1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: gen_normal.h,v $
****************************************************************************/
#ifndef __VCG_GEN_NORMAL
#define __VCG_GEN_NORMAL
namespace vcg {
template <class ScalarType>
class GenNormal
{
public:
typedef Point3<ScalarType> Point3x;
static void Random(int vn, std::vector<Point3<ScalarType > > &NN)
{
NN.clear();
while(NN.size()<vn)
{
Point3x pp(((float)rand())/RAND_MAX,
((float)rand())/RAND_MAX,
((float)rand())/RAND_MAX);
pp=pp*2.0-Point3x(1,1,1);
if(pp.SquaredNorm()<1)
{
Normalize(pp);
NN.push_back(pp);
}
}
}
static Point3x FibonacciPt(int i, int n)
{
const ScalarType Phi = ScalarType(std::sqrt(ScalarType(5))*0.5 + 0.5);
const ScalarType phi = 2.0*M_PI* (i/Phi - floor(i/Phi));
ScalarType cosTheta = 1.0 - (2*i + 1.0)/ScalarType(n);
ScalarType sinTheta = 1 - cosTheta*cosTheta;
sinTheta = std::sqrt(std::min(ScalarType(1),std::max(ScalarType(0),sinTheta)));
return Point3x(
cos(phi)*sinTheta,
sin(phi)*sinTheta,
cosTheta);
}
// Implementation of the Spherical Fibonacci Point Sets
// according to the description of
// Spherical Fibonacci Mapping
// Benjamin Keinert, Matthias Innmann, Michael Sanger, Marc Stamminger
// TOG 2015
static void Fibonacci(int n, std::vector<Point3x > &NN)
{
NN.resize(n);
for(int i=0;i<n;++i)
NN[i]=FibonacciPt(i,n);
}
static void UniformCone(int vn, std::vector<Point3<ScalarType > > &NN, ScalarType AngleRad, Point3x dir=Point3x(0,1,0))
{
std::vector<Point3<ScalarType > > NNT;
NN.clear();
// per prima cosa si calcola il volume della spherical cap di angolo AngleRad
ScalarType Height= 1.0 - cos(AngleRad); // height is measured from top...
// Surface is the one of the tangent cylinder
ScalarType CapArea = 2.0*M_PI*Height;
ScalarType Ratio = CapArea / (4.0*M_PI );
printf("----------AngleRad %f Angledeg %f ratio %f vn %i vn2 %i \n",AngleRad,math::ToDeg(AngleRad),Ratio,vn,int(vn/Ratio));
Fibonacci(vn/Ratio,NNT);
printf("asked %i got %i (expecting %i instead of %i)\n", int(vn/Ratio), int(NNT.size()), int(NNT.size()*Ratio), vn);
typename std::vector<Point3<ScalarType> >::iterator vi;
ScalarType cosAngle = cos(AngleRad);
for(vi=NNT.begin();vi!=NNT.end();++vi)
{
if(dir.dot(*vi) >= cosAngle) NN.push_back(*vi);
}
}
// This is an Implementation of the Dave Rusin’s Disco Ball algorithm
// You can spread the points as follows:
// Put N+1 points on the meridian from north to south poles, equally spaced.
// If you swing this meridian around the sphere, you'll sweep out the entire
// surface; in the process, each of the points will sweep out a circle. You
// can show that the ith point will sweep out a circle of radius sin(pi i/N).
// If you space points equally far apart on this circle, keeping the
// displacement roughly the same as on that original meridian, you'll be
// able to fit about 2N sin(pi i/N) points here. This process will put points
// pretty evenly spaced on the sphere; the number of such points is about
// 2+ 2N*Sum(i=1 to N-1) sin(pi i/N).
// The closed form of this summation
// 2.0 - ( (2.0*N * sin (M_PI/N))/(cos(M_PI/N) - 1.0));
static void DiscoBall(int vn, std::vector<Point3<ScalarType > > &NN)
{
// Guess the right N
ScalarType N=0;
for(N=1;N<vn;++N)
{
ScalarType expectedPoints = 2.0 - ( (2.0*N * sin (M_PI/N))/(cos(M_PI/N) - 1.0));
if(expectedPoints >= vn) break;
}
ScalarType VerticalAngle = M_PI / N;
NN.push_back(Point3<ScalarType>(0,0,1.0));
for (int i =1; i<N; ++i)
{
// Z is the north/south axis
ScalarType HorizRadius = sin(i*VerticalAngle);
ScalarType CircleLength = 2.0 * M_PI * HorizRadius;
ScalarType Z = cos(i*VerticalAngle);
ScalarType PointNumPerCircle = floor( CircleLength / VerticalAngle);
ScalarType HorizontalAngle = 2.0*M_PI/PointNumPerCircle;
for(ScalarType j=0;j<PointNumPerCircle;++j)
{
ScalarType X = cos(j*HorizontalAngle)*HorizRadius;
ScalarType Y = sin(j*HorizontalAngle)*HorizRadius;
NN.push_back(Point3<ScalarType>(X,Y,Z));
}
}
NN.push_back(Point3<ScalarType>(0,0,-1.0));
}
static void RecursiveOctahedron(int vn, std::vector<Point3<ScalarType > > &NN)
{
OctaLevel pp;
int ll=10;
while(pow(4.0f,ll)+2>vn) ll--;
pp.Init(ll);
sort(pp.v.begin(),pp.v.end());
int newsize = unique(pp.v.begin(),pp.v.end())-pp.v.begin();
pp.v.resize(newsize);
NN=pp.v;
//Perturb(NN);
}
static void Perturb(std::vector<Point3<ScalarType > > &NN)
{
float width=0.2f/sqrt(float(NN.size()));
typename std::vector<Point3<ScalarType> >::iterator vi;
for(vi=NN.begin(); vi!=NN.end();++vi)
{
Point3x pp(((float)rand())/RAND_MAX,
((float)rand())/RAND_MAX,
((float)rand())/RAND_MAX);
pp=pp*2.0-Point3x(1,1,1);
pp*=width;
(*vi)+=pp;
(*vi).Normalize();
}
}
/*
Trova la normale piu vicina a quella data.
Assume che tutte normale in ingresso sia normalizzata;
*/
static int BestMatchingNormal(const Point3x &n, std::vector<Point3x> &nv)
{
int ret=-1;
ScalarType bestang=-1;
ScalarType cosang;
typename std::vector<Point3x>::iterator ni;
for(ni=nv.begin();ni!=nv.end();++ni)
{
cosang=(*ni).dot(n);
if(cosang>bestang) {
bestang=cosang;
ret=ni-nv.begin();
}
}
assert(ret>=0 && ret <int(nv.size()));
return ret;
}
private :
class OctaLevel
{
public:
std::vector<Point3x> v;
int level;
int sz;
int sz2;
Point3x &Val(int i, int j) {
assert(i>=-sz2 && i<=sz2);
assert(j>=-sz2 && j<=sz2);
return v[i+sz2 +(j+sz2)*sz];
}
/*
* Only the first quadrant is generated and replicated onto the other ones.
*
* o lev == 1
* | \ sz2 = 2^lev = 2
* o - o sz = 5 (eg. all the points lie in a 5x5 squre)
* | \ | \
* o - o - o
*
* |
* V
*
* o
* | \ lev == 1
* o - o sz2 = 4
* | \ | \ sz = 9 (eg. all the points lie in a 9x9 squre)
* o - o - o
* | \ | \ | \
* o - o - o - o
* | \ | \ | \ | \
* o - o - o - o - o
*
*
*/
void Init(int lev)
{
sz2=pow(2.0f,lev);
sz=sz2*2+1;
v.resize(sz*sz,Point3x(0,0,0));
if(lev==0)
{
Val( 0,0)=Point3x( 0, 0, 1);
Val( 1,0)=Point3x( 1, 0, 0);
Val( 0,1)=Point3x( 0, 1, 0);
}
else
{
OctaLevel tmp;
tmp.Init(lev-1);
int i,j;
for(i=0;i<=sz2;++i)
for(j=0;j<=(sz2-i);++j)
{
if((i%2)==0 && (j%2)==0)
Val(i,j)=tmp.Val(i/2,j/2);
if((i%2)!=0 && (j%2)==0)
Val(i,j)=(tmp.Val((i-1)/2,j/2)+tmp.Val((i+1)/2,j/2))/2.0;
if((i%2)==0 && (j%2)!=0)
Val(i,j)=(tmp.Val(i/2,(j-1)/2)+tmp.Val(i/2,(j+1)/2))/2.0;
if((i%2)!=0 && (j%2)!=0)
Val(i,j)=(tmp.Val((i-1)/2,(j+1)/2)+tmp.Val((i+1)/2,(j-1)/2))/2.0;
Val( sz2-j, sz2-i)[0] = Val(i,j)[0]; Val( sz2-j, sz2-i)[1] = Val(i,j)[1]; Val( sz2-j, sz2-i)[2] = -Val(i,j)[2];
Val(-sz2+j, sz2-i)[0] =-Val(i,j)[0]; Val(-sz2+j, sz2-i)[1] = Val(i,j)[1]; Val(-sz2+j, sz2-i)[2] = -Val(i,j)[2];
Val( sz2-j,-sz2+i)[0] = Val(i,j)[0]; Val( sz2-j,-sz2+i)[1] =-Val(i,j)[1]; Val( sz2-j,-sz2+i)[2] = -Val(i,j)[2];
Val(-sz2+j,-sz2+i)[0] =-Val(i,j)[0]; Val(-sz2+j,-sz2+i)[1] =-Val(i,j)[1]; Val(-sz2+j,-sz2+i)[2] = -Val(i,j)[2];
Val(-i,-j)[0] = -Val(i,j)[0]; Val(-i,-j)[1] = -Val(i,j)[1]; Val(-i,-j)[2] = Val(i,j)[2];
Val( i,-j)[0] = Val(i,j)[0]; Val( i,-j)[1] = -Val(i,j)[1]; Val( i,-j)[2] = Val(i,j)[2];
Val(-i, j)[0] = -Val(i,j)[0]; Val(-i, j)[1] = Val(i,j)[1]; Val(-i, j)[2] = Val(i,j)[2];
}
typename std::vector<Point3<ScalarType> >::iterator vi;
for(vi=v.begin(); vi!=v.end();++vi)
(*vi).Normalize();
}
}
};
};
}
#endif
|