1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_MATH_UNIONSET_H
#define VCG_MATH_UNIONSET_H
#include <unordered_map>
#include <vector>
#include <assert.h>
namespace vcg
{
/*!
* Given a set of elements, it is often useful to break them up or partition them into a number of separate, nonoverlapping groups.
* A disjoint-set data structure is a data structure that keeps track of such a partitioning. See
* <a href="http://en.wikipedia.org/wiki/Disjoint-set_data_structure">Diskoint-set data structure on Wikipedia </a> for more details.
*/
template<class OBJECT_TYPE>
class DisjointSet
{
/*************************************************
* Inner class definitions
**************************************************/
struct DisjointSetNode
{
DisjointSetNode(OBJECT_TYPE *x) {obj=x; parent=obj; rank=0;}
OBJECT_TYPE *obj;
OBJECT_TYPE *parent;
int rank;
};
typedef OBJECT_TYPE* ObjectPointer;
typedef std::pair< ObjectPointer, int > hPair;
struct SimpleObjHashFunc{
inline size_t operator ()(const ObjectPointer &p) const {return size_t(p);}
};
std::unordered_map< OBJECT_TYPE*, int > inserted_objects;
typedef typename std::unordered_map< OBJECT_TYPE*, int >::iterator hIterator;
typedef std::pair< hIterator, bool > hInsertResult;
public:
/*!
* Default constructor
*/
DisjointSet() {}
/*!
* Makes a group containing only a given element (a singleton).
*/
void MakeSet(OBJECT_TYPE *x)
{
int object_count = int(inserted_objects.size());
assert(inserted_objects.find(x)==inserted_objects.end()); //the map mustn't already contain the object x
nodes.push_back(DisjointSetNode(x));
inserted_objects.insert( hPair(x,object_count) );
}
/*!
* Combine or merge two groups into a single group.
*/
void Union(OBJECT_TYPE *x, OBJECT_TYPE *y)
{
OBJECT_TYPE *s0 = FindSet(x);
OBJECT_TYPE *s1 = FindSet(y);
Link(s0, s1);
}
/*!
* Determine which group a particular element is in.
*/
OBJECT_TYPE* FindSet(OBJECT_TYPE *x)
{
hIterator pos = inserted_objects.find(x);
assert(pos!=inserted_objects.end());
DisjointSetNode *node = &nodes[pos->second];
if (node->parent!=x)
node->parent = FindSet(node->parent);
return node->parent;
}
private:
/*
*/
void Link(OBJECT_TYPE *x, OBJECT_TYPE *y)
{
hIterator xPos = inserted_objects.find(x);
hIterator yPos = inserted_objects.find(y);
assert(xPos!=inserted_objects.end() && yPos!=inserted_objects.end());
DisjointSetNode *xNode = &nodes[xPos->second];
DisjointSetNode *yNode = &nodes[yPos->second];
if (xNode->rank>yNode->rank)
xNode->parent = y;
else
{
yNode->parent = x;
if (xNode->rank==yNode->rank)
yNode->rank++;
}
}
protected:
std::vector< DisjointSetNode > nodes;
};
};// end of namespace vcg
#endif //VCG_MATH_UNIONSET_H
|