File: grid_util.h

package info (click to toggle)
meshlab 2020.09%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 45,132 kB
  • sloc: cpp: 400,238; ansic: 31,952; javascript: 1,578; sh: 387; yacc: 238; lex: 139; python: 86; makefile: 30
file content (262 lines) | stat: -rw-r--r-- 9,558 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004-2016                                           \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/

#ifndef __VCGLIB_GRID_UTIL
#define __VCGLIB_GRID_UTIL

#include<vcg/space/index/base.h>
#include<vcg/space/box3.h>
#include <vcg/space/index/space_iterators.h>


#ifndef WIN32
#define __int64 long long
#define __cdecl
#endif

namespace vcg {

    /** BasicGrid

    Basic Class abstracting a gridded structure in a 3d space;
    Usueful for having coherent float to integer conversion in a unique place:
    Some Notes:
        - bbox is the real occupation of the box in the space;
        - siz is the number of cells for each side

    OBJTYPE:      Type of the indexed objects.
    SCALARTYPE:   Scalars type for structure's internal data (may differ from
                  object's scalar type).

    */

template <class SCALARTYPE>
class BasicGrid //:public SpatialIndex<SCALARTYPE>
{
public:

    typedef SCALARTYPE ScalarType;
    typedef Box3<ScalarType> Box3x;
    typedef Point3<ScalarType> CoordType;
    typedef BasicGrid<SCALARTYPE> GridType;

    Box3x bbox;

    CoordType dim;		/// Spatial Dimention (edge legth) of the bounding box
    Point3i siz;		/// Number of cells forming the grid
    CoordType voxel;	/// Dimensions of a single cell

    /*
     Derives the right values of Dim and voxel starting
     from the current values of siz and bbox
    */
    void ComputeDimAndVoxel()
        {
            this->dim  = this->bbox.max - this->bbox.min;
            this->voxel[0] = this->dim[0]/this->siz[0];
            this->voxel[1] = this->dim[1]/this->siz[1];
            this->voxel[2] = this->dim[2]/this->siz[2];
        }
    /* Given a 3D point, returns the coordinates of the cell where the point is
     * @param p is a 3D point
     * @return integer coordinates of the cell
     */
    inline Point3i GridP( const Point3<ScalarType> & p ) const
    {
        Point3i pi;
        PToIP(p, pi);
        return pi;
    }

    /* Given a 3D point p, returns the index of the corresponding cell
     * @param p is a 3D point in the space
     * @return integer coordinates pi of the cell
     */
    inline void PToIP(const CoordType & p, Point3i &pi ) const
    {
        CoordType t = p - bbox.min;
        pi[0] = int( t[0] / voxel[0] );
        pi[1] = int( t[1] / voxel[1] );
        pi[2] = int( t[2] / voxel[2] );
    }

    /* Given a cell index return the lower corner of the cell
     * @param integer coordinates pi of the cell
     * @return p is a 3D point representing the lower corner of the cell
     */
    template <class OtherScalarType>
    inline void IPiToPf(const Point3i & pi,  Point3<OtherScalarType> &p ) const
    {
        p[0] = bbox.min[0] + ((OtherScalarType)pi[0])*voxel[0];
        p[1] = bbox.min[1] + ((OtherScalarType)pi[1])*voxel[1];
        p[2] = bbox.min[2] + ((OtherScalarType)pi[2])*voxel[2];
    }
    /* Returns the matrix that applied to a point in grid space
     * transforms it in the original space.
     */
    inline Matrix44<ScalarType> IPtoPfMatrix() const
    {
      Matrix44<ScalarType> m; m.SetScale(voxel);
      Matrix44<ScalarType> t; t.SetTranslate(bbox.min);
      return t*m;
    }
    /* Given a cell index return the corresponding box
     * @param integer coordinates pi of the cell
     * @return b is the corresponding box in <ScalarType> coordinates
     */
    inline void IPiToBox(const Point3i & pi, Box3x & b ) const
    {
        CoordType p;
        p[0] = ((ScalarType)pi[0])*voxel[0];
        p[1] = ((ScalarType)pi[1])*voxel[1];
        p[2] = ((ScalarType)pi[2])*voxel[2];
        p += bbox.min;
        b.min = p;
        b.max = (p + voxel);
    }

    /* Given a cell index return the center of the cell itself
     * @param integer coordinates pi of the cell
     * @return b is the corresponding box in <ScalarType> coordinates
     */inline void IPiToBoxCenter(const Point3i & pi, CoordType & c ) const
    {
        CoordType p;
        IPiToPf(pi,p);
        c = p + voxel/ScalarType(2.0);
    }

    // Same of IPiToPf but for the case that you just want to transform
    // from a space to the other.
    template <class OtherScalarType>
    void IPfToPf(const Point3<OtherScalarType> & pi, Point3<OtherScalarType> &p ) const
    {
        p[0] = ((OtherScalarType)pi[0])*voxel[0] + bbox.min[0];
        p[1] = ((OtherScalarType)pi[1])*voxel[1] + bbox.min[1];
        p[2] = ((OtherScalarType)pi[2])*voxel[2] + bbox.min[2];
    }

    /* Given a cell in <ScalarType> coordinates, compute the corresponding cell in integer coordinates
     * @param b is the cell in <ScalarType> coordinates
     * @return ib is the correspondent box in integer coordinates
     */
  inline void BoxToIBox( const Box3x & b, Box3i & ib ) const
    {
    PToIP(b.min, ib.min);
    PToIP(b.max, ib.max);
        //assert(ib.max[0]>=0 && ib.max[1]>=0 && ib.max[2]>=0);
    }

    /* Given a cell in integer coordinates, compute the corresponding cell in <ScalarType> coordinates
     * @param ib is the cell in integer coordinates
     * @return b is the correspondent box in <ScalarType> coordinates
     */
    /// Dato un box in voxel ritorna gli estremi del box reale
    void IBoxToBox( const Box3i & ib, Box3x & b ) const
    {
        IPiToPf(ib.min,b.min);
        IPiToPf(ib.max+Point3i(1,1,1),b.max);
    }
};

template<class scalar_type>
void BestDim( const Box3<scalar_type> box, const scalar_type voxel_size, Point3i & dim )
{
    Point3<scalar_type> box_size = box.max-box.min;
    __int64 elem_num = (__int64)(box_size[0]/voxel_size +0.5) *( __int64)(box_size[1]/voxel_size +0.5) * (__int64)(box_size[2]/voxel_size +0.5);
    BestDim(elem_num,box_size,dim);
}
    /** Calcolo dimensioni griglia.
    Calcola la dimensione della griglia in funzione
    della ratio del bounding box e del numero di elementi
    */
    template<class scalar_type>
    void BestDim( const __int64 elems, const Point3<scalar_type> & size, Point3i & dim )
    {
        const __int64 mincells   = 1;		// Numero minimo di celle
        const double GFactor = 1;	// GridEntry = NumElem*GFactor
        double diag = size.Norm();	// Diagonale del box
        double eps  = diag*1e-4;		// Fattore di tolleranza

        assert(elems>0);
        assert(size[0]>=0.0);
        assert(size[1]>=0.0);
        assert(size[2]>=0.0);


        __int64 ncell = (__int64)(elems*GFactor);	// Calcolo numero di voxel
        if(ncell<mincells)
            ncell = mincells;

        dim[0] = 1;
        dim[1] = 1;
        dim[2] = 1;

        if(size[0]>eps)
        {
            if(size[1]>eps)
            {
                if(size[2]>eps)
                {
                    double k = pow((double)(ncell/(size[0]*size[1]*size[2])),double(1.0/3.f));
                    dim[0] = int(size[0] * k);
                    dim[1] = int(size[1] * k);
                    dim[2] = int(size[2] * k);
                }
                else
                {
                    dim[0] = int(::sqrt(ncell*size[0]/size[1]));
                    dim[1] = int(::sqrt(ncell*size[1]/size[0]));
                }
            }
            else
            {
                if(size[2]>eps)
                {
                    dim[0] = int(::sqrt(ncell*size[0]/size[2]));
                    dim[2] = int(::sqrt(ncell*size[2]/size[0]));
                }
                else
                    dim[0] = int(ncell);
            }
        }
        else
        {
            if(size[1]>eps)
            {
                if(size[2]>eps)
                {
                    dim[1] = int(::sqrt(ncell*size[1]/size[2]));
                    dim[2] = int(::sqrt(ncell*size[2]/size[1]));
                }
                else
                    dim[1] = int(ncell);
            }
            else if(size[2]>eps)
                dim[2] = int(ncell);
        }
    dim[0] = std::max(dim[0],1);
    dim[1] = std::max(dim[1],1);
    dim[2] = std::max(dim[2],1);
    }
}
#endif