1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_EDGE_POS
#define __VCG_EDGE_POS
namespace vcg {
namespace edge {
// Needed Prototypes (pos is include before topology)
template <class EDGETYPE>
bool IsEdgeBorder(EDGETYPE const & e, const int j );
template <class EDGETYPE>
bool IsEdgeManifold(EDGETYPE const & e, const int j );
/*
Vertex_Edge: run over the fan of a vertex (no order is specified)
*/
/** Class VertexStar
@param EDGETYPE Specifies the type of the faces
*/
template <class EDGETYPE>
class VertexStar
{
public:
/// Pointer to an edge
EDGETYPE *e;
/// Local index of the vertex
int z;
/// Default Constructor
VertexStar() : e(0), z(0) {}
/// Constructor which associates the EdgePos elementet with a face and its edge
VertexStar(EDGETYPE * const ep, int const zp)
{
e=ep;
z=zp;
}
/// Function to jump on the next face of the list of vertex z
void NextF()
{
EDGETYPE * t = e;
e = (EDGETYPE *)t->VEp(z);
z = t->VEi(z);
}
};
/*
*/
/** Class Pos.
This structure is equivalent to a half-edge.
@param MFTYPE (Template-Parameter) Specifies the type of the edges
*/
template <class EDGETYPE>
class Pos
{
public:
typedef typename EDGETYPE::VertexType VertexType;
typedef Pos< EDGETYPE> POSTYPE;
/// Pointer to the edge
EDGETYPE *e;
/// Pointer to the vertex
VertexType *v;
/// Default constructor
Pos(){}
/// Constructor which associates the half-edge elementet with a face, its edge and its vertex
Pos(EDGETYPE * ep, int zp) {e=ep;v=ep->V(zp);}
Pos(EDGETYPE * ep, VertexType *vp){e=ep;v=vp;}
// Official Access functions functions
VertexType *& V(){ return v; }
EDGETYPE *& E(){ return e; }
int VInd(){
return (e->V(0)==v)?0:1;
}
/// Operator to compare two edge pos
inline bool operator == ( POSTYPE const & p ) const {
return (e==p.e &&v==p.v);
}
/// Operator to compare two edge pos
inline bool operator != ( POSTYPE const & p ) const {
return (e!=p.e || v!=p.v);
}
/// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
inline bool operator <= ( POSTYPE const & p) const {
return (e!=p.e)?(e<p.e):
(v<=p.v);
}
/// Assignment operator
inline POSTYPE & operator = ( const POSTYPE & h ){
e=h.e;
v=h.v;
return *this;
}
/// Set to null the half-edge
void SetNull(){
e=0;
v=0;
}
/// Check if the half-edge is null
bool IsNull() const {
return e==0 || v==0 ;
}
/*! \brief It advances the current Pos along the edge chain.
*
* Note that a Pos implicitly encode an ordering in the chain:
* the one denoted by the classical arrow shaped icon of a pos.
* In other words
*
* o---------o
* | /
* |/
*
* Meaningful only for 1-manifold edge chain.
*/
void NextE()
{
FlipE();
FlipV();
}
/// Changes vertex maintaining the edge
void FlipV()
{
v = (e->V(0)==v)?e->V(1):e->V(0);
}
/// Changes edge maintaining the vertex
void FlipE()
{
assert( (e->V(0)==v) ||(e->V(1)==v));
e = (e->V(0)==v)?e->EEp(0):e->EEp(1);
}
// return the vertex that it should have if we make FlipV;
VertexType *VFlip()
{
return (e->V(0)==v)?e->V(1):e->V(0);
}
// Trova il prossimo half-edge di bordo (nhe)
// tale che
// --nhe.f adiacente per vertice a he.f
// --nhe.v adiacente per edge di bordo a he.v
// l'idea e' che se he e' un half edge di bordo
// si puo scorrere tutto un bordo facendo
//
// hei=he;
// do
// hei.Nextb()
// while(hei!=he);
/// Checks if the half-edge is of border
bool IsBorder()
{
return edge::IsEdgeBorder(*e,VInd());
}
bool IsManifold()
{
return edge::IsEdgeManifold(*e,VInd());
}
/** Function to inizialize an half-edge.
@param fp Puntatore alla faccia
@param zp Indice dell'edge
@param vp Puntatore al vertice
*/
void Set(EDGETYPE * const ep, VertexType * const vp)
{
e=ep;v=vp;
}
};
/** Class VEIterator.
This class is used as an iterator over the VE adjacency.
It allow to easily traverse all the edges around a given vertex v;
The edges are traversed in no particular order. No Manifoldness requirement.
typical example:
VertexPointer v;
vcg::edge::VEIterator<EdgeType> vei(v);
for (;!vei.End();++vei)
vei.E()->ClearV();
// Alternative
vcg::edge::VEIterator<EdgeType> vei(f, 1);
while (!vei.End()){
vei.E()->ClearV();
++vei;
}
See also the JumpingPos in jumping_pos.h for an iterator that loops
around the faces of a vertex using FF topology and without requiring the VF topology.
*/
template <typename EdgeType>
class VEIterator
{
public:
/// The vertex type
typedef typename EdgeType::VertexType VertexType;
/// The Base face type
typedef EdgeType VFIEdgeType;
/// The vector type
typedef typename VertexType::CoordType CoordType;
/// The scalar type
typedef typename VertexType::ScalarType ScalarType;
/// Pointer to the face of the half-edge
EdgeType *e;
/// Index of the vertex
int z;
/// Default constructor
VEIterator(){}
/// Constructor which associates the half-edge elementet with a face and its vertex
VEIterator(EdgeType * _e, const int & _z){e = _e; z = _z;}
/// Constructor which takes a pointer to vertex
VEIterator(const VertexType * _v){
e = _v->cVEp(); z = _v->cVEi();
assert(z>=0 && "VE adjacency not initialized");
}
VFIEdgeType * &E() { return e;}
int & I() { return z;}
// Access to the vertex. Having a VEIterator vfi, it corresponds to
// vfi.V() = vfi.I()->V(vfi.I())
inline VertexType *V() const { return e->V(z);}
inline VertexType * const & V0() const { return e->V0(z);}
inline VertexType * const & V1() const { return e->V1(z);}
bool End() const {return e==0;}
VFIEdgeType *operator++() {
EdgeType* t = e;
e = e->VEp(z);
z = t->VEi(z);
return e;
}
};
} // end namespace
} // end namespace
#endif
|