File: distance.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (470 lines) | stat: -rw-r--r-- 22,151 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_FACE_DISTANCE
#define __VCGLIB_FACE_DISTANCE

#include <vcg/math/base.h>
#include <vcg/space/point3.h>
#include <vcg/space/segment3.h>
#include <vcg/space/distance3.h>

namespace vcg {
    namespace face{
/*
  Basic Wrapper for getting point-triangular face distance
  distance is unsigned;

  return true if the closest point <q> on <f> is nearer than the passed <dist>;
  return false otherwiswe (and q is not valid)

  This wrapper requires that your face has
  - Per Face Flags well initialized
  - Per Face EdgePlane component initialized.
  Initialization must be done with:

      tri::UpdateEdges<MeshType>::Set(yourMesh);
 */
    template <class FaceType>
    bool PointDistanceEP(	const FaceType &f,
                        const vcg::Point3<typename FaceType::ScalarType> & q,
                        typename FaceType::ScalarType & dist,
                        vcg::Point3<typename FaceType::ScalarType> & p )
    {
      typedef typename FaceType::ScalarType ScalarType;
      const ScalarType EPS = ScalarType( 0.000001);

        ScalarType b,b0,b1,b2;

        ScalarType d = SignedDistancePlanePoint( f.cPlane(), q );
        if( d>dist || d<-dist ) return false;

        Point3<ScalarType> t = f.cPlane().Direction();
        p = q - t*d; // p is the projection of q on the face plane
        // Now Choose the best plane and test to see if p is inside the triangle

        switch( f.cFlags() & (FaceType::NORMX|FaceType::NORMY|FaceType::NORMZ) )
        {
        case FaceType::NORMX:
            b0 = f.cEdge(1)[1]*(p[2] - f.cP(1)[2]) - f.cEdge(1)[2]*(p[1] - f.cP(1)[1]);
            if(b0<=0)
            {
                b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                if(dist>b0) { dist = b0; return true; }
                else return false;
            }
            b1 = f.cEdge(2)[1]*(p[2] - f.cP(2)[2]) - f.cEdge(2)[2]*(p[1] - f.cP(2)[1]);
            if(b1<=0)
            {
                b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                if(dist>b1) { dist = b1; return true; }
                else return false;
            }
            b2 = f.cEdge(0)[1]*(p[2] - f.cP(0)[2]) - f.cEdge(0)[2]*(p[1] - f.cP(0)[1]);
            if(b2<=0)
            {
                b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
                if(dist>b2) { dist = b2; return true; }
                else return false;
            }
            // if all these tests failed the projection p should be inside.
            // Some further tests for more robustness...
            if( (b=std::min(b0,std::min(b1,b2)) ) < EPS*DoubleArea(f))
            {
              ScalarType bt;
              if(b==b0) 	    bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
              else if(b==b1) 	bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
              else {          assert(b==b2);
                bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
              }
              if(dist>bt) { dist = bt; return true; }
              else return false;
            }
            break;

          case FaceType::NORMY:
            b0 = f.cEdge(1)[2]*(p[0] - f.cP(1)[0]) - f.cEdge(1)[0]*(p[2] - f.cP(1)[2]);
            if(b0<=0)
            {
                b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                if(dist>b0) { dist = b0; return true; }
                else return false;
            }
            b1 = f.cEdge(2)[2]*(p[0] - f.cP(2)[0]) - f.cEdge(2)[0]*(p[2] - f.cP(2)[2]);
            if(b1<=0)
            {
                b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                if(dist>b1) { dist = b1; return true; }
                else return false;
            }
            b2 = f.cEdge(0)[2]*(p[0] - f.cP(0)[0]) - f.cEdge(0)[0]*(p[2] - f.cP(0)[2]);
            if(b2<=0)
            {
                b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
                if(dist>b2) { dist = b2; return true; }
                else return false;
            }
            if( (b=math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
            {
              ScalarType bt;
              if(b==b0) 	    bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
              else if(b==b1) 	bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
              else { assert(b==b2);
                bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
              }
              if(dist>bt) { dist = bt; return true; }
                else return false;
            }
            break;

          case FaceType::NORMZ:
            b0 = f.cEdge(1)[0]*(p[1] - f.cP(1)[1]) - f.cEdge(1)[1]*(p[0] - f.cP(1)[0]);
            if(b0<=0)
            {
                b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                if(dist>b0) { dist = b0; return true; }
                else return false;
            }
            b1 = f.cEdge(2)[0]*(p[1] - f.cP(2)[1]) - f.cEdge(2)[1]*(p[0] - f.cP(2)[0]);
            if(b1<=0)
            {
                b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                if(dist>b1) { dist = b1; return true; }
                else return false;
            }
            b2 = f.cEdge(0)[0]*(p[1] - f.cP(0)[1]) - f.cEdge(0)[1]*(p[0] - f.cP(0)[0]);
            if(b2<=0)
            {
                b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
                if(dist>b2) { dist = b2; return true; }
                else return false;
            }
            if( (b=math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
            {
              ScalarType bt;
              if(b==b0) 	    bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
              else if(b==b1) 	bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
              else { assert(b==b2);
                bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
              }

              if(dist>bt) { dist = bt; return true; }
                else return false;
            }
            break;

        } // end switch

        dist = ScalarType(fabs(d));
        return true;
    }

    template <class S>
    class PointDistanceEPFunctor {
    public:
        typedef S ScalarType;
        typedef Point3<ScalarType> QueryType;
        static inline const Point3<ScalarType> &  Pos(const QueryType & qt)  {return qt;}

        template <class FACETYPE, class SCALARTYPE>
        inline bool operator () (const FACETYPE & f, const Point3<SCALARTYPE> & p, SCALARTYPE & minDist, Point3<SCALARTYPE> & q) {
            const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p);
            Point3<typename FACETYPE::ScalarType> fq;
            typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
            const bool ret = PointDistanceEP(f, fp, md, fq);
            minDist = (SCALARTYPE)(md);
            q = Point3<SCALARTYPE>::Construct(fq);
            return (ret);
        }
    };



    template <class S>
    class PointNormalDistanceFunctor {
    public:
        typedef typename S::ScalarType ScalarType;
        typedef S QueryType;
        static inline const Point3<ScalarType> &  Pos(const QueryType & qt)  {return qt.P();}


        static ScalarType & Alpha(){static ScalarType alpha = 1.0; return alpha;}
        static ScalarType & Beta (){static ScalarType beta  = 1.0; return beta;}
        static ScalarType & Gamma(){static ScalarType gamma = 1.0; return gamma;}
        static ScalarType & InterPoint(){static ScalarType interpoint= 1.0; return interpoint;}


        template <class FACETYPE, class SCALARTYPE>
        inline bool operator () (const FACETYPE &f, const typename FACETYPE::VertexType &p,
            SCALARTYPE & minDist,Point3<SCALARTYPE> & q)
        {
            const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p.cP());
            const Point3<typename FACETYPE::ScalarType> fn = Point3<typename FACETYPE::ScalarType>::Construct(p.cN());
            Point3<typename FACETYPE::ScalarType> fq;
            typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
            const bool ret=PointDistance(f,fp,md,fq);

            SCALARTYPE  dev=InterPoint()*(pow((ScalarType)(1-f.cN().dot(fn)),(ScalarType)Beta())/(Gamma()*md+0.1));

            if (md+dev < minDist){
                minDist = (SCALARTYPE)(md+dev);
                q = Point3<SCALARTYPE>::Construct(fq);
                //q.N() = f.N();
                return (ret);
            }
            return false;
        }
    };

        /// BASIC VERSION of the Point-face distance that does not require the EdgePlane Additional data.
        /// Given a face and a point, returns the closest point of the face to p.

        template <class FaceType>
            bool PointDistanceBase(
                                                    const FaceType &f,																		/// the face to be tested
                                                    const vcg::Point3<typename FaceType::ScalarType> & q, /// the point tested
                                                    typename FaceType::ScalarType & dist,                 /// bailout distance. It must be initialized with the max admittable value.
                                                    vcg::Point3<typename FaceType::ScalarType> & p )
        {
                typedef typename FaceType::ScalarType ScalarType;

                if(f.cN()==Point3<ScalarType>(0,0,0)) // to correctly manage the case of degenerate triangles we consider them as segments.
                {
                  Box3<ScalarType> bb;
                  f.GetBBox(bb);
                  Segment3<ScalarType> degenTri(bb.min,bb.max);
                  Point3<ScalarType> closest;
                  ScalarType d;
                  if(bb.Diag()>0)
                    vcg::SegmentPointDistance<ScalarType>(degenTri,q,closest,d);
                  else // very degenerate triangle (just a point)
                  {
                    closest = bb.min;
                    d=Distance(q,closest);
                  }
                  if( d>dist) return false;
                  dist=d;
                  p=closest;
                  assert(!math::IsNAN(dist));
                  return true;
                }

                Plane3<ScalarType,true> fPlane;
                fPlane.Init(f.cP(0),f.cN());
                const ScalarType EPS = ScalarType( 0.000001);
                ScalarType b,b0,b1,b2;
                // Calcolo distanza punto piano
                ScalarType d = SignedDistancePlanePoint( fPlane, q );
                if( d>dist || d<-dist )			// Risultato peggiore: niente di fatto
                    return false;

                // Projection of query point onto the triangle plane
                p = q - fPlane.Direction()*d;

                Point3<ScalarType> fEdge[3];
                fEdge[0] = f.cP(1); fEdge[0] -= f.cP(0);
                fEdge[1] = f.cP(2); fEdge[1] -= f.cP(1);
                fEdge[2] = f.cP(0); fEdge[2] -= f.cP(2);

                /*
                This piece of code is part of the EdgePlane initialization structure: note that the edges are scaled!.

                if(nx>ny && nx>nz) { f.Flags() |= FaceType::NORMX; d = 1/f.Plane().Direction()[0]; }
                else if(ny>nz)     { f.Flags() |= FaceType::NORMY; d = 1/f.Plane().Direction()[1]; }
                else               { f.Flags() |= FaceType::NORMZ; d = 1/f.Plane().Direction()[2]; }
                f.Edge(0)*=d; f.Edge(1)*=d;f.Edge(2)*=d;

                So we must apply the same scaling according to the plane orientation, eg in the case of NORMX
                  scaleFactor= 1/fPlane.Direction()[0];
                  fEdge[0]*=d; fEdge[1]*=d;fEdge[2]*=d;
                */

                int bestAxis;
                if(fabs(f.cN()[0])>fabs(f.cN()[1]))
                {
                  if(fabs(f.cN()[0])>fabs(f.cN()[2])) bestAxis = 0;
                  else bestAxis = 2;
                } else {
                  if(fabs(f.cN()[1])>fabs(f.cN()[2])) bestAxis=1; /* 1 > 0 ? 2 */
                  else bestAxis=2; /* 2 > 1 ? 2 */
                }

                ScalarType scaleFactor;

                switch( bestAxis )
                {
                    case 0:  /************* X AXIS **************/
                        scaleFactor= 1/fPlane.Direction()[0];
                        fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;

                        b0 = fEdge[1][1]*(p[2] - f.cP(1)[2]) - fEdge[1][2]*(p[1] - f.cP(1)[1]);
                        if(b0<=0)
                        {
                            b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                            if(dist>b0) { dist = b0; return true; }
                            else return false;
                        }
                            b1 = fEdge[2][1]*(p[2] - f.cP(2)[2]) - fEdge[2][2]*(p[1] - f.cP(2)[1]);
                        if(b1<=0)
                        {
                            b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                            if(dist>b1) { dist = b1; return true; }
                            else return false;
                        }
                            b2 = fEdge[0][1]*(p[2] - f.cP(0)[2]) - fEdge[0][2]*(p[1] - f.cP(0)[1]);
                        if(b2<=0)
                        {
                            b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
                            if(dist>b2) { dist = b2; return true; }
                            else return false;
                        }
                            // sono tutti e tre > 0 quindi dovrebbe essere dentro;
                            // per sicurezza se il piu' piccolo dei tre e' < epsilon (scalato rispetto all'area della faccia
                            // per renderlo dimension independent.) allora si usa ancora la distanza punto
                            // segmento che e' piu robusta della punto piano, e si fa dalla parte a cui siamo piu'
                            // vicini (come prodotto vettore)
                            // Nota: si potrebbe rendere un pochino piu' veloce sostituendo Area()
                            // con il prodotto vettore dei due edge in 2d lungo il piano migliore.
                        if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
                            {
                                ScalarType bt;
                                if(b==b0) 	    bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                                else if(b==b1) 	bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                                else {assert(b==b2); bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);}
                                //printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
                                if(dist>bt) { dist = bt; return true; }
                                else return false;
                            }
                            break;

                    case 1:  /************* Y AXIS **************/
                        scaleFactor= 1/fPlane.Direction()[1];
                        fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;

                        b0 = fEdge[1][2]*(p[0] - f.cP(1)[0]) - fEdge[1][0]*(p[2] - f.cP(1)[2]);
                        if(b0<=0)
                        {
                            b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                            if(dist>b0) { dist = b0; return true; }
                            else return false;
                        }
                            b1 = fEdge[2][2]*(p[0] - f.cP(2)[0]) - fEdge[2][0]*(p[2] - f.cP(2)[2]);
                        if(b1<=0)
                        {
                            b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                            if(dist>b1) { dist = b1; return true; }
                            else return false;
                        }
                            b2 = fEdge[0][2]*(p[0] - f.cP(0)[0]) - fEdge[0][0]*(p[2] - f.cP(0)[2]);
                        if(b2<=0)
                        {
                            b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
                            if(dist>b2) { dist = b2; return true; }
                            else return false;
                        }
            if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
                            {
                                ScalarType bt;
                                if(b==b0) 	    bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                                else if(b==b1) 	bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                                else{ assert(b==b2); bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);}
                                //printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
                                if(dist>bt) { dist = bt; return true; }
                                else return false;
                            }
                            break;

                    case 2:  /************* Z AXIS **************/
                        scaleFactor= 1/fPlane.Direction()[2];
                        fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;

                        b0 = fEdge[1][0]*(p[1] - f.cP(1)[1]) - fEdge[1][1]*(p[0] - f.cP(1)[0]);
                        if(b0<=0)
                        {
                            b0 = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                            if(dist>b0) { dist = b0; return true; }
                            else return false;
                        }
                            b1 = fEdge[2][0]*(p[1] - f.cP(2)[1]) - fEdge[2][1]*(p[0] - f.cP(2)[0]);
                        if(b1<=0)
                        {
                            b1 = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                            if(dist>b1) { dist = b1; return true; }
                            else return false;
                        }
                            b2 = fEdge[0][0]*(p[1] - f.cP(0)[1]) - fEdge[0][1]*(p[0] - f.cP(0)[0]);
                        if(b2<=0)
                        {
                            b2 = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p);
                            if(dist>b2) { dist = b2; return true; }
                            else return false;
                        }
            if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
                            {
                                ScalarType bt;
                                if(b==b0) 	    bt = PSDist(q,f.cV(1)->cP(),f.cV(2)->cP(),p);
                                else if(b==b1) 	bt = PSDist(q,f.cV(2)->cP(),f.cV(0)->cP(),p);
                                else { assert(b==b2); bt = PSDist(q,f.cV(0)->cP(),f.cV(1)->cP(),p); }
                                //printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);

                                if(dist>bt) { dist = bt; return true; }
                                else return false;
                            }
                            break;
                        default: assert(0); // if you get this assert it means that you forgot to set the required UpdateFlags<MeshType>::FaceProjection(m);

                }

                dist = ScalarType(fabs(d));
                //dist = Distance(p,q);
                return true;
        }

    template <class S>
    class PointDistanceBaseFunctor {
public:
            typedef S ScalarType;
            typedef Point3<ScalarType> QueryType;

          static inline const Point3<ScalarType> & Pos(const Point3<ScalarType> & qt)  {return qt;}
            template <class FACETYPE, class SCALARTYPE>
            inline bool operator () (const FACETYPE & f, const Point3<SCALARTYPE> & p, SCALARTYPE & minDist, Point3<SCALARTYPE> & q) {
                const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p);
                Point3<typename FACETYPE::ScalarType> fq;
                typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
                const bool ret = PointDistanceBase(f, fp, md, fq);
                minDist = (SCALARTYPE)(md);
                q = Point3<SCALARTYPE>::Construct(fq);
                return (ret);
            }
        };



}	 // end namespace face

}	 // end namespace vcg


#endif