1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_GRID_UTIL
#define __VCGLIB_GRID_UTIL
#include<vcg/space/index/base.h>
#include<vcg/space/box3.h>
#include <vcg/space/index/space_iterators.h>
#ifndef WIN32
#define __int64 long long
#define __cdecl
#endif
namespace vcg {
/** BasicGrid
Basic Class abstracting a gridded structure in a 3d space;
Usueful for having coherent float to integer conversion in a unique place:
Some Notes:
- bbox is the real occupation of the box in the space;
- siz is the number of cells for each side
OBJTYPE: Type of the indexed objects.
SCALARTYPE: Scalars type for structure's internal data (may differ from
object's scalar type).
*/
template <class SCALARTYPE>
class BasicGrid //:public SpatialIndex<SCALARTYPE>
{
public:
typedef SCALARTYPE ScalarType;
typedef Box3<ScalarType> Box3x;
typedef Point3<ScalarType> CoordType;
typedef BasicGrid<SCALARTYPE> GridType;
Box3x bbox;
CoordType dim; /// Spatial Dimention (edge legth) of the bounding box
Point3i siz; /// Number of cells forming the grid
CoordType voxel; /// Dimensions of a single cell
/*
Derives the right values of Dim and voxel starting
from the current values of siz and bbox
*/
void ComputeDimAndVoxel()
{
this->dim = this->bbox.max - this->bbox.min;
this->voxel[0] = this->dim[0]/this->siz[0];
this->voxel[1] = this->dim[1]/this->siz[1];
this->voxel[2] = this->dim[2]/this->siz[2];
}
/* Given a 3D point, returns the coordinates of the cell where the point is
* @param p is a 3D point
* @return integer coordinates of the cell
*/
inline Point3i GridP( const Point3<ScalarType> & p ) const
{
Point3i pi;
PToIP(p, pi);
return pi;
}
/* Given a 3D point p, returns the index of the corresponding cell
* @param p is a 3D point in the space
* @return integer coordinates pi of the cell
*/
inline void PToIP(const CoordType & p, Point3i &pi ) const
{
CoordType t = p - bbox.min;
pi[0] = int( t[0] / voxel[0] );
pi[1] = int( t[1] / voxel[1] );
pi[2] = int( t[2] / voxel[2] );
}
/* Given a cell index return the lower corner of the cell
* @param integer coordinates pi of the cell
* @return p is a 3D point representing the lower corner of the cell
*/
template <class OtherScalarType>
inline void IPiToPf(const Point3i & pi, Point3<OtherScalarType> &p ) const
{
p[0] = bbox.min[0] + ((OtherScalarType)pi[0])*voxel[0];
p[1] = bbox.min[1] + ((OtherScalarType)pi[1])*voxel[1];
p[2] = bbox.min[2] + ((OtherScalarType)pi[2])*voxel[2];
}
/* Returns the matrix that applied to a point in grid space
* transforms it in the original space.
*/
inline Matrix44<ScalarType> IPtoPfMatrix() const
{
Matrix44<ScalarType> m; m.SetScale(voxel);
Matrix44<ScalarType> t; t.SetTranslate(bbox.min);
return t*m;
}
/* Given a cell index return the corresponding box
* @param integer coordinates pi of the cell
* @return b is the corresponding box in <ScalarType> coordinates
*/
inline void IPiToBox(const Point3i & pi, Box3x & b ) const
{
CoordType p;
p[0] = ((ScalarType)pi[0])*voxel[0];
p[1] = ((ScalarType)pi[1])*voxel[1];
p[2] = ((ScalarType)pi[2])*voxel[2];
p += bbox.min;
b.min = p;
b.max = (p + voxel);
}
/* Given a cell index return the center of the cell itself
* @param integer coordinates pi of the cell
* @return b is the corresponding box in <ScalarType> coordinates
*/inline void IPiToBoxCenter(const Point3i & pi, CoordType & c ) const
{
CoordType p;
IPiToPf(pi,p);
c = p + voxel/ScalarType(2.0);
}
// Same of IPiToPf but for the case that you just want to transform
// from a space to the other.
template <class OtherScalarType>
void IPfToPf(const Point3<OtherScalarType> & pi, Point3<OtherScalarType> &p ) const
{
p[0] = ((OtherScalarType)pi[0])*voxel[0] + bbox.min[0];
p[1] = ((OtherScalarType)pi[1])*voxel[1] + bbox.min[1];
p[2] = ((OtherScalarType)pi[2])*voxel[2] + bbox.min[2];
}
/* Given a cell in <ScalarType> coordinates, compute the corresponding cell in integer coordinates
* @param b is the cell in <ScalarType> coordinates
* @return ib is the correspondent box in integer coordinates
*/
inline void BoxToIBox( const Box3x & b, Box3i & ib ) const
{
PToIP(b.min, ib.min);
PToIP(b.max, ib.max);
//assert(ib.max[0]>=0 && ib.max[1]>=0 && ib.max[2]>=0);
}
/* Given a cell in integer coordinates, compute the corresponding cell in <ScalarType> coordinates
* @param ib is the cell in integer coordinates
* @return b is the correspondent box in <ScalarType> coordinates
*/
/// Dato un box in voxel ritorna gli estremi del box reale
void IBoxToBox( const Box3i & ib, Box3x & b ) const
{
IPiToPf(ib.min,b.min);
IPiToPf(ib.max+Point3i(1,1,1),b.max);
}
};
template<class scalar_type>
void BestDim( const Box3<scalar_type> box, const scalar_type voxel_size, Point3i & dim )
{
Point3<scalar_type> box_size = box.max-box.min;
__int64 elem_num = (__int64)(box_size[0]/voxel_size +0.5) *( __int64)(box_size[1]/voxel_size +0.5) * (__int64)(box_size[2]/voxel_size +0.5);
BestDim(elem_num,box_size,dim);
}
/** Calcolo dimensioni griglia.
Calcola la dimensione della griglia in funzione
della ratio del bounding box e del numero di elementi
*/
template<class scalar_type>
void BestDim( const __int64 elems, const Point3<scalar_type> & size, Point3i & dim )
{
const __int64 mincells = 1; // Numero minimo di celle
const double GFactor = 1; // GridEntry = NumElem*GFactor
double diag = size.Norm(); // Diagonale del box
double eps = diag*1e-4; // Fattore di tolleranza
assert(elems>0);
assert(size[0]>=0.0);
assert(size[1]>=0.0);
assert(size[2]>=0.0);
__int64 ncell = (__int64)(elems*GFactor); // Calcolo numero di voxel
if(ncell<mincells)
ncell = mincells;
dim[0] = 1;
dim[1] = 1;
dim[2] = 1;
if(size[0]>eps)
{
if(size[1]>eps)
{
if(size[2]>eps)
{
double k = pow((double)(ncell/(size[0]*size[1]*size[2])),double(1.0/3.f));
dim[0] = int(size[0] * k);
dim[1] = int(size[1] * k);
dim[2] = int(size[2] * k);
}
else
{
dim[0] = int(::sqrt(ncell*size[0]/size[1]));
dim[1] = int(::sqrt(ncell*size[1]/size[0]));
}
}
else
{
if(size[2]>eps)
{
dim[0] = int(::sqrt(ncell*size[0]/size[2]));
dim[2] = int(::sqrt(ncell*size[2]/size[0]));
}
else
dim[0] = int(ncell);
}
}
else
{
if(size[1]>eps)
{
if(size[2]>eps)
{
dim[1] = int(::sqrt(ncell*size[1]/size[2]));
dim[2] = int(::sqrt(ncell*size[2]/size[1]));
}
else
dim[1] = int(ncell);
}
else if(size[2]>eps)
dim[2] = int(ncell);
}
dim[0] = std::max(dim[0],1);
dim[1] = std::max(dim[1],1);
dim[2] = std::max(dim[2],1);
}
}
#endif
|