File: topology.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (256 lines) | stat: -rw-r--r-- 7,643 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef _VCG_EDGE_TOPOLOGY
#define _VCG_EDGE_TOPOLOGY

namespace vcg {
namespace edge {
/** \addtogroup edge */
/*@{*/


template <class EdgeType>
inline bool IsEdgeManifold( EdgeType const & e, const int j )
{
  return ( e.cEEp(j) == &e || &e == e.cEEp(j)->cEEp(e.cEEi(j)) );
}


/** Return a boolean that indicate if the j-th edge of the face is a border.
  @param j Index of the edge
  @return true if j is an edge of border, false otherwise
*/
template <class EdgeType>
inline bool IsEdgeBorder(EdgeType const & e,  const int j )
{
  if(EdgeType::HasEEAdjacency())
    return e.cEEp(j)==&e;

  assert(0);
  return true;
}

template <class VertexType>
void VVStarVE(const VertexType* vp, std::vector<VertexType *> &starVec)
{
  starVec.clear();
  edge::VEIterator<typename VertexType::EdgeType> vei(vp);
  while(!vei.End())
      {
        starVec.push_back(vei.V1());
        ++vei;
      }
}

template <class EdgeType>
void VEStarVE(const typename EdgeType::VertexType* vp, std::vector<EdgeType *> &starVec)
{
  starVec.clear();
  edge::VEIterator<EdgeType> vei(vp);
  while(!vei.End())
      {
        starVec.push_back(vei.E());
        ++vei;
      }
}

/// Completely detach an edge from the VE adjacency. Useful before deleting it 
template <class EdgeType>
void VEDetach(EdgeType & e)
{
  VEDetach(e,0);
  VEDetach(e,1);
}

/// It detaches the given edge e from the VE adjacency on the vertex z
/// It is used for careful hand stictching of topologies.
template <class EdgeType>
void VEDetach(EdgeType & e, int z)
{
  typename EdgeType::VertexType *vz = e.V(z); // the vertex from which the edge must be detached.
  
  if(vz->VEp()==&e )  //if it is the first edge in the VE chain it detaches it from the begin
  {
    assert(vz->VEi() == z);
    vz->VEp() = e.VEp(z);
    vz->VEi() = e.VEi(z); 
    return;  
  }
  else  // scan the list of edges to find the current edge e to be detached
  {
    for( VEIterator<EdgeType> vei(vz);!vei.End();++vei)
    {
      if(vei.E()->VEp(vei.I()) == &e)
      {
        vei.e->VEp(vei.z) = e.VEp(z);
        vei.e->VEi(vei.z) = e.VEi(z);
        return;       
      }
    }
    assert(0);
  }
}

/// Append an edge in the VE list of vertex e->V(z)
template <class EdgeType>
void VEAppend(EdgeType* e, int z)
{
    typename EdgeType::VertexType *v = e->V(z);
    if (v->VEp()!=0)
    {
        EdgeType *e0=v->VEp();
        int       z0=v->VEi();
        //append
        e->VEp(z)=e0;
        e->VEi(z)=z0;
    }
    else
    {
      e->VEp(z)=0;
      e->VEi(z)=-1;
    }
    v->VEp()=e;
    v->VEi()=z;
}


/*! Perform a simple edge collapse using VE adjacency
 * 
 * It collapses the two edges incidnent on the indicated vertex so that the passed edge survives, 
 * the indicated vertex is deleted, and the edge ajacent to e0 along z is deleted too.
 * It assumes that the edge mesh is 1-Manifold.
 * If the indicated vertex <vd> is boundary or non manifold the function do nothing.
 * 
 *    v0     vd       v1
 * ---O-------O-------O---
 *   z0   e0  z   e1  z1 
 * 
 *    v0              v1
 * ---O---------------O---
 *           e0
 * 
 * 
 */
template <class MeshType>
void VEEdgeCollapse(MeshType &poly, typename MeshType::EdgeType *e0, const int z)
{
  typedef typename MeshType::EdgeType EdgeType;
  typedef typename MeshType::VertexType VertexType;
  
  VertexType *vd = e0->V(z);
  
  std::vector<EdgeType *> starVecEp;
  edge::VEStarVE(vd,starVecEp);   
  if(starVecEp.size()!=2) return;
  
  EdgeType *e1=0; // this edge will be deleted
  if( starVecEp[0] == e0 ) e1 = starVecEp[1];
  if( starVecEp[1] == e0 ) e1 = starVecEp[0];
  assert(e1 && (e1!=e0) );

  //int z0 = (z+1)%2;
  int z1 = -1;
  if(e1->V(0) == vd) z1=1;
  if(e1->V(1) == vd) z1=0;
  assert(z1!=-1);
  
  VertexType *v1 = e1->V(z1); 
  assert(v1 != vd);
  
  edge::VEDetach(*e1); // detach the edge to be deleted.
  
  edge::VEDetach(*e0,z); // detach one side of the surviving edge
  e0->V(z) = v1;         // change one extreme of the edge
  edge::VEAppend(e0, z); // attach it again.
  
  tri::Allocator<MeshType>::DeleteEdge(poly,*e1);
  tri::Allocator<MeshType>::DeleteVertex(poly,*vd);
}

template <class MeshType>
void VEEdgeCollapse(MeshType &poly, typename MeshType::VertexType *v)
{
  VEEdgeCollapse(poly,v->VEp(),v->VEi());
}
/*! Perform a simple edge split using VE adjacency
 *  
 */
template <class MeshType>
void VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, typename MeshType::VertexType &v)
{
  typename MeshType::VertexPointer v1 = e->V(1);
  edge::VEDetach(*e,1);
  e->V(1) = &v;
  edge::VEAppend(e,1);
  typename tri::Allocator<MeshType>::template PointerUpdater<typename MeshType::EdgePointer> pu;
  typename MeshType::EdgeIterator ei = tri::Allocator<MeshType>::AddEdges(poly, 1, pu);
  pu.Update(e);
  ei->ImportData(*e);
  ei->V(0)=&v;
  ei->V(1)=v1;
  edge::VEAppend(&*ei,0);
  edge::VEAppend(&*ei,1);
}

template <class MeshType>
typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p)
{
  typename MeshType::VertexIterator vi = tri::Allocator<MeshType>::AddVertex(poly,p);
  VEEdgeSplit(poly,e,*vi);
  return &*vi;
}

template <class MeshType>
typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p, const typename MeshType::CoordType &n)
{
  typename MeshType::VertexIterator vi = tri::Allocator<MeshType>::AddVertex(poly,p,n);
  VEEdgeSplit(poly,e,*vi);
  return &*vi;
}


/*! Returns the number of incident edges over a vertex vp; Using the VE adjacency.  
 * 
 * It just follows the chain of incident edges of the VE adjacency.
*/

template <class EdgeType>
int VEDegree(const typename EdgeType::VertexType* vp)
{
  int cnt=0;
  edge::VEIterator<EdgeType> vei(vp);
  while(!vei.End()) 
  {
    ++cnt;
    ++vei;
  }    
  return cnt;
}


} // end namespace edge
} // end namespace vcg


#endif