1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/****************************************************************************
* GCache *
* Author: Federico Ponchio *
* *
* Copyright(C) 2011 *
* Visual Computing Lab *
* ISTI - Italian National Research Council *
* *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef DD_HEAP_H
#define DD_HEAP_H
/**
Double ended heap inspired by
Min-Max Heaps and Generalized Priority Queues
M. D. ATKINSON,J.-R. SACK, N. SANTORO,and T. STROTHOTTE
This structure allows for quick extraction of biggest and smaller item out of a set
with linear reconstruction of the ordering.
DHeap exposes the public interface of vector. (push_back(), resize() etc.).
Compared to a stl heap, rebuild is 15% longer, extraction is 2x longer,
but you get both min and max extraction in log(n) time.
*/
#include <assert.h>
#include <vector>
template <class T>
class DHeap: public std::vector<T> {
public:
void push(const T& elt) {
this->push_back(elt);
bubbleUp(this->size()-1);
}
T &min() { return this->front(); } //root is smallest element
T popMin() {
T elt = this->front();
//move the last element to the root and
this->front() = this->back();
this->pop_back();
//enforce minmax heap property
trickleDownMin(0);
return elt;
}
//max is second element
T &max() {
if(this->size() == 1) return at(0);
return at(1);
}
T popMax() {
int p = 1;
if(this->size() == 1) p = 0;
T elt = at(p);
//max is replaced with last item.
at(p) = this->back();
this->pop_back();
trickleDownMax(p); //enforce minmax heap property
return elt;
}
//just reinsert all elements
void rebuild() {
for(unsigned int i = 0; i < this->size(); i++)
bubbleUp(i);
}
protected:
T &at(int n) { return std::vector<T>::at(n); }
int isMax(int e) const { return e & 1; }
int parentMin(int i) const { return (((i+2)>>2)<<1) - 2; }
int parentMax(int i) const { return (((i+2)>>2)<<1) - 1; }
int leftChildMin(int i) const { return (((i+2)>>1)<<2) -2; }
int leftChildMax(int i) const { return (((i+2)>>1)<<2) -1; }
void swap(int a, int b) { T tmp = at(a); at(a) = at(b); at(b) = tmp; }
//returns smallest elemennt of children intervals (or self if no children)
int smallestChild(int i) {
int l = leftChildMin(i);
if(l >= this->size()) return i; //no children, return self
int r = l+2; //right child
if(r < this->size() && at(r) < at(l))
return r;
return l;
}
//return biggest children or self if no children
int greatestChild(int i) {
int l = leftChildMax(i);
if(l >= this->size()) return i; //no children, return self
int r = l+2; //right child
if(r < this->size() && at(r) > at(l))
return r;
return l;
}
//all stuff involving swaps could be optimized perofming circular swaps
// but you mantain the code after :)
void trickleDownMin(int i) {
while(1) {
//find smallest child
unsigned int m = leftChildMin(i);
if(m >= this->size()) break;
unsigned int r = m+2;
if(r < this->size() && at(r) < at(m))
m = r;
if(at(m) < at(i)) { //if child is smaller swap
swap(i, m);
i = m; //check swapped children
} else //no swap? finish
break;
m = i+1; //enforce order in interval
if(m >= this->size()) break;
if(at(m) < at(i))
swap(i, m);
}
}
void trickleDownMax(int i) {
while(1) {
//find greatest child
unsigned int m = leftChildMax(i);
if(m >= this->size()) break;
unsigned int r = m+2;
if(r < this->size() && at(r) > at(m))
m = r;
if(at(m) > at(i)) {
swap(i, m);
i = m;
} else
break;
m = i-1; //enforce order in interval
if(m >= this->size()) break;
if(at(m) > at(i)) {
swap(i, m);
}
}
}
void bubbleUpMin(int i) {
while(1) {
int m = parentMin(i);
if(m < 0) break;
if(at(m) > at(i)) {
swap(i, m);
i = m;
} else
break;
}
}
void bubbleUpMax(int i) {
while(1) {
int m = parentMax(i);
if(m < 0) break;
if(at(m) < at(i)) {
swap(i, m);
i = m;
} else
break;
}
}
void bubbleUp(int i) {
if(isMax(i)) {
int m = i-1;
if(at(m) > at(i)) {
swap(i, m);
bubbleUpMin(m);
} else
bubbleUpMax(i);
} else {
int m = parentMax(i);
if(m < 0) return;
if(at(m) < at(i)) {
swap(i, m);
bubbleUpMax(m);
} else
bubbleUpMin(i);//just reinsert all elements, (no push back necessary, of course
}
}
/* DEBUG */
public:
///check the double heap conditions are met, mainly for debugging purpouses
bool isHeap() { //checks everything is in order
int s = this->size();
for(int i = 0; i < s; i += 2) {
if(i+1 < s && at(i) > at(i+1)) return false;
int l = leftChildMin(i);
if(l < s && at(i) > at(l)) return false;
int r = l + 2;
if(r < s && at(i) > at(r)) return false;
}
for(int i = 1; i < s; i += 2) {
int l = leftChildMax(i);
if(l < s && at(i) < at(l)) return false;
int r = l + 2;
if(r < s && at(i) < at(r)) return false;
}
return true;
}
};
/** Same functionality as IHeap, but storing pointers instead of the objects */
template <class T>
class PtrDHeap {
private:
class Item {
public:
T *value;
Item(T *val): value(val) {}
bool operator<(const Item &i) const { return *value < *i.value; }
bool operator>(const Item &i) const { return *value > *i.value; }
};
DHeap<Item> heap;
public:
T *push(T *t) {
Item i(t);
heap.push(i);
return i.value;
}
void push_back(T *t) {
heap.push_back(Item(t));
}
int size() { return heap.size(); }
void resize(int n) { assert(n <= (int)heap.size()); return heap.resize(n, Item(NULL)); }
void clear() { heap.clear(); }
T &min() { Item &i = heap.min(); return *i.value; }
T *popMin() { Item i = heap.popMin(); return i.value; }
T &max() { Item &i = heap.max(); return *i.value; }
T *popMax() { Item i = heap.popMax(); return i.value; }
void rebuild() { heap.rebuild(); }
T &operator[](int i) {
return *(heap[i].value);
}
Item &at(int i) { return heap[i]; }
bool isHeap() { return heap.isHeap(); }
};
#endif
|