0] == pf.v[0] && v[1] == pf.v[1] && v[2] == pf.v[2];
}
};
static void FillFaceVector (MeshType & m, std::vector<PFace> & fvec)
{
ForEachTetra(m, [&fvec] (TetraType & t) {
for (int i = 0; i < 4; ++i)
fvec.push_back(PFace(&t, i));
});
}
static void FillUniqueFaceVector (MeshType & m, std::vector<PFace> & fvec)
{
FillFaceVector(m, fvec);
std::sort(fvec.begin(), fvec.end());
typename std::vector<PFace>::iterator newEnd = std::unique(fvec.begin(), fvec.end());
}
/// \brief Auxiliairy data structure for computing face face adjacency information.
/**
It identifies and edge storing two vertex pointer and a face pointer where it belong.
*/
class PEdge
{
public:
VertexPointer v[2]; // the two Vertex pointer are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
bool isBorder;
PEdge() {}
PEdge(FacePointer pf, const int nz) { this->Set(pf,nz); }
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<pf->VN());
v[0] = pf->V(nz);
v[1] = pf->V(pf->Next(nz));
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[0] > v[1] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdge & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdge & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
/// Convert from edge barycentric coord to the face baricentric coord a point on the current edge.
/// Face barycentric coordinates are relative to the edge face.
inline Point3<ScalarType> EdgeBarycentricToFaceBarycentric(ScalarType u) const
{
Point3<ScalarType> interp(0,0,0);
interp[ this->z ] = u;
interp[(this->z+1)%3] = 1.0f-u;
return interp;
}
};
/// Fill a vector with all the edges of the mesh.
/// each edge is stored in the vector the number of times that it appears in the mesh, with the referring face.
/// optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh)
static void FillEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec, bool includeFauxEdge=true)
{
edgeVec.reserve(m.fn*3);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if( ! (*fi).IsD() )
for(int j=0;j<(*fi).VN();++j)
if(includeFauxEdge || !(*fi).IsF(j))
edgeVec.push_back(PEdge(&*fi,j));
}
static void FillUniqueEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec, bool includeFauxEdge=true, bool computeBorderFlag=false)
{
FillEdgeVector(m,edgeVec,includeFauxEdge);
sort(edgeVec.begin(), edgeVec.end()); // oredering by vertex
if (computeBorderFlag) {
for (size_t i=0; i<edgeVec.size(); i++)
edgeVec[ i ].isBorder = true;
for (size_t i=1; i<edgeVec.size(); i++) {
if (edgeVec[i]==edgeVec[i-1])
edgeVec[i].isBorder = edgeVec[i-1].isBorder = false;
}
}
typename std::vector< PEdge>::iterator newEnd = std::unique(edgeVec.begin(), edgeVec.end());
edgeVec.resize(newEnd-edgeVec.begin()); // redundant! remove?
}
static void FillSelectedFaceEdgeVector(MeshType &m, std::vector<PEdge> &edgeVec)
{
edgeVec.reserve(m.fn*3);
ForEachFace(m, [&](FaceType &f){
for(int j=0;j<f.VN();++j)
if(f.IsFaceEdgeS(j))
edgeVec.push_back(PEdge(&f,j));
});
sort(edgeVec.begin(), edgeVec.end()); // oredering by vertex
edgeVec.erase(std::unique(edgeVec.begin(), edgeVec.end()),edgeVec.end());
}
/*! \brief Initialize the edge vector all the edges that can be inferred from current face vector, setting up all the current adjacency relations
*
*
*/
static void AllocateEdge(MeshType &m)
{
// Delete all the edges (if any)
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
tri::Allocator<MeshType>::DeleteEdge(m,*ei);
tri::Allocator<MeshType>::CompactEdgeVector(m);
// Compute and add edges
std::vector<PEdge> Edges;
FillUniqueEdgeVector(m,Edges,true,tri::HasPerEdgeFlags(m) );
assert(m.edge.empty());
tri::Allocator<MeshType>::AddEdges(m,Edges.size());
assert(m.edge.size()==Edges.size());
// Setup adjacency relations
if(tri::HasEVAdjacency(m))
{
for(size_t i=0; i< Edges.size(); ++i)
{
m.edge[i].V(0) = Edges[i].v[0];
m.edge[i].V(1) = Edges[i].v[1];
}
}
if (tri::HasPerEdgeFlags(m)){
for(size_t i=0; i< Edges.size(); ++i) {
if (Edges[i].isBorder) m.edge[i].SetB(); else m.edge[i].ClearB();
}
}
if(tri::HasEFAdjacency(m)) // Note it is an unordered relation.
{
for(size_t i=0; i< Edges.size(); ++i)
{
std::vector<FacePointer> fpVec;
std::vector<int> eiVec;
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
m.edge[i].EFp() = Edges[i].f;
m.edge[i].EFi() = Edges[i].z;
}
}
if(tri::HasFEAdjacency(m))
{
for(size_t i=0; i< Edges.size(); ++i)
{
std::vector<FacePointer> fpVec;
std::vector<int> eiVec;
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
for(size_t j=0;j<fpVec.size();++j)
fpVec[j]->FEp(eiVec[j])=&(m.edge[i]);
// Edges[i].f->FE(Edges[i].z) = &(m.edge[i]);
// Connect in loop the non manifold
// FaceType* fpit=fp;
// int eit=ei;
// do
// {
// faceVec.push_back(fpit);
// indVed.push_back(eit);
// FaceType *new_fpit = fpit->FFp(eit);
// int new_eit = fpit->FFi(eit);
// fpit=new_fpit;
// eit=new_eit;
// } while(fpit != fp);
// m.edge[i].EFp() = Edges[i].f;
// m.edge[i].EFi() = ;
}
}
}
/// \brief Clear the tetra-tetra topological relation, setting each involved pointer to null.
/// useful when you passed a mesh with tt adjacency to an algorithm that does not use it and chould have messed it
static void ClearTetraTetra (MeshType & m)
{
RequireTTAdjacency(m);
ForEachTetra(m, [] (TetraType & t) {
for (int i = 0; i < 4; ++i)
{
t.TTp(i) = NULL;
t.TTi(i) = -1;
}
});
}
/// \brief Updates the Tetra-Tetra topological relation by allowing to retrieve for each tetra what other tetras share their faces.
static void TetraTetra (MeshType & m)
{
RequireTTAdjacency(m);
if (m.tn == 0) return;
std::vector<PFace> fvec;
FillFaceVector(m, fvec);
std::sort(fvec.begin(), fvec.end());
int nf = 0;
typename std::vector<PFace>::iterator pback, pfront;
pback = fvec.begin();
pfront = fvec.begin();
do
{
if (pfront == fvec.end() || !(*pfront == *pback))
{
typename std::vector<PFace>::iterator q, q_next;
for (q = pback; q < pfront - 1; ++q)
{
assert((*q).z >= 0);
q_next = q;
++q_next;
assert((*q_next).z >= 0 && (*q_next).z < 4);
(*q).t->TTp(q->z) = (*q_next).t;
(*q).t->TTi(q->z) = (*q_next).z;
}
(*q).t->TTp(q->z) = pback->t;
(*q).t->TTi(q->z) = pback->z;
pback = pfront;
++nf;
}
if (pfront == fvec.end()) break;
++pfront;
} while (true);
}
/// \brief Clear the Face-Face topological relation setting each involved pointer to null.
/// useful when you passed a mesh with ff adjacency to an algorithm that does not use it and could have messed it.
static void ClearFaceFace(MeshType &m)
{
RequireFFAdjacency(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if( ! (*fi).IsD() )
{
for(int j=0;j<fi->VN();++j)
{
fi->FFp(j)=0;
fi->FFi(j)=-1;
}
}
}
}
/// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
static void FaceFace(MeshType &m)
{
RequireFFAdjacency(m);
if( m.fn == 0 ) return;
std::vector<PEdge> e;
FillEdgeVector(m,e);
sort(e.begin(), e.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PEdge>::iterator pe,ps;
ps = e.begin();pe=e.begin();
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
do
{
if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione facce associate
{
assert((*q).z>=0);
//assert((*q).z< 3);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< (*q_next).f->VN());
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
(*q).f->FFi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< (*q).f->VN());
(*q).f->FFp((*q).z) = ps->f;
(*q).f->FFi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==e.end()) break;
++pe;
} while(true);
}
/// \brief Update the vertex-tetra topological relation.
static void VertexTetra(MeshType & m)
{
RequireVTAdjacency(m);
ForEachVertex(m, [] (VertexType & v) {
v.VTp() = NULL;
v.VTi() = 0;
});
ForEachTetra(m, [] (TetraType & t) {
//this works like this: the first iteration defines the end of the chain
//then it backwards chains everything
for (int i = 0; i < 4; ++i)
{
t.VTp(i) = t.V(i)->VTp();
t.VTi(i) = t.V(i)->VTi();
t.V(i)->VTp() = &t;
t.V(i)->VTi() = i;
}
});
}
/// \brief Update the Vertex-Face topological relation.
/**
The function allows to retrieve for each vertex the list of faces sharing this vertex.
After this call all the VF component are initialized. Isolated vertices have a null list of faces.
\sa vcg::vertex::VFAdj
\sa vcg::face::VFAdj
*/
static void VertexFace(MeshType &m)
{
RequireVFAdjacency(m);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).VFp() = 0;
(*vi).VFi() = 0; // note that (0,-1) means uninitiazlied while 0,0 is the valid initialized values for isolated vertices.
}
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if( ! (*fi).IsD() )
{
for(int j=0;j<(*fi).VN();++j)
{
(*fi).VFp(j) = (*fi).V(j)->VFp();
(*fi).VFi(j) = (*fi).V(j)->VFi();
(*fi).V(j)->VFp() = &(*fi);
(*fi).V(j)->VFi() = j;
}
}
}
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
/// \brief Auxiliairy data structure for computing face face adjacency information.
/**
It identifies and edge storing two vertex pointer and a face pointer where it belong.
*/
class PEdgeTex
{
public:
typename FaceType::TexCoordType v[2]; // the two TexCoord are ordered!
FacePointer f; // the face where this edge belong
int z; // index in [0..2] of the edge of the face
PEdgeTex() {}
void Set( FacePointer pf, const int nz )
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
v[0] = pf->WT(nz);
v[1] = pf->WT(pf->Next(nz));
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
if( v[1] < v[0] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const PEdgeTex & pe ) const
{
if( v[0]<pe.v[0] ) return true;
else if( pe.v[0]<v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const PEdgeTex & pe ) const
{
return (v[0]==pe.v[0]) && (v[1]==pe.v[1]);
}
inline bool operator != ( const PEdgeTex & pe ) const
{
return (v[0]!=pe.v[0]) || (v[1]!=pe.v[1]);
}
};
/// \brief Update the Face-Face topological relation so that it reflects the per-wedge texture connectivity
/**
Using this function two faces are adjacent along the FF relation IFF the two faces have matching texture coords along the involved edge.
In other words F1->FFp(i) == F2 iff F1 and F2 have the same tex coords along edge i
*/
static void FaceFaceFromTexCoord(MeshType &m)
{
RequireFFAdjacency(m);
RequirePerFaceWedgeTexCoord(m);
vcg::tri::UpdateTopology<MeshType>::FaceFace(m);
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
{
if (!(*fi).IsD())
{
for (int i = 0; i < (*fi).VN(); i++)
{
if (!vcg::face::IsBorder((*fi), i))
{
typename MeshType::FacePointer nextFace = (*fi).FFp(i);
int nextEdgeIndex = (*fi).FFi(i);
bool border = false;
if ((*fi).cV(i) == nextFace->cV(nextEdgeIndex))
{
if ((*fi).WT(i) != nextFace->WT(nextEdgeIndex) || (*fi).WT((*fi).Next(i)) != nextFace->WT(nextFace->Next(nextEdgeIndex)))
border = true;
}
else
{
if ((*fi).WT(i) != nextFace->WT(nextFace->Next(nextEdgeIndex)) || (*fi).WT((*fi).Next(i)) != nextFace->WT(nextEdgeIndex))
border = true;
}
if (border)
vcg::face::FFDetach((*fi), i);
}
}
}
}
}
/// \brief Test correctness of VEtopology
static void TestVertexEdge(MeshType &m)
{
std::vector<int> numVertex(m.vert.size(),0);
tri::RequireVEAdjacency(m);
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
{
if (!(*ei).IsD())
{
assert(tri::IsValidPointer(m,ei->V(0)));
assert(tri::IsValidPointer(m,ei->V(1)));
if(ei->VEp(0)) assert(tri::IsValidPointer(m,ei->VEp(0)));
if(ei->VEp(1)) assert(tri::IsValidPointer(m,ei->VEp(1)));
numVertex[tri::Index(m,(*ei).V(0))]++;
numVertex[tri::Index(m,(*ei).V(1))]++;
}
}
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if (!vi->IsD())
{
int cnt =0;
for(edge::VEIterator<EdgeType> vei(&*vi);!vei.End();++vei)
cnt++;
assert((numVertex[tri::Index(m,*vi)] == 0) == (vi->VEp()==0) );
assert(cnt==numVertex[tri::Index(m,*vi)]);
}
}
}
/// \brief Test correctness of VFtopology
static void TestVertexFace(MeshType &m)
{
SimpleTempData<typename MeshType::VertContainer, int > numVertex(m.vert,0);
assert(tri::HasPerVertexVFAdjacency(m));
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if (!(*fi).IsD())
{
numVertex[(*fi).V0(0)]++;
numVertex[(*fi).V1(0)]++;
numVertex[(*fi).V2(0)]++;
}
}
vcg::face::VFIterator<FaceType> VFi;
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
if (!vi->IsD())
if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0;
{
int num=0;
assert(tri::IsValidPointer(m, vi->VFp()));
VFi.f=vi->VFp();
VFi.z=vi->VFi();
while (!VFi.End())
{
num++;
assert(!VFi.F()->IsD());
assert((VFi.F()->V(VFi.I()))==&(*vi));
++VFi;
}
assert(num==numVertex[&(*vi)]);
}
}
}
/// \brief Test correctness of FFtopology (only for 2Manifold Meshes!)
static void TestFaceFace(MeshType &m)
{
assert(HasFFAdjacency(m));
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
{
if (!fi->IsD())
{
for (int i=0;i<(*fi).VN();i++)
{
FaceType *ffpi=fi->FFp(i);
int e=fi->FFi(i);
//invariant property of FF topology for two manifold meshes
assert(ffpi->FFp(e) == &(*fi));
assert(ffpi->FFi(e) == i);
// Test that the two faces shares the same edge
// Vertices of the i-th edges of the first face
VertexPointer v0i= fi->V0(i);
VertexPointer v1i= fi->V1(i);
// Vertices of the corresponding edge on the other face
VertexPointer ffv0i= ffpi->V0(e);
VertexPointer ffv1i= ffpi->V1(e);
assert( (ffv0i==v0i) || (ffv0i==v1i) );
assert( (ffv1i==v0i) || (ffv1i==v1i) );
}
}
}
}
/// Auxiliairy data structure for computing edge edge adjacency information.
/// It identifies an edge storing a vertex pointer and a edge pointer where it belong.
class PVertexEdge
{
public:
VertexPointer v; // the two Vertex pointer are ordered!
EdgePointer e; // the edge where this vertex belong
int z; // index in [0..1] of the vertex of the edge
PVertexEdge( ) {}
PVertexEdge( EdgePointer pe, const int nz )
{
assert(pe!=0);
assert(nz>=0);
assert(nz<2);
v= pe->V(nz);
e = pe;
z = nz;
}
inline bool operator < ( const PVertexEdge & pe ) const { return ( v<pe.v ); }
inline bool operator == ( const PVertexEdge & pe ) const { return ( v==pe.v ); }
inline bool operator != ( const PVertexEdge & pe ) const { return ( v!=pe.v ); }
};
static void EdgeEdge(MeshType &m)
{
RequireEEAdjacency(m);
std::vector<PVertexEdge> v;
if( m.en == 0 ) return;
// printf("Inserting Edges\n");
for(EdgeIterator pf=m.edge.begin(); pf!=m.edge.end(); ++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<2;++j)
{
// printf("egde %i ind %i (%i %i)\n",tri::Index(m,&*pf),j,tri::Index(m,pf->V(0)),tri::Index(m,pf->V(1)));
v.push_back(PVertexEdge(&*pf,j));
}
// printf("en = %i (%i)\n",m.en,m.edge.size());
sort(v.begin(), v.end()); // Lo ordino per vertici
int ne = 0; // Numero di edge reali
typename std::vector<PVertexEdge>::iterator pe,ps;
// for(ps = v.begin(),pe=v.begin();pe<=v.end();++pe) // Scansione vettore ausiliario
ps = v.begin();pe=v.begin();
do
{
// printf("v %i -> e %i\n",tri::Index(m,(*ps).v),tri::Index(m,(*ps).e));
if( pe==v.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
{
typename std::vector<PVertexEdge>::iterator q,q_next;
for (q=ps;q<pe-1;++q) // Scansione edge associati
{
assert((*q).z>=0);
assert((*q).z< 2);
q_next = q;
++q_next;
assert((*q_next).z>=0);
assert((*q_next).z< 2);
(*q).e->EEp(q->z) = (*q_next).e; // Collegamento in lista delle facce
(*q).e->EEi(q->z) = (*q_next).z;
}
assert((*q).z>=0);
assert((*q).z< 2);
(*q).e->EEp((*q).z) = ps->e;
(*q).e->EEi((*q).z) = ps->z;
ps = pe;
++ne; // Aggiorno il numero di edge
}
if(pe==v.end()) break;
++pe;
} while(true);
}
static void VertexEdge(MeshType &m)
{
RequireVEAdjacency(m);
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
{
(*vi).VEp() = 0;
(*vi).VEi() = 0;
}
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if( ! (*ei).IsD() )
{
for(int j=0;j<2;++j)
{ assert(tri::IsValidPointer(m,ei->V(j)));
(*ei).VEp(j) = (*ei).V(j)->VEp();
(*ei).VEi(j) = (*ei).V(j)->VEi();
(*ei).V(j)->VEp() = &(*ei);
(*ei).V(j)->VEi() = j;
}
}
}
}; // end class
} // End namespace
} // End namespace
#endif
|