1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef KDTREE_VCG_H
#define KDTREE_VCG_H
#include <vcg/space/point3.h>
#include <vcg/space/box3.h>
#include <vcg/space/index/kdtree/priorityqueue.h>
#include <vector>
#include <limits>
#include <iostream>
#include <cstdint>
namespace vcg {
template<typename _DataType>
class ConstDataWrapper
{
public:
typedef _DataType DataType;
inline ConstDataWrapper()
: mpData(0), mStride(0), mSize(0)
{}
inline ConstDataWrapper(const DataType* pData, int size, int64_t stride = sizeof(DataType))
: mpData(reinterpret_cast<const unsigned char*>(pData)), mStride(stride), mSize(size)
{}
inline const DataType& operator[] (int i) const
{
return *reinterpret_cast<const DataType*>(mpData + i*mStride);
}
inline size_t size() const { return mSize; }
protected:
const unsigned char* mpData;
int64_t mStride;
size_t mSize;
};
template<class StdVectorType>
class VectorConstDataWrapper :public ConstDataWrapper<typename StdVectorType::value_type>
{
public:
inline VectorConstDataWrapper(StdVectorType &vec) :
ConstDataWrapper<typename StdVectorType::value_type>(&(vec[0]), vec.size(), sizeof(typename StdVectorType::value_type))
{}
};
template<class MeshType>
class VertexConstDataWrapper :public ConstDataWrapper<typename MeshType::CoordType>
{
public:
inline VertexConstDataWrapper(MeshType &m) :
ConstDataWrapper<typename MeshType::CoordType>(&(m.vert[0].P()), m.vert.size(), sizeof(typename MeshType::VertexType))
{}
};
/**
* This class allows to create a Kd-Tree thought to perform the neighbour query (radius search, knn-nearest serach and closest search).
* The class implemetantion is thread-safe.
*/
template<typename _Scalar>
class KdTree
{
public:
typedef _Scalar Scalar;
typedef vcg::Point3<Scalar> VectorType;
typedef vcg::Box3<Scalar> AxisAlignedBoxType;
typedef HeapMaxPriorityQueue<int, Scalar> PriorityQueue;
struct Node
{
union {
//standard node
struct {
Scalar splitValue;
unsigned int firstChildId : 24;
unsigned int dim : 2;
unsigned int leaf : 1;
};
//leaf
struct {
unsigned int start;
unsigned short size;
};
};
};
typedef std::vector<Node> NodeList;
// return the protected members which store the nodes and the points list
inline const NodeList& _getNodes(void) { return mNodes; }
inline const std::vector<VectorType>& _getPoints(void) { return mPoints; }
inline unsigned int _getNumLevel(void) { return numLevel; }
inline const AxisAlignedBoxType& _getAABBox(void) { return mAABB; }
public:
KdTree(const ConstDataWrapper<VectorType>& points, unsigned int nofPointsPerCell = 16, unsigned int maxDepth = 64, bool balanced = false);
~KdTree();
void doQueryK(const VectorType& queryPoint, int k, PriorityQueue& mNeighborQueue);
void doQueryDist(const VectorType& queryPoint, float dist, std::vector<unsigned int>& points, std::vector<Scalar>& sqrareDists);
void doQueryClosest(const VectorType& queryPoint, unsigned int& index, Scalar& dist);
protected:
// element of the stack
struct QueryNode
{
QueryNode() {}
QueryNode(unsigned int id) : nodeId(id) {}
unsigned int nodeId; // id of the next node
Scalar sq; // squared distance to the next node
};
// used to build the tree: split the subset [start..end[ according to dim and splitValue,
// and returns the index of the first element of the second subset
unsigned int split(int start, int end, unsigned int dim, float splitValue);
int createTree(unsigned int nodeId, unsigned int start, unsigned int end, unsigned int level);
protected:
AxisAlignedBoxType mAABB; //BoundingBox
NodeList mNodes; //kd-tree nodes
std::vector<VectorType> mPoints; //points read from the input DataWrapper
std::vector<unsigned int> mIndices; //points indices
unsigned int targetCellSize; //min number of point in a leaf
unsigned int targetMaxDepth; //max tree depth
unsigned int numLevel; //actual tree depth
bool isBalanced; //true if the tree is balanced
};
template<typename Scalar>
KdTree<Scalar>::KdTree(const ConstDataWrapper<VectorType>& points, unsigned int nofPointsPerCell, unsigned int maxDepth, bool balanced)
: mPoints(points.size()), mIndices(points.size())
{
// compute the AABB of the input
mPoints[0] = points[0];
mAABB.Set(mPoints[0]);
for (unsigned int i = 1; i < mPoints.size(); ++i)
{
mPoints[i] = points[i];
mIndices[i] = i;
mAABB.Add(mPoints[i]);
}
targetMaxDepth = maxDepth;
targetCellSize = nofPointsPerCell;
isBalanced = balanced;
//mNodes.reserve(4 * mPoints.size() / nofPointsPerCell);
//first node inserted (no leaf). The others are made by the createTree function (recursively)
mNodes.resize(1);
mNodes.back().leaf = 0;
numLevel = createTree(0, 0, mPoints.size(), 1);
}
template<typename Scalar>
KdTree<Scalar>::~KdTree()
{
}
/** Performs the kNN query.
*
* This algorithm uses the simple distance to the split plane to prune nodes.
* A more elaborated approach consists to track the closest corner of the cell
* relatively to the current query point. This strategy allows to save about 5%
* of the leaves. However, in practice the slight overhead due to this tracking
* reduces the overall performance.
*
* This algorithm also use a simple stack while a priority queue using the squared
* distances to the cells as a priority values allows to save about 10% of the leaves.
* But, again, priority queue insertions and deletions are quite involved, and therefore
* a simple stack is by far much faster.
*
* The result of the query, the k-nearest neighbors, are stored into the stack mNeighborQueue, where the
* topmost element [0] is NOT the nearest but the farthest!! (they are not sorted but arranged into a heap).
*/
template<typename Scalar>
void KdTree<Scalar>::doQueryK(const VectorType& queryPoint, int k, PriorityQueue& mNeighborQueue)
{
mNeighborQueue.setMaxSize(k);
mNeighborQueue.init();
std::vector<QueryNode> mNodeStack(numLevel + 1);
mNodeStack[0].nodeId = 0;
mNodeStack[0].sq = 0.f;
unsigned int count = 1;
while (count)
{
//we select the last node (AABB) inserted in the stack
QueryNode& qnode = mNodeStack[count - 1];
//while going down the tree qnode.nodeId is the nearest sub-tree, otherwise,
//in backtracking, qnode.nodeId is the other sub-tree that will be visited iff
//the actual nearest node is further than the split distance.
Node& node = mNodes[qnode.nodeId];
//if the distance is less than the top of the max-heap, it could be one of the k-nearest neighbours
if (mNeighborQueue.getNofElements() < k || qnode.sq < mNeighborQueue.getTopWeight())
{
//when we arrive to a leaf
if (node.leaf)
{
--count; //pop of the leaf
//end is the index of the last element of the leaf in mPoints
unsigned int end = node.start + node.size;
//adding the element of the leaf to the heap
for (unsigned int i = node.start; i < end; ++i)
mNeighborQueue.insert(mIndices[i], vcg::SquaredNorm(queryPoint - mPoints[i]));
}
//otherwise, if we're not on a leaf
else
{
// the new offset is the distance between the searched point and the actual split coordinate
float new_off = queryPoint[node.dim] - node.splitValue;
//left sub-tree
if (new_off < 0.)
{
mNodeStack[count].nodeId = node.firstChildId;
//in the father's nodeId we save the index of the other sub-tree (for backtracking)
qnode.nodeId = node.firstChildId + 1;
}
//right sub-tree (same as above)
else
{
mNodeStack[count].nodeId = node.firstChildId + 1;
qnode.nodeId = node.firstChildId;
}
//distance is inherited from the father (while descending the tree it's equal to 0)
mNodeStack[count].sq = qnode.sq;
//distance of the father is the squared distance from the split plane
qnode.sq = new_off*new_off;
++count;
}
}
else
{
// pop
--count;
}
}
}
/** Performs the distance query.
*
* The result of the query, all the points within the distance dist form the query point, is the vector of the indeces
* and the vector of the squared distances from the query point.
*/
template<typename Scalar>
void KdTree<Scalar>::doQueryDist(const VectorType& queryPoint, float dist, std::vector<unsigned int>& points, std::vector<Scalar>& sqrareDists)
{
std::vector<QueryNode> mNodeStack(numLevel + 1);
mNodeStack[0].nodeId = 0;
mNodeStack[0].sq = 0.f;
unsigned int count = 1;
float sqrareDist = dist*dist;
while (count)
{
QueryNode& qnode = mNodeStack[count - 1];
Node & node = mNodes[qnode.nodeId];
if (qnode.sq < sqrareDist)
{
if (node.leaf)
{
--count; // pop
unsigned int end = node.start + node.size;
for (unsigned int i = node.start; i < end; ++i)
{
float pointSquareDist = vcg::SquaredNorm(queryPoint - mPoints[i]);
if (pointSquareDist < sqrareDist)
{
points.push_back(mIndices[i]);
sqrareDists.push_back(pointSquareDist);
}
}
}
else
{
// replace the stack top by the farthest and push the closest
float new_off = queryPoint[node.dim] - node.splitValue;
if (new_off < 0.)
{
mNodeStack[count].nodeId = node.firstChildId;
qnode.nodeId = node.firstChildId + 1;
}
else
{
mNodeStack[count].nodeId = node.firstChildId + 1;
qnode.nodeId = node.firstChildId;
}
mNodeStack[count].sq = qnode.sq;
qnode.sq = new_off*new_off;
++count;
}
}
else
{
// pop
--count;
}
}
}
/** Searchs the closest point.
*
* The result of the query, the closest point to the query point, is the index of the point and
* and the squared distance from the query point.
*/
template<typename Scalar>
void KdTree<Scalar>::doQueryClosest(const VectorType& queryPoint, unsigned int& index, Scalar& dist)
{
std::vector<QueryNode> mNodeStack(numLevel + 1);
mNodeStack[0].nodeId = 0;
mNodeStack[0].sq = 0.f;
unsigned int count = 1;
int minIndex = mIndices.size() / 2;
Scalar minDist = vcg::SquaredNorm(queryPoint - mPoints[minIndex]);
minIndex = mIndices[minIndex];
while (count)
{
QueryNode& qnode = mNodeStack[count - 1];
Node & node = mNodes[qnode.nodeId];
if (qnode.sq < minDist)
{
if (node.leaf)
{
--count; // pop
unsigned int end = node.start + node.size;
for (unsigned int i = node.start; i < end; ++i)
{
float pointSquareDist = vcg::SquaredNorm(queryPoint - mPoints[i]);
if (pointSquareDist < minDist)
{
minDist = pointSquareDist;
minIndex = mIndices[i];
}
}
}
else
{
// replace the stack top by the farthest and push the closest
float new_off = queryPoint[node.dim] - node.splitValue;
if (new_off < 0.)
{
mNodeStack[count].nodeId = node.firstChildId;
qnode.nodeId = node.firstChildId + 1;
}
else
{
mNodeStack[count].nodeId = node.firstChildId + 1;
qnode.nodeId = node.firstChildId;
}
mNodeStack[count].sq = qnode.sq;
qnode.sq = new_off*new_off;
++count;
}
}
else
{
// pop
--count;
}
}
index = minIndex;
dist = minDist;
}
/**
* Split the subarray between start and end in two part, one with the elements less than splitValue,
* the other with the elements greater or equal than splitValue. The elements are compared
* using the "dim" coordinate [0 = x, 1 = y, 2 = z].
*/
template<typename Scalar>
unsigned int KdTree<Scalar>::split(int start, int end, unsigned int dim, float splitValue)
{
int l(start), r(end - 1);
for (; l < r; ++l, --r)
{
while (l < end && mPoints[l][dim] < splitValue)
l++;
while (r >= start && mPoints[r][dim] >= splitValue)
r--;
if (l > r)
break;
std::swap(mPoints[l], mPoints[r]);
std::swap(mIndices[l], mIndices[r]);
}
//returns the index of the first element on the second part
return (mPoints[l][dim] < splitValue ? l + 1 : l);
}
/** recursively builds the kdtree
*
* The heuristic is the following:
* - if the number of points in the node is lower than targetCellsize then make a leaf
* - else compute the AABB of the points of the node and split it at the middle of
* the largest AABB dimension.
*
* This strategy might look not optimal because it does not explicitly prune empty space,
* unlike more advanced SAH-like techniques used for RT. On the other hand it leads to a shorter tree,
* faster to traverse and our experience shown that in the special case of kNN queries,
* this strategy is indeed more efficient (and much faster to build). Moreover, for volume data
* (e.g., fluid simulation) pruning the empty space is useless.
*
* Actually, storing at each node the exact AABB (we therefore have a binary BVH) allows
* to prune only about 10% of the leaves, but the overhead of this pruning (ball/ABBB intersection)
* is more expensive than the gain it provides and the memory consumption is x4 higher !
*/
template<typename Scalar>
int KdTree<Scalar>::createTree(unsigned int nodeId, unsigned int start, unsigned int end, unsigned int level)
{
//select the first node
Node& node = mNodes[nodeId];
AxisAlignedBoxType aabb;
//putting all the points in the bounding box
aabb.Set(mPoints[start]);
for (unsigned int i = start + 1; i < end; ++i)
aabb.Add(mPoints[i]);
//bounding box diagonal
VectorType diag = aabb.max - aabb.min;
//the split "dim" is the dimension of the box with the biggest value
unsigned int dim;
if (diag.X() > diag.Y())
dim = diag.X() > diag.Z() ? 0 : 2;
else
dim = diag.Y() > diag.Z() ? 1 : 2;
node.dim = dim;
if (isBalanced) //we divide the points using the median value along the "dim" dimension
{
std::vector<Scalar> tempVector;
for (unsigned int i = start + 1; i < end; ++i)
tempVector.push_back(mPoints[i][dim]);
std::sort(tempVector.begin(), tempVector.end());
node.splitValue = (tempVector[tempVector.size() / 2.0] + tempVector[tempVector.size() / 2.0 + 1]) / 2.0;
}
else //we divide the bounding box in 2 partitions, considering the average of the "dim" dimension
node.splitValue = Scalar(0.5*(aabb.max[dim] + aabb.min[dim]));
//midId is the index of the first element in the second partition
unsigned int midId = split(start, end, dim, node.splitValue);
node.firstChildId = mNodes.size();
mNodes.resize(mNodes.size() + 2);
bool flag = (midId == start) || (midId == end);
int leftLevel, rightLevel;
{
// left child
unsigned int childId = mNodes[nodeId].firstChildId;
Node& child = mNodes[childId];
if (flag || (midId - start) <= targetCellSize || level >= targetMaxDepth)
{
child.leaf = 1;
child.start = start;
child.size = midId - start;
leftLevel = level;
}
else
{
child.leaf = 0;
leftLevel = createTree(childId, start, midId, level + 1);
}
}
{
// right child
unsigned int childId = mNodes[nodeId].firstChildId + 1;
Node& child = mNodes[childId];
if (flag || (end - midId) <= targetCellSize || level >= targetMaxDepth)
{
child.leaf = 1;
child.start = midId;
child.size = end - midId;
rightLevel = level;
}
else
{
child.leaf = 0;
rightLevel = createTree(childId, midId, end, level + 1);
}
}
if (leftLevel > rightLevel)
return leftLevel;
return rightLevel;
}
}
#endif
|