File: matrix44.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (672 lines) | stat: -rw-r--r-- 20,813 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_MATRIX44
#define __VCGLIB_MATRIX44

#include <memory.h>
#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
#include <vector>
#include <iostream>
#include <Eigen/Core>
#include <Eigen/LU>

namespace vcg {

/*
    Annotations:
Opengl stores matrix in  column-major order. That is, the matrix is stored as:

    a0  a4  a8  a12
    a1  a5  a9  a13
    a2  a6  a10 a14
    a3  a7  a11 a15

  Usually in opengl (see opengl specs) vectors are 'column' vectors
  so usually matrix are PRE-multiplied for a vector.
  So the command glTranslate generate a matrix that
  is ready to be premultipled for a vector:

    1 0 0 tx
    0 1 0 ty
    0 0 1 tz
    0 0 0  1

Matrix44 stores matrix in row-major order i.e.

    a0  a1  a2  a3
    a4  a5  a6  a7
    a8  a9  a10 a11
    a12 a13 a14 a15

So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix.
This mechanism is hidden by the templated function defined in wrap/gl/math.h;
If your machine has the ARB_transpose_matrix extension it will use the appropriate;
The various gl-like command SetRotate, SetTranslate assume that you are making matrix
for 'column' vectors.

*/

/** This class represent a 4x4 matrix. T is the kind of element in the matrix.
    */
template <class T> class Matrix44 {
protected:
    T _a[16];

public:
    typedef T ScalarType;

    ///@{

    /** $name Constructors
    *  No automatic casting and default constructor is empty
    */
    Matrix44() {}
    ~Matrix44() {}
    //Matrix44(const Matrix44 &m);
    Matrix44(const T v[]);

    T &ElementAt(const int row, const int col);
    T ElementAt(const int row, const int col) const;
    //T &operator[](const int i);
    //const T &operator[](const int i) const;
    T *V();
    const T *V() const ;

    T *operator[](const int i);
    const T *operator[](const int i) const;

    // return a copy of the i-th column
    Point4<T> GetColumn4(const int& i)const{
        assert(i>=0 && i<4);
        return Point4<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i));
        //return Point4<T>(_a[i],_a[i+4],_a[i+8],_a[i+12]);
    }

    Point3<T> GetColumn3(const int& i)const{
        assert(i>=0 && i<4);
        return Point3<T>(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i));
    }

    Point4<T> GetRow4(const int& i)const{
        assert(i>=0 && i<4);
        return Point4<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3));
        // return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
    }

    Point3<T> GetRow3(const int& i)const{
        assert(i>=0 && i<4);
        return Point3<T>(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2));
        // return *((Point4<T>*)(&_a[i<<2])); alternativa forse + efficiente
    }

    Matrix44 operator+(const Matrix44 &m) const;
    Matrix44 operator-(const Matrix44 &m) const;
    Matrix44 operator*(const Matrix44 &m) const;
    Point4<T> operator*(const Point4<T> &v) const;

    bool operator==(const  Matrix44 &m) const;
    bool operator!= (const  Matrix44 &m) const;

    Matrix44 operator-() const;
    Matrix44 operator*(const T k) const;
    void operator+=(const Matrix44 &m);
    void operator-=(const Matrix44 &m);
    void operator*=( const Matrix44 & m );
    void operator*=( const T k );

    template <class Matrix44Type>
    void ToMatrix(Matrix44Type & m) const 
    {
        for(int i = 0; i < 16; i++) 
        {
            m.V()[i]= V()[i];
        }
    }

    void ToEulerAngles(T &alpha, T &beta, T &gamma);

    template <class Matrix44Type>
    void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=T(m.V()[i]);}

    template <class EigenMatrix44Type>
    void ToEigenMatrix(EigenMatrix44Type & m) const {
        for(int i = 0; i < 4; i++)
            for(int j = 0; j < 4; j++)
                m(i,j)=(*this)[i][j];
    }

    template <class EigenMatrix44Type>
    void FromEigenMatrix(const EigenMatrix44Type & m){
        for(int i = 0; i < 4; i++)
            for(int j = 0; j < 4; j++)
                ElementAt(i,j)=T(m(i,j));
    }

    void FromEulerAngles(T alpha, T beta, T gamma);
    void SetZero();
    void SetIdentity();
    void SetDiagonal(const T k);
    Matrix44 &SetScale(const T sx, const T sy, const T sz);
    Matrix44 &SetScale(const Point3<T> &t);
    Matrix44<T>& SetColumn(const unsigned int ii,const Point4<T> &t);
    Matrix44<T>& SetColumn(const unsigned int ii,const Point3<T> &t);
    Matrix44 &SetTranslate(const Point3<T> &t);
    Matrix44 &SetTranslate(const T sx, const T sy, const T sz);
    Matrix44 &SetShearXY(const T sz);
    Matrix44 &SetShearXZ(const T sy);
    Matrix44 &SetShearYZ(const T sx);

    ///use radiants for angle.
    Matrix44 &SetRotateDeg(T AngleDeg, const Point3<T> & axis);
    Matrix44 &SetRotateRad(T AngleRad, const Point3<T> & axis);

    T Determinant() const;

    template <class Q> void Import(const Matrix44<Q> &m) {
        for(int i = 0; i < 16; i++)
            _a[i] = (T)(m.V()[i]);
    }
    template <class Q>
    static inline Matrix44 Construct( const Matrix44<Q> & b )
    {
		Matrix44<T> tmp;
		tmp.FromMatrix(b);
        return tmp;
    }

    static inline const Matrix44 &Identity( )
    {
        static Matrix44<T> tmp; tmp.SetIdentity();
        return tmp;
    }

    // for the transistion to eigen
    Matrix44 transpose() const
    {
        Matrix44 res = *this;
        Transpose(res);
        return res;
    }
    void transposeInPlace() { Transpose(*this); }

    void print() {
        unsigned int i, j, p;
        for (i=0, p=0; i<4; i++, p+=4)
        {
            std::cout << "[\t";
            for (j=0; j<4; j++)
                std::cout << _a[p+j] << "\t";

            std::cout << "]\n";
        }
        std::cout << "\n";
    }

};

/*** Postmultiply */
//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m);

///Premultiply
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p);

template <class T> Matrix44<T> &Transpose(Matrix44<T> &m);
//return NULL matrix if not invertible
template <class T> Matrix44<T> Inverse(const Matrix44<T> &m);

typedef Matrix44<short>  Matrix44s;
typedef Matrix44<int>    Matrix44i;
typedef Matrix44<float>  Matrix44f;
typedef Matrix44<double> Matrix44d;



//template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
//    memcpy((T *)_a, (const T *)m._a, 16 * sizeof(T));
//}

template <class T> Matrix44<T>::Matrix44(const T v[]) {
    memcpy((T *)_a, v, 16 * sizeof(T));
}

template <class T> T &Matrix44<T>::ElementAt(const int row, const int col) {
    assert(row >= 0 && row < 4);
    assert(col >= 0 && col < 4);
    return _a[(row<<2) + col];
}

template <class T> T Matrix44<T>::ElementAt(const int row, const int col) const {
    assert(row >= 0 && row < 4);
    assert(col >= 0 && col < 4);
    return _a[(row<<2) + col];
}

//template <class T> T &Matrix44<T>::operator[](const int i) {
//	assert(i >= 0 && i < 16);
//	return ((T *)_a)[i];
//}
//
//template <class T> const T &Matrix44<T>::operator[](const int i) const {
//	assert(i >= 0 && i < 16);
//	return ((T *)_a)[i];
//}
template <class T> T *Matrix44<T>::operator[](const int i) {
    assert(i >= 0 && i < 4);
    return _a+i*4;
}

template <class T> const T *Matrix44<T>::operator[](const int i) const {
    assert(i >= 0 && i < 4);
    return _a+i*4;
}
template <class T>  T *Matrix44<T>::V()  { return _a;}
template <class T> const T *Matrix44<T>::V() const { return _a;}


template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
    Matrix44<T> ret;
    for(int i = 0; i < 16; i++)
        ret.V()[i] = V()[i] + m.V()[i];
    return ret;
}

template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
    Matrix44<T> ret;
    for(int i = 0; i < 16; i++)
        ret.V()[i] = V()[i] - m.V()[i];
    return ret;
}

template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
    Matrix44 ret;
    for(int i = 0; i < 4; i++)
        for(int j = 0; j < 4; j++) {
            T t = 0.0;
            for(int k = 0; k < 4; k++)
                t += ElementAt(i, k) * m.ElementAt(k, j);
            ret.ElementAt(i, j) = t;
        }
    return ret;
}

template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
    Point4<T> ret;
    for(int i = 0; i < 4; i++){
        T t = 0.0;
        for(int k = 0; k < 4; k++)
            t += ElementAt(i,k) * v[k];
        ret[i] = t;
    }
    return ret;
}


template <class T> bool Matrix44<T>::operator==(const  Matrix44 &m) const {
    for(int i = 0; i < 4; ++i)
        for(int j = 0; j < 4; ++j)
            if(ElementAt(i,j) != m.ElementAt(i,j))
                return false;
    return true;
}
template <class T> bool Matrix44<T>::operator!=(const  Matrix44 &m) const {
    for(int i = 0; i < 4; ++i)
        for(int j = 0; j < 4; ++j)
            if(ElementAt(i,j) != m.ElementAt(i,j))
                return true;
    return false;
}

template <class T> Matrix44<T> Matrix44<T>::operator-() const {
    Matrix44<T> res;
    for(int i = 0; i < 16; i++)
        res.V()[i] = -V()[i];
    return res;
}

template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
    Matrix44<T> res;
    for(int i = 0; i < 16; i++)
        res.V()[i] =V()[i] * k;
    return res;
}

template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
    for(int i = 0; i < 16; i++)
        V()[i] += m.V()[i];
}
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
    for(int i = 0; i < 16; i++)
        V()[i] -= m.V()[i];
}
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
    *this = *this *m;
}

template < class PointType , class T > void operator*=( std::vector<PointType> &vert, const Matrix44<T> & m ) {
    typename std::vector<PointType>::iterator ii;
    for(ii=vert.begin();ii!=vert.end();++ii)
        (*ii).P()=m * (*ii).P();
}

template <class T> void Matrix44<T>::operator*=( const T k ) {
    for(int i = 0; i < 16; i++)
        _a[i] *= k;
}

template <class T>
void Matrix44<T>::ToEulerAngles(T &alpha, T &beta, T &gamma)
{
    alpha = atan2(ElementAt(1,2), ElementAt(2,2));
    beta = asin(-ElementAt(0,2));
    gamma = atan2(ElementAt(0,1), ElementAt(0,0));
}

template <class T>
void Matrix44<T>::FromEulerAngles(T alpha, T beta, T gamma)
{
    this->SetZero();

    T cosalpha = cos(alpha);
    T cosbeta = cos(beta);
    T cosgamma = cos(gamma);
    T sinalpha = sin(alpha);
    T sinbeta = sin(beta);
    T singamma = sin(gamma);

    ElementAt(0,0) = cosbeta * cosgamma;
    ElementAt(1,0) = -cosalpha * singamma + sinalpha * sinbeta * cosgamma;
    ElementAt(2,0) = sinalpha * singamma + cosalpha * sinbeta * cosgamma;

    ElementAt(0,1) = cosbeta * singamma;
    ElementAt(1,1) = cosalpha * cosgamma + sinalpha * sinbeta * singamma;
    ElementAt(2,1) = -sinalpha * cosgamma + cosalpha * sinbeta * singamma;

    ElementAt(0,2) = -sinbeta;
    ElementAt(1,2) = sinalpha * cosbeta;
    ElementAt(2,2) = cosalpha * cosbeta;

    ElementAt(3,3) = 1;
}

template <class T> void Matrix44<T>::SetZero() {
    memset((T *)_a, 0, 16 * sizeof(T));
}

template <class T> void Matrix44<T>::SetIdentity() {
    SetDiagonal(1);
}

template <class T> void Matrix44<T>::SetDiagonal(const T k) {
    SetZero();
    ElementAt(0, 0) = k;
    ElementAt(1, 1) = k;
    ElementAt(2, 2) = k;
    ElementAt(3, 3) = 1;
}

template <class T> Matrix44<T> &Matrix44<T>::SetScale(const Point3<T> &t) {
    SetScale(t[0], t[1], t[2]);
    return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
    SetZero();
    ElementAt(0, 0) = sx;
    ElementAt(1, 1) = sy;
    ElementAt(2, 2) = sz;
    ElementAt(3, 3) = 1;
    return *this;
}

template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<T> &t) {
    SetTranslate(t[0], t[1], t[2]);
    return *this;
}
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const T tx, const T ty, const T tz) {
    SetIdentity();
    ElementAt(0, 3) = tx;
    ElementAt(1, 3) = ty;
    ElementAt(2, 3) = tz;
    return *this;
}

template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,const Point3<T> &t) {
    assert( ii < 4 );
    ElementAt(0, ii) = t.X();
    ElementAt(1, ii) = t.Y();
    ElementAt(2, ii) = t.Z();
    return *this;
}

template <class T> Matrix44<T> &Matrix44<T>::SetColumn(const unsigned int ii,const Point4<T> &t) {
    assert( ii < 4 );
    ElementAt(0, ii) = t[0];
    ElementAt(1, ii) = t[1];
    ElementAt(2, ii) = t[2];
    ElementAt(3, ii) = t[3];
    return *this;
}


template <class T> Matrix44<T> &Matrix44<T>::SetRotateDeg(T AngleDeg, const Point3<T> & axis) {
    return SetRotateRad(math::ToRad(AngleDeg),axis);
}

template <class T> Matrix44<T> &Matrix44<T>::SetRotateRad(T AngleRad, const Point3<T> & axis) {
    //angle = angle*(T)3.14159265358979323846/180; e' in radianti!
    T c = math::Cos(AngleRad);
    T s = math::Sin(AngleRad);
    T q = 1-c;
    Point3<T> t = axis;
    t.Normalize();
    ElementAt(0,0) = t[0]*t[0]*q + c;
    ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
    ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
    ElementAt(0,3) = 0;
    ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
    ElementAt(1,1) = t[1]*t[1]*q + c;
    ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
    ElementAt(1,3) = 0;
    ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
    ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
    ElementAt(2,2) = t[2]*t[2]*q +c;
    ElementAt(2,3) = 0;
    ElementAt(3,0) = 0;
    ElementAt(3,1) = 0;
    ElementAt(3,2) = 0;
    ElementAt(3,3) = 1;
    return *this;
}

/*
Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] )
This procedure decompose it in a sequence of
- Scale,Shear,Rotation e Translation

- ScaleV and Tranv are obiviously scaling and translation.
- ShearV contains three scalars with, respectively,
      ShearXY, ShearXZ and ShearYZ
- RotateV contains the rotations (in degree!) around the x,y,z axis
  The input matrix is modified leaving inside it a simple roto translation.

  To obtain the original matrix the above transformation have to be applied in the strict following way:

  OriginalMatrix =  Trn * Rtx*Rty*Rtz  * ShearYZ*ShearXZ*ShearXY * Scl

Example Code:
double srv() { return (double(rand()%40)-20)/2.0; } // small random value

  srand(time(0));
  Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1);
  Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1);
  Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1);
  Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1);

  Matrix44d Scl; Scl.SetScale(ScV);
  Matrix44d Sxy; Sxy.SetShearXY(ShV[0]);
  Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]);
  Matrix44d Syz; Syz.SetShearYZ(ShV[2]);
  Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0));
  Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0));
  Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1));
  Matrix44d Trn; Trn.SetTranslate(TrV);

  Matrix44d StartM =  Trn * Rtx*Rty*Rtz  * Syz*Sxz*Sxy *Scl;
  Matrix44d ResultM=StartM;
  Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut);

  Scl.SetScale(ScVOut);
  Sxy.SetShearXY(ShVOut[0]);
  Sxz.SetShearXZ(ShVOut[1]);
  Syz.SetShearYZ(ShVOut[2]);
  Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0));
  Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0));
  Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1));
  Trn.SetTranslate(TrVOut);

  // Now Rebuild is equal to StartM
  Matrix44d RebuildM =  Trn * Rtx*Rty*Rtz  * Syz*Sxz*Sxy * Scl ;
*/

template <class T>
bool Decompose(Matrix44<T> &M, Point3<T> &ScaleV, Point3<T> &ShearV, Point3<T> &RotV,Point3<T> &TranV)
{
    if(!(M[3][0]==0 && M[3][1]==0 && M[3][2]==0 && M[3][3]==1) ) // the matrix is projective
        return false;
    if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible...

    // First Step recover the traslation
    TranV=M.GetColumn3(3);

    // Second Step Recover Scale and Shearing interleaved
    ScaleV[0]=Norm(M.GetColumn3(0));
    Point3<T> R[3];
    R[0]=M.GetColumn3(0);
    R[0].Normalize();

    ShearV[0]=R[0]*M.GetColumn3(1); // xy shearing
    R[1]= M.GetColumn3(1)-R[0]*ShearV[0];
    assert(math::Abs(R[1]*R[0])<1e-10);
    ScaleV[1]=Norm(R[1]);   // y scaling
    R[1]=R[1]/ScaleV[1];
    ShearV[0]=ShearV[0]/ScaleV[1];

    ShearV[1]=R[0]*M.GetColumn3(2); // xz shearing
    R[2]= M.GetColumn3(2)-R[0]*ShearV[1];
    assert(math::Abs(R[2]*R[0])<1e-10);

    R[2] = R[2]-R[1]*(R[2]*R[1]);
    assert(math::Abs(R[2]*R[1])<1e-10);
    assert(math::Abs(R[2]*R[0])<1e-10);

    ScaleV[2]=Norm(R[2]);
    ShearV[1]=ShearV[1]/ScaleV[2];
    R[2]=R[2]/ScaleV[2];
    assert(math::Abs(R[2]*R[1])<1e-10);
    assert(math::Abs(R[2]*R[0])<1e-10);

    ShearV[2]=R[1]*M.GetColumn3(2); // yz shearing
    ShearV[2]=ShearV[2]/ScaleV[2];
    int i,j;
    for(i=0;i<3;++i)
        for(j=0;j<3;++j)
            M[i][j]=R[j][i];

    // Third and last step: Recover the rotation
    //now the matrix should be a pure rotation matrix so its determinant is +-1
    double det=M.Determinant();
    if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible...
    assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1...
    if(det<0) {
        ScaleV  *= -1;
        M *= -1;
    }

    double alpha,beta,gamma; // rotations around the x,y and z axis
    beta=asin( M[0][2]);
    double cosbeta=cos(beta);
    if(math::Abs(cosbeta) > 1e-5)
    {
        alpha=asin(-M[1][2]/cosbeta);
        if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha;
        gamma=asin(-M[0][1]/cosbeta);
        if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma;
    }
    else
    {
        alpha=asin(-M[1][0]);
        if(M[1][1]<0) alpha=M_PI-alpha;
        gamma=0;
    }

    RotV[0]=math::ToDeg(alpha);
    RotV[1]=math::ToDeg(beta);
    RotV[2]=math::ToDeg(gamma);

    return true;
}




template <class T> T Matrix44<T>::Determinant() const {
    Eigen::Matrix4d mm;
    this->ToEigenMatrix(mm);
    return mm.determinant();
}


template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
    T w;
    Point3<T> s;
    s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
    s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
    s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
    w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
    if(w!= 0) s /= w;
    return s;
}

template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
    for(int i = 1; i < 4; i++)
        for(int j = 0; j < i; j++) {
            std::swap(m.ElementAt(i, j), m.ElementAt(j, i));
        }
    return m;
}

template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
    Eigen::Matrix4d mm,mmi;
    m.ToEigenMatrix(mm);
    mmi=mm.inverse();
    Matrix44<T> res;
    res.FromEigenMatrix(mmi);
    return res;
}

} //namespace
#endif