File: quaternion.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (355 lines) | stat: -rw-r--r-- 10,638 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef QUATERNION_H
#define QUATERNION_H

#include <vcg/space/point3.h>
#include <vcg/space/point4.h>
#include <vcg/math/base.h>
#include <vcg/math/matrix44.h>
#include <vcg/math/matrix33.h>

namespace vcg {

	/** Class quaternion.
	    A quaternion is a point in the unit sphere in four dimension: all
			rotations in three-dimensional space can be represented by a quaternion.
		*/
template<class S> class Quaternion: public Point4<S> {
public:

	Quaternion() {}
	Quaternion(const S v0, const S v1, const S v2, const S v3): Point4<S>(v0,v1,v2,v3){}	
	Quaternion(const Point4<S> p) : Point4<S>(p)	{}
  Quaternion(const S phi, const Point3<S> &a);

  Quaternion operator*(const S &s) const;
  //Quaternion &operator*=(S d);
  Quaternion operator*(const Quaternion &q) const;
  Quaternion &operator*=(const Quaternion &q);
  void Invert();
	Quaternion<S> Inverse() const;
  
	void SetIdentity();

  void FromAxis(const S phi, const Point3<S> &a);
  void ToAxis(S &phi, Point3<S> &a ) const;

  ///warning m must be a rotation matrix, result is unpredictable otherwise
  void FromMatrix(const Matrix44<S> &m);
  void FromMatrix(const Matrix33<S> &m);

  void ToMatrix(Matrix44<S> &m) const;
  void ToMatrix(Matrix33<S> &m) const;

	void ToEulerAngles(S &alpha, S &beta, S &gamma) const;
	void FromEulerAngles(S alpha, S beta, S gamma);
  
  Point3<S> Rotate(const Point3<S> vec) const; 
  
  //duplicated ... because of gcc new confoming to ISO template derived classes
  //do no 'see' parent members (unless explicitly specified) 
  const S & V ( const int i ) const	{ assert(i>=0 && i<4); return Point4<S>::V(i); }
  S & V ( const int i )	{ assert(i>=0 && i<4); return Point4<S>::V(i); }

  /// constuctor that imports from different Quaternion types
  template <class Q>
  static inline Quaternion Construct( const Quaternion<Q> & b )
  {
    return Quaternion(S(b[0]),S(b[1]),S(b[2]),S(b[3]));
  }

private:
};

/*template<classS, class M> void QuaternionToMatrix(Quaternion<S> &s, M &m);
template<classS, class M> void MatrixtoQuaternion(M &m, Quaternion<S> &s);*/

template <class S> Quaternion<S> Interpolate(  Quaternion<S>   a,   Quaternion<S>   b, double t);
template <class S> Quaternion<S> &Invert(Quaternion<S> &q);
template <class S> Quaternion<S> Inverse(const Quaternion<S> &q);


//Implementation
template <class S> 
void Quaternion<S>::SetIdentity(){
	FromAxis(0, Point3<S>(1, 0, 0));
}
	

template <class S> Quaternion<S>::Quaternion(const S phi, const Point3<S> &a) {
  FromAxis(phi, a);
}
 	 

template <class S> Quaternion<S> Quaternion<S>::operator*(const S &s) const {
		return (Quaternion(V(0)*s,V(1)*s,V(2)*s,V(3)*s));
}
 
template <class S> Quaternion<S> Quaternion<S>::operator*(const Quaternion &q) const {		
	Point3<S> t1(V(1), V(2), V(3));
  Point3<S> t2(q.V(1), q.V(2), q.V(3));
		
  S d  = t2.dot(t1);
	Point3<S> t3 = t1 ^ t2;
		
  t1 *= q.V(0);
	t2 *= V(0);

	Point3<S> tf = t1 + t2 +t3;

   Quaternion<S> t;
	t.V(0) = V(0) * q.V(0) - d;
	t.V(1) = tf[0];
	t.V(2) = tf[1];
	t.V(3) = tf[2];
	return t;
}

template <class S> Quaternion<S> &Quaternion<S>::operator*=(const Quaternion &q) {
  S ww = V(0) * q.V(0) - V(1) * q.V(1) - V(2) * q.V(2) - V(3) * q.V(3);
	S xx = V(0) * q.V(1) + V(1) * q.V(0) + V(2) * q.V(3) - V(3) * q.V(2);
	S yy = V(0) * q.V(2) - V(1) * q.V(3) + V(2) * q.V(0) + V(3) * q.V(1);

	V(0) = ww; 
  V(1) = xx; 
  V(2) = yy;
  V(3) = V(0) * q.V(3) + V(1) * q.V(2) - V(2) * q.V(1) + V(3) * q.V(0);
	return *this;
}

template <class S> void Quaternion<S>::Invert() {
	V(1)*=-1;
	V(2)*=-1;
	V(3)*=-1;
}

template <class S> Quaternion<S> Quaternion<S>::Inverse() const{
	return Quaternion<S>( V(0), -V(1), -V(2), -V(3) );
}

template <class S> void Quaternion<S>::FromAxis(const S phi, const Point3<S> &a) {
  Point3<S> b = a;
  b.Normalize();
  S s = math::Sin(phi/(S(2.0)));

  V(0) = math::Cos(phi/(S(2.0)));
	V(1) = b[0]*s;
	V(2) = b[1]*s;
	V(3) = b[2]*s;
}

template <class S> void Quaternion<S>::ToAxis(S &phi, Point3<S> &a) const {
  S s = math::Asin(V(0))*S(2.0);
  phi = math::Acos(V(0))*S(2.0);

	if(s < 0) 
		phi = - phi;

  a.V(0) = V(1);
	a.V(1) = V(2);
	a.V(2) = V(3);
  a.Normalize();
}


template <class S> Point3<S> Quaternion<S>::Rotate(const Point3<S> p) const {
		Quaternion<S> co = *this;
		co.Invert();

    Quaternion<S> tmp(0, p.V(0), p.V(1), p.V(2));

		tmp = (*this) * tmp * co;
		return 	Point3<S>(tmp.V(1), tmp.V(2), tmp.V(3));
	}


template<class S, class M> void QuaternionToMatrix(const Quaternion<S> &q, M &m) {
  typedef typename M::ScalarType MScalarType;
  
  MScalarType x2 = q.V(1) + q.V(1);
  MScalarType y2 = q.V(2) + q.V(2);
  MScalarType z2 = q.V(3) + q.V(3);
  {
    MScalarType xx2 = q.V(1) * x2;
    MScalarType yy2 = q.V(2) * y2;
    MScalarType zz2 = q.V(3) * z2;
    m[0][0] = 1.0f - yy2 - zz2;
    m[1][1] = 1.0f - xx2 - zz2;
    m[2][2] = 1.0f - xx2 - yy2;
  }
  {
    MScalarType yz2 = q.V(2) * z2;
    MScalarType wx2 = q.V(0) * x2;
    m[1][2] = yz2 - wx2;
    m[2][1] = yz2 + wx2;
  }
  {
    MScalarType xy2 = q.V(1) * y2;
    MScalarType wz2 = q.V(0) * z2;
    m[0][1] = xy2 - wz2;
    m[1][0] = xy2 + wz2;
  }
  {
    MScalarType xz2 = q.V(1) * z2;
    MScalarType wy2 = q.V(0) * y2;
    m[2][0] = xz2 - wy2;
    m[0][2] = xz2 + wy2;
  }
}

template <class S> void Quaternion<S>::ToMatrix(Matrix44<S> &m) const	{
  QuaternionToMatrix<S, Matrix44<S> >(*this, m);
  m[0][3] = (S)0.0;
  m[1][3] = (S)0.0;
  m[2][3] = (S)0.0;
  m[3][0] = (S)0.0;
  m[3][1] = (S)0.0;
  m[3][2] = (S)0.0;
  m[3][3] = (S)1.0;
}

template <class S> void Quaternion<S>::ToMatrix(Matrix33<S> &m) const	{
  QuaternionToMatrix<S, Matrix33<S> >(*this, m);

 
}


template<class S, class M> void MatrixToQuaternion(const M &m, Quaternion<S> &q) {

  if ( m[0][0] + m[1][1] + m[2][2] > 0.0f ) {
    S t =  m[0][0] + m[1][1] + m[2][2] + 1.0f;
    S s = (S)0.5 / math::Sqrt(t);
    q.V(0) = s * t;
    q.V(3) = ( m[1][0] - m[0][1] ) * s;
    q.V(2) = ( m[0][2] - m[2][0] ) * s;
    q.V(1) = ( m[2][1] - m[1][2] ) * s;
  } else if ( m[0][0] > m[1][1] && m[0][0] > m[2][2] ) {
    S t = m[0][0] - m[1][1] - m[2][2] + 1.0f;
    S s = (S)0.5 / math::Sqrt(t);
    q.V(1) = s * t;
    q.V(2) = ( m[1][0] + m[0][1] ) * s;
    q.V(3) = ( m[0][2] + m[2][0] ) * s;
    q.V(0) = ( m[2][1] - m[1][2] ) * s;
  } else if ( m[1][1] > m[2][2] ) {
    S t = - m[0][0] + m[1][1] - m[2][2] + 1.0f;
    S s = (S)0.5 / math::Sqrt(t);
    q.V(2) = s * t;
    q.V(1) = ( m[1][0] + m[0][1] ) * s;
    q.V(0) = ( m[0][2] - m[2][0] ) * s;
    q.V(3) = ( m[2][1] + m[1][2] ) * s; 
  } else {
    S t = - m[0][0] - m[1][1] + m[2][2] + 1.0f;
    S s = (S)0.5 / math::Sqrt(t);
    q.V(3) = s * t;
    q.V(0) = ( m[1][0] - m[0][1] ) * s;
    q.V(1) = ( m[0][2] + m[2][0] ) * s;
    q.V(2) = ( m[2][1] + m[1][2] ) * s;
  }
}


template <class S> void Quaternion<S>::FromMatrix(const Matrix44<S> &m) {	
  MatrixToQuaternion<S, Matrix44<S> >(m, *this);
}
template <class S> void Quaternion<S>::FromMatrix(const Matrix33<S> &m) {	
  MatrixToQuaternion<S, Matrix33<S> >(m, *this);
}


template<class S>
void Quaternion<S>::ToEulerAngles(S &alpha, S &beta, S &gamma) const
{
#define P(a,b,c,d) (2*(V(a)*V(b)+V(c)*V(d)))
#define M(a,b,c,d) (2*(V(a)*V(b)-V(c)*V(d)))
	alpha = math::Atan2( P(0,1,2,3) , 1-P(1,1,2,2) );
	beta  = math::Asin ( M(0,2,3,1) );
	gamma = math::Atan2( P(0,3,1,2) , 1-P(2,2,3,3) );
#undef P
#undef M
}

template<class S>
void Quaternion<S>::FromEulerAngles(S alpha, S beta, S gamma)
{
	S cosalpha = math::Cos(alpha / 2.0);
	S cosbeta = math::Cos(beta / 2.0);
	S cosgamma = math::Cos(gamma / 2.0);
	S sinalpha = math::Sin(alpha / 2.0);
	S sinbeta = math::Sin(beta / 2.0);
	S singamma = math::Sin(gamma / 2.0);

	V(0) = cosalpha * cosbeta * cosgamma + sinalpha * sinbeta * singamma;
	V(1) = sinalpha * cosbeta * cosgamma - cosalpha * sinbeta * singamma;
	V(2) = cosalpha * sinbeta * cosgamma + sinalpha * cosbeta * singamma;
	V(3) = cosalpha * cosbeta * singamma - sinalpha * sinbeta * cosgamma;
}

template <class S> Quaternion<S> &Invert(Quaternion<S> &m) {
  m.Invert();
  return m;
}

template <class S> Quaternion<S> Inverse(const Quaternion<S> &m) {
  Quaternion<S> a = m;
  a.Invert();
  return a;
}

template <class S> Quaternion<S> Interpolate(   Quaternion<S>   a ,    Quaternion<S>   b , double t) {
 	 
		double v = a.V(0) * b.V(0) + a.V(1) * b.V(1) + a.V(2) * b.V(2) + a.V(3) * b.V(3);
		double phi = math::Acos(v);
		if(phi > 0.01) {
			a = a  * (math::Sin(phi *(1-t))/math::Sin(phi));
			b = b  * (math::Sin(phi * t)/math::Sin(phi));	
		}
		
		Quaternion<S> c;
		c.V(0) = a.V(0) + b.V(0);
		c.V(1) = a.V(1) + b.V(1);
		c.V(2) = a.V(2) + b.V(2);
		c.V(3) = a.V(3) + b.V(3);
		
		if(v < -0.999) { //almost opposite
			double d = t * (1 - t);
			if(c.V(0) == 0)
				c.V(0) += d;
			else
				c.V(1) += d;		
		}
		c.Normalize();
		return c;
	}
		
	

typedef Quaternion<float>  Quaternionf;
typedef Quaternion<double> Quaterniond;

} // end namespace


#endif