File: component.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (510 lines) | stat: -rw-r--r-- 22,859 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.1  2007/05/09 10:31:53  ganovelli
added



****************************************************************************/
#ifndef __VCG_TETRAHEDRON_PLUS_COMPONENT
#define __VCG_TETRAHEDRON_PLUS_COMPONENT

#include <vector>
#include <vcg/space/tetra3.h>

namespace vcg {
namespace tetrahedron {
/*
Some naming Rules
All the Components that can be added to a tetra should be defined in the namespace tetra:
*/
template <class T> class EmptyCore : public T {
public:
    //Empty vertexref
    inline typename T::VertexType *       & V( const int  )      {	assert(0);		static typename T::VertexType *vp=0; return vp; }
    inline typename T::VertexType * const & V( const int ) const {	assert(0);		static typename T::VertexType *vp=0; return vp; }
    inline const typename T::VertexType *  cV( const int )       {	assert(0);		static typename T::VertexType *vp=0; return vp;	}
    inline       typename T::CoordType & P( const int )          {	assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}
    inline const typename T::CoordType & P( const int )    const {	assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}
    inline const typename T::CoordType &cP( const int )    const {	assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}

    static bool HasVertexRef()   { return false; }
    static bool HasTVAdjacency() { return false; }

    // //Empty normals
    // typedef typename T::VertexType::NormalType NormalType;
    // NormalType &N(const int & ){ static NormalType dummynormal(0, 0, 0); assert(0); return dummynormal; }
    // const NormalType cN(const int & ) const { static NormalType dummynormal(0, 0, 0); assert(0); return dummynormal; }

    // static bool HasFaceNormal()      { return false; }
    // static bool HasFaceNormalOcc()   { return false; }

    //Empty color
    typedef vcg::Color4b ColorType;
    ColorType &C()       { static ColorType dummycolor(vcg::Color4b::White); assert(0); return dummycolor; }
    ColorType cC() const { static ColorType dummycolor(vcg::Color4b::White); assert(0); return dummycolor; }

    static bool HasColor() { return false; }
    static bool IsColorEnabled() { return T::TetraType::HasColor(); }

    //Empty Quality
    typedef float QualityType;
    typedef vcg::Point3f Quality3Type;
    QualityType &Q()       { static QualityType dummyquality(0); assert(0); return dummyquality; }
    QualityType cQ() const { static QualityType dummyquality(0); assert(0); return dummyquality; }
    Quality3Type &Q3()       { static Quality3Type dummyQuality3(0,0,0);  assert(0); return dummyQuality3; }
    Quality3Type cQ3() const { static Quality3Type dummyQuality3(0,0,0);  assert(0); return dummyQuality3; }

    static bool HasQuality() { return false; }
    static bool HasQuality3() { return false; }
    inline bool IsQualityEnabled() const { return T::TetraType::HasQuality(); }
    inline bool IsQuality3Enabled() const { return T::TetraType::HasQuality3(); }

    //Empty flags
    int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
    int cFlags() const { return 0; }

    static bool HasFlags()      { return false; }
    static bool HasFlagsOcc()   { return false; }

    //Empty IMark
    typedef int MarkType;

    inline void InitIMark()   {  }
    inline int & IMark()      { assert(0); static int tmp=-1; return tmp;}
    inline int cIMark() const {return 0;}

    inline bool IsMarkEnabled() const { return T::TetraType::HasMark(); }
    
    static bool HasMark()     { return false; }
    static bool HasMarkOcc()  { return false; }

    //Empty Adjacency
    typedef int VTAdjType;
    typename T::TetraPointer & VTp     ( const int )       { static typename T::TetraPointer tp=0; assert(0); return tp; }
    typename T::TetraPointer const cVTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; }

    typename T::TetraPointer & TTp     ( const int )       { static typename T::TetraPointer tp=0; assert(0); return tp; }
    typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; }

    char & VTi( const int )       { static char z=0; assert(0); return z; }
    char  cVTi( const int ) const { static char z=0; assert(0); return z; }
    char & TTi( const int )       { static char z=0; assert(0); return z; }
    char  cTTi( const int ) const { static char z=0; assert(0); return z; }

    bool IsVTInitialized(const int j) const {return  static_cast<const typename T::TetraType *>(this)->cVTi(j)!=-1;}
    void VTClear(int j) {
        if(IsVTInitialized(j)) {
            static_cast<typename T::TetraPointer>(this)->VTp(j)=0;
            static_cast<typename T::TetraPointer>(this)->VTi(j)=-1;
        }
    }

    static bool HasVTAdjacency()    { return false; }
    static bool HasTTAdjacency()    { return false; }
    static bool HasTTAdjacencyOcc() { return false; }
    static bool HasVTAdjacencyOcc() { return false; }

    template <class RightValuteType>
    void ImportData(const RightValuteType & ) {}

    static void Name(std::vector<std::string> & name) { T::Name(name); }
};
/*-------------------------- VERTEX ----------------------------------------*/
// template <class T> class EmptyVertexRef: public T {
// public:
//  // typedef typename T::VertexType VertexType;
//  // typedef typename T::CoordType CoordType;
//   inline typename T::VertexType *       & V( const int j ) 	    {	assert(0);		static typename T::VertexType *vp=0; return vp; }
//   inline typename T::VertexType * const & V( const int j ) const {	assert(0);		static typename T::VertexType *vp=0; return vp; }
// 	inline typename T::VertexType * const  cV( const int j ) const {	assert(0);		static typename T::VertexType *vp=0; return vp;	}
// 	inline       typename T::CoordType & P( const int j ) 	    {	assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}
// 	inline const typename T::CoordType & P( const int j ) const {	assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}
// 	inline const typename T::CoordType &cP( const int j ) const	{	assert(0);		static typename T::CoordType coord(0, 0, 0); return coord;	}

// 	static bool HasVertexRef()   { return false; }
// };

template <class T> class VertexRef: public T {
public:
    VertexRef(){
        v[0]=0;
        v[1]=0;
        v[2]=0;
        v[3]=0;

        /******* vertex and faces indices scheme*********
 *
 * 						/2\`
 * 					 /   \  `
 * 					/     \    `
 * 				 /       \  _ 3`
 *				/     _   \    '
 * 			 / _         \  '
 *      /0___________1\'
 *
 */
        findices[0][0] = 0; findices[0][1] = 1; findices[0][2] = 2;
        findices[1][0] = 0; findices[1][1] = 3; findices[1][2] = 1;
        findices[2][0] = 0; findices[2][1] = 2; findices[2][2] = 3;
        findices[3][0] = 1; findices[3][1] = 3; findices[3][2] = 2;
    }

    typedef typename T::VertexType::CoordType CoordType;
    typedef typename T::VertexType::ScalarType ScalarType;

    inline       typename T::VertexType *       & V( const int j )  { assert(j>=0 && j<4); return v[j]; }
    inline const typename T::VertexType *        cV( const int j )  { assert(j>=0 && j<4); return v[j]; }

    inline  size_t cFtoVi (const int f, const int j) const { assert(f >= 0 && f < 4); assert(j >= 0 && j < 3); return findices[f][j]; }

    // Shortcut for tetra points
    inline       CoordType & P( const int j )       { assert(j>=0 && j<4); return v[j]->P();	}
    inline const CoordType &cP( const int j ) const { assert(j>=0 && j<4); return v[j]->P(); }

    /** Return the pointer to the ((j+1)%4)-th vertex of the tetra.
                @param j Index of the face vertex.
         */
    inline       typename T::VertexType *       &  V0( const int j )       { return V(j);}
    inline       typename T::VertexType *       &  V1( const int j )       { return V((j+1)%4);}
    inline       typename T::VertexType *       &  V2( const int j )       { return V((j+2)%4);}
    inline       typename T::VertexType *       &  V3( const int j )       { return V((j+3)%4);}
    inline const typename T::VertexType * const &  V0( const int j ) const { return V(j);}
    inline const typename T::VertexType * const &  V1( const int j ) const { return V((j+1)%4);}
    inline const typename T::VertexType * const &  V2( const int j ) const { return V((j+2)%4);}
    inline const typename T::VertexType * const &  V3( const int j ) const { return V((j+3)%4);}
    inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);}
    inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%4);}
    inline const typename T::VertexType * const & cV2( const int j ) const { return cV((j+2)%4);}
    inline const typename T::VertexType * const & cV3( const int j ) const { return cV((j+3)%4);}

    /// Shortcut to get vertex values
    inline       CoordType &P0 (const int j)       { return V(j)->P(); }
    inline       CoordType &P2 (const int j)       { return V((j + 2) % 4)->P(); }
    inline       CoordType &P3 (const int j)       { return V((j + 3) % 4)->P(); }
    inline       CoordType &P1 (const int j)       { return V((j + 1) % 4)->P(); }
    inline const CoordType &P0 (const int j) const { return V(j)->P(); }
    inline const CoordType &P1 (const int j) const { return V((j + 1) % 4)->P(); }
    inline const CoordType &P2 (const int j) const { return V((j + 2) % 4)->P(); }
    inline const CoordType &P3 (const int j) const { return V((j + 3) % 4)->P(); }
    inline const CoordType &cP0(const int j) const { return cV(j)->P(); }
    inline const CoordType &cP1(const int j) const { return cV((j + 1) % 4)->P(); }
    inline const CoordType &cP2(const int j) const { return cV((j + 2) % 4)->P(); }
    inline const CoordType &cP3(const int j) const { return cV((j + 3) % 4)->P(); }

    static bool HasVertexRef()   { return true; }
    static bool HasTVAdjacency() { return true; }

    static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}

    template <class RightValueType>
    void ImportData(const RightValueType & rTetra) { T::ImportData(rTetra); }

private:
    typename T::VertexType *v[4];
    size_t findices[4][3];
};


/*------------------------- FACE NORMAL -----------------------------------------*/
// template <class A, class T> class EmptyFaceNormal: public T {
// public:
// 	typedef ::vcg::Point3<A> NormalType;
// 	/// Return the vector of Flags(), senza effettuare controlli sui bit
// 	NormalType N(const int & ){ static int dummynormal(0); return dummynormal; }
//   const NormalType cN(const int & ) const { return 0; }
//   static bool HasFaceNormal()   { return false; }
//   static bool HasFaceNormalOcc()   { return false; }
// 	static void Name(std::vector<std::string> & name){T::Name(name);}

// };

// template <class A, class T> class FaceNormal:  public T {
// public:
// 	typedef A NormalType;

// 	inline NormalType N(const int & i){  assert((i>=0)&&(i < 4)); return _facenormals[i]; }
//   inline NormalType cN(const int & i) const { assert((i>=0)&&(i < 4)); return _facenormals[i]; }
//   static bool HasFaceNormals()   { return true; }
//   static bool HasFaceNormalOcc()   { return false; }

//   template <class RightValueType>
//   void ImportData(const RightValueType & rightT)
//   {
//     if(rightT.IsNormalEnabled()) N().Import(rightT.cN());
//     T::ImportData(rightT);
//   }

//   static void Name(std::vector<std::string> & name){name.push_back(std::string("FaceNormal"));T::Name(name);}

// private:
//   NormalType  _facenormals[4];
// };

//template <class T> class FaceNormal3f: public FaceNormal<vcg::Point3f, T>{
//public:static void Name(std::vector<std::string> & name){name.push_back(std::string("FaceNormal3f"));T::Name(name);} };

//template <class T> class FaceNormal3d: public FaceNormal<vcg::Point3d, T>{
//public:static void Name(std::vector<std::string> & name){name.push_back(std::string("FaceNormal3d"));T::Name(name);} };

/*------------------------- FLAGS -----------------------------------------*/
// template <class T> class EmptyBitFlags: public T {
// public:
// 	/// Return the vector of Flags(), senza effettuare controlli sui bit
//   int &Flags() { static int dummyflags(0); return dummyflags; }
//   const int Flags() const { return 0; }
//   static bool HasFlags()   { return false; }
//   static bool HasFlagsOcc()   { return false; }
// 	static void Name(std::vector<std::string> & name){T::Name(name);}

// };

template <class T> class BitFlags:  public T {
public:
    typedef int FlagType;
    BitFlags(){_flags=0;}
    
		inline int &Flags() {return _flags; }
    inline int cFlags() const {return _flags; }

    template <class RightValueType>
    void ImportData(const RightValueType & rightT){
        if(RightValueType::HasFlags())
            Flags() = rightT.cFlags();
        T::ImportData(rightT);
    }

    static bool HasFlags()   { return true; }
    static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}


private:
    int  _flags;
};

/*-------------------------- QUALITY  ----------------------------------------*/
template <class A, class T> class Quality: public T {
public:
    typedef A QualityType;
    Quality():_quality(0) {}
    QualityType &Q()       { return _quality; }
    QualityType cQ() const { return _quality; }

    template <class RightValueType>
    void ImportData(const RightValueType & rightT){
        if(rightT.IsQualityEnabled())
            Q() = rightT.cQ();
        T::ImportData(rightT);
    }

    static bool HasQuality()   { return true; }
    static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));T::Name(name);}
private:
    QualityType _quality;
};

template <class T> class Qualityf: public Quality<float, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));T::Name(name);}
};
template <class T> class Qualityd: public Quality<double, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));T::Name(name);}
};

/*-------------------------- Quality3  ----------------------------------*/
template <class A, class T> class Quality3: public T {
public:
    typedef vcg::Point3<A> Quality3Type;
    Quality3Type &Q3()       { return _quality; }
    Quality3Type cQ3() const { return _quality; }
    template <class RightValueType>
    void ImportData(const RightValueType & rightT){
        if(rightT.IsQuality3Enabled()) Q3() = rightT.cQ3();
        T::ImportData(rightT);
    }

    static bool HasQuality3()   { return true; }
    static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3"));T::Name(name);}
private:
    Quality3Type _quality;
};

template <class T> class Quality3f: public Quality3<float, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3f"));T::Name(name);}
};
template <class T> class Quality3d: public Quality3<double, T> {
public:  static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3d"));T::Name(name);}
};

/*-------------------------- COLOR  ----------------------------------------*/
template <class A, class T>
class Color: public T {
public:
    typedef A ColorType;
    Color():_color(vcg::Color4b::White) {}
    ColorType &C()       { return _color; }
    ColorType cC() const { return _color; }
    template <class RightValueType>
    void ImportData(const RightValueType & rightT){
        if(rightT.IsColorEnabled()) C() = rightT.cC();
        T::ImportData(rightT);
    }

    static bool HasColor()   { return true; }
    static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}

private:
    ColorType _color;
};

template <class T> class Color4b : public Color<vcg::Color4b, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));T::Name(name); }
};
/*-------------------------- INCREMENTAL MARK  ----------------------------------------*/

// template <class T> class EmptyMark: public T {
// public:
// 	typedef int MarkType;
//   static bool HasMark()   { return false; }
//   static bool HasMarkOcc()   { return false; }
//   inline void InitIMark()    {  }
//   inline int & IMark()       { assert(0); static int tmp=-1; return tmp;}
//   inline const int IMark() const {return 0;}
//   static void Name(std::vector<std::string> & name){T::Name(name);}

// };

template <class T> class Mark: public T {
public:
    static bool HasMark()      { return true; }
    static bool HasMarkOcc()   { return false; }
    inline void InitIMark()    { _imark = 0; }
    inline int & IMark()       { return _imark;}
    inline int  cIMark() const {return _imark;}

    template <class RightValueType>
    void ImportData(const RightValueType & rightT){
        if(rightT.IsMarkEnabled()) IMark() = rightT.cIMark();
        T::ImportData(rightT);
    }

    static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}

private:
    int _imark;
};


/*----------------------------- VTADJ ------------------------------*/

// template <class T> class EmptyAdj: public T {
// public:
// 	typedef int VFAdjType;
// 	typename T::TetraPointer & VTp( const int ) { static typename T::TetraPointer tp=0; return tp; }
// 	typename T::TetraPointer const cVTp( const int ) const { static typename T::TetraPointer const tp=0; return tp; }
// 	typename T::TetraPointer & TTp( const int ) { static typename T::TetraPointer tp=0; return tp; }
// 	typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; return tp; }
// 	char & VTi( const int j ) { static char z=0; return z; }
// 	char & TTi( const int j ) { static char z=0; return z; }
// 	static bool HasVTAdjacency() { return false; }
// 	static bool HasTTAdjacency() { return false; }
// 	static bool HasTTAdjacencyOcc() { return false; }
// 	static bool HasVTAdjacencyOcc() { return false; }
// 	static void Name( std::vector< std::string > & name ){ T::Name(name); }
// };

template <class T> class VTAdj: public T {
public:
    VTAdj() {
        _vtp[0]=0;
        _vtp[1]=0;
        _vtp[2]=0;
        _vtp[3]=0;
        _vti[0]=-1;
        _vti[1]=-1;
        _vti[2]=-1;
        _vti[3]=-1;
    }

    typename T::TetraPointer & VTp( const int j ) { assert( j >= 0 && j < 4 ); return _vtp[j]; }
    typename T::TetraPointer const VTp( const int j ) const { assert( j >= 0 && j < 4 ); return _vtp[j]; }
    typename T::TetraPointer const cVTp( const int j ) const { assert( j >= 0 && j < 4 ); return _vtp[j]; }

    char & VTi( const int j ) { return _vti[j]; }
    const char & cVTi( const int j ) const { return _vti[j]; }

    static bool HasVTAdjacency() { return true; }
    static bool HasVTAdjacencyOcc() { return false; }

    static void Name( std::vector< std::string > & name ) { name.push_back( std::string("VTAdj") ); T::Name(name); }

    template <class RightValueType>
    void ImportData(const RightValueType & rightT){T::ImportData(rightT);}
private:
    typename T::TetraPointer _vtp[4];
    char _vti[4];
};

/*----------------------------- TTADJ ------------------------------*/

template <class T> class TTAdj: public T {
public:
    TTAdj(){
        _ttp[0]=0;
        _ttp[1]=0;
        _ttp[2]=0;
        _ttp[3]=0;
    }
    typename T::TetraPointer       &TTp(const int j)        { assert(j>=0 && j<4);  return _ttp[j]; }
    typename T::TetraPointer const  TTp(const int j) const  { assert(j>=0 && j<4);  return _ttp[j]; }
    typename T::TetraPointer const cTTp(const int j) const  { assert(j>=0 && j<4);  return _ttp[j]; }
    char        &TTi(const int j)       { return _tti[j]; }
    const char &cTTi(const int j) const { return _tti[j]; }

    typename T::TetraPointer        &TTp1( const int j )       { return TTp((j+1)%4);}
    typename T::TetraPointer        &TTp2( const int j )       { return TTp((j+2)%4);}
    typename T::TetraPointer        &TTp3( const int j )       { return TTp((j+3)%4);}
    typename T::TetraPointer  const  TTp1( const int j ) const { return TTp((j+1)%4);}
    typename T::TetraPointer  const  TTp2( const int j ) const { return TTp((j+2)%4);}
    typename T::TetraPointer  const  TTp3( const int j ) const { return TTp((j+3)%4);}

    bool IsBorderF(const int & i)  const { assert( (i>=0) && (i < 4)); { return TTp(i) == this;}}

    static bool HasTTAdjacency()      {   return true; }
    static bool HasTTAdjacencyOcc()   {   return false; }
    static void Name(std::vector<std::string> & name){name.push_back(std::string("TTAdj"));T::Name(name);}

    template <class RightValueType>
    void ImportData(const RightValueType & rightT){T::ImportData(rightT);}

private:
    typename T::TetraPointer _ttp[4] ;
    char _tti[4] ;
};

} // end namespace vert
}// end namespace vcg
#endif