1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/****************************************************************************
* NanoPLY *
* NanoPLY is a C++11 header-only library to read and write PLY file *
* *
* Copyright(C) 2014-2015 *
* Visual Computing Lab *
* ISTI - Italian National Research Council *
* *
* This Source Code Form is subject to the terms of the Mozilla Public *
* License, v. 2.0. If a copy of the MPL was not distributed with this *
* file, You can obtain one at http://mozilla.org/MPL/2.0/. *
* *
****************************************************************************/
#include <iostream>
#include <nanoply.hpp>
template<typename T, int N>
struct Container
{
public:
T data[N];
Container(){}
Container(T* temp, int n)
{
for (int i = 0; i < std::min(n, N); i++)
data[i] = temp[i];
}
T* V()
{
return data;
}
bool operator == (Container<T, N> const & m) const
{
bool flag = true;
for (int i = 0; i < N; i++)
flag = flag && (data[i] == m.data[i]);
return flag;
}
};
typedef Container<float, 3> Point3f;
typedef Container<unsigned char, 4> Color4f;
typedef Container<int, 3> VertexIndex;
struct MyVertexInfo
{
Color4f c;
float density;
int materialId;
bool operator == (MyVertexInfo const & m) const
{
return (c == m.c && m.density == density && m.materialId == materialId);
}
};
struct MyMaterialInfo
{
Point3f kd;
Point3f ks;
float rho;
bool operator == (MyMaterialInfo const & m) const
{
return (kd == m.kd && ks == m.ks && rho == m.rho);
}
};
class MyMesh
{
public:
std::vector<Point3f> coordVec;
std::vector<Point3f> normalVec;
std::vector<MyVertexInfo> infoVec;
std::vector<VertexIndex> faceIndex;
std::vector<MyMaterialInfo> material;
void FillMesh()
{
float pos[] = { 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0 };
int index[] = { 0, 1, 2, 0, 2, 3, 0, 3, 1, 3, 2, 1 };
float norm[] = { 0.57735, 0.57735, 0.57735, -0.57735, 0.57735, -0.57735, -0.57735, -0.57735, 0.57735, 0.57735, -0.57735, -0.57735 };
unsigned char color[] = { 68, 68, 68, 255, 177, 68, 177, 255, 177, 177, 68, 255, 68, 177, 177 };
float density[] = { 3.5, 2.0, 4.0, 3.0 };
int materialId[] = { 1, 0, -1, 1 };
float materialValue[] = { 0.2, 0.3, 0.2, 0.5, 0.5, 0.6, 20.0, 0.1, 0.1, 0.1, 0.7, 0.5, 0.4, 1.0 };
coordVec.push_back(Point3f(pos, 3)); coordVec.push_back(Point3f(&pos[3], 3)); coordVec.push_back(Point3f(&pos[6], 3)); coordVec.push_back(Point3f(&pos[9], 3));
normalVec.push_back(Point3f(norm, 3)); normalVec.push_back(Point3f(&norm[3], 3)); normalVec.push_back(Point3f(&norm[6], 3)); normalVec.push_back(Point3f(&norm[9], 3));
MyVertexInfo info1 = { Color4f(color, 4), density[0], materialId[0] }; infoVec.push_back(info1);
MyVertexInfo info2 = { Color4f(&color[4], 4), density[1], materialId[1] }; infoVec.push_back(info2);
MyVertexInfo info3 = { Color4f(&color[8], 4), density[2], materialId[2] }; infoVec.push_back(info3);
MyVertexInfo info4 = { Color4f(&color[12], 4), density[3], materialId[3] }; infoVec.push_back(info4);
faceIndex.push_back(VertexIndex(index, 3)); faceIndex.push_back(VertexIndex(&index[3], 3)); faceIndex.push_back(VertexIndex(&index[6], 3)); faceIndex.push_back(VertexIndex(&index[9], 3));
MyMaterialInfo mat1 = { Point3f(materialValue, 3), Point3f(&materialValue[3], 3), materialValue[6] }; material.push_back(mat1);
MyMaterialInfo mat2 = { Point3f(&materialValue[7], 3), Point3f(&materialValue[10], 3), materialValue[13] }; material.push_back(mat2);
}
bool operator == (MyMesh& m)
{
bool flag = (coordVec == m.coordVec);
flag = flag && (normalVec == m.normalVec);
flag = flag && (infoVec == m.infoVec);
flag = flag && (faceIndex == m.faceIndex);
flag = flag && (material == m.material);
return flag;
}
};
bool Load(const char* filename, MyMesh& mesh)
{
//Get file info
nanoply::Info info(filename);
if (info.errInfo != nanoply::NNP_OK)
{
std::cout << "Invalid file format" << std::endl;
return false;
}
//Resize the element containers
int vertCnt = info.GetVertexCount();
if (vertCnt <= 0)
{
std::cout << "The file does't contain any vertex." << std::endl;
return false;
}
mesh.coordVec.resize(vertCnt);
mesh.normalVec.resize(vertCnt);
mesh.infoVec.resize(vertCnt);
int faceCnt = info.GetFaceCount();
mesh.faceIndex.resize(faceCnt);
size_t materialCnt = info.GetElementCount(std::string("material"));
mesh.material.resize(2);
//Create the vertex properties descriptor (what ply property and where to save its data)
nanoply::ElementDescriptor vertex(nanoply::NNP_VERTEX_ELEM);
if (vertCnt > 0)
{
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_PXYZ, (*mesh.coordVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_NXYZ, (*mesh.normalVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 4, unsigned char>(nanoply::NNP_CRGBA, (*mesh.infoVec.begin()).c.V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, float>(nanoply::NNP_DENSITY, &(*mesh.infoVec.begin()).density));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, int>(std::string("materialId"), &(*mesh.infoVec.begin()).materialId));
}
//Create the face properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor face(nanoply::NNP_FACE_ELEM);
if (mesh.faceIndex.size() > 0)
face.dataDescriptor.push_back(new nanoply::DataDescriptor<VertexIndex, 3, int>(nanoply::NNP_FACE_VERTEX_LIST, (*mesh.faceIndex.begin()).V()));
//Create the material properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor material(std::string("material"));
if (mesh.material.size() > 0)
{
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("kd"), (*mesh.material.begin()).kd.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("ks"), (*mesh.material.begin()).ks.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 1, float>(std::string("rho"), &(*mesh.material.begin()).rho));
}
//Create the mesh descriptor
std::vector<nanoply::ElementDescriptor*> meshDescr;
meshDescr.push_back(&vertex);
meshDescr.push_back(&face);
meshDescr.push_back(&material);
//Open the file and save the element data according the relative element descriptor
OpenModel(info, meshDescr);
for (int i = 0; i < vertex.dataDescriptor.size(); i++)
delete vertex.dataDescriptor[i];
for (int i = 0; i < face.dataDescriptor.size(); i++)
delete face.dataDescriptor[i];
for (int i = 0; i < material.dataDescriptor.size(); i++)
delete material.dataDescriptor[i];
return (info.errInfo == nanoply::NNP_OK);
}
bool Save(const char* filename, MyMesh& mesh, bool binary)
{
//Create the vector of vertex properties to save in the file
std::vector<nanoply::PlyProperty> vertexProp;
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_PXYZ));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_NXYZ));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_DENSITY));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_CRGBA));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_INT32, "materialId"));
//Create the vector of face properties to save in the file
std::vector<nanoply::PlyProperty> faceProp;
faceProp.push_back(nanoply::PlyProperty(nanoply::NNP_LIST_UINT8_UINT32, nanoply::NNP_FACE_VERTEX_LIST));
//Create the vector of material properties to save in the file
std::vector<nanoply::PlyProperty> materialProp;
materialProp.push_back(nanoply::PlyProperty(nanoply::NNP_LIST_UINT8_FLOAT32, "kd"));
materialProp.push_back(nanoply::PlyProperty(nanoply::NNP_LIST_UINT8_FLOAT32, "ks"));
materialProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, "rho"));
//Create the PlyElement
nanoply::PlyElement vertexElem(nanoply::NNP_VERTEX_ELEM, vertexProp, mesh.coordVec.size());
nanoply::PlyElement faceElem(nanoply::NNP_FACE_ELEM, faceProp, mesh.faceIndex.size());
nanoply::PlyElement materialElem(std::string("material"), materialProp, mesh.material.size());
//Create the Info object with the data to save in the header
nanoply::Info infoSave;
infoSave.filename = filename;
infoSave.binary = binary;
infoSave.AddPlyElement(vertexElem);
infoSave.AddPlyElement(faceElem);
infoSave.AddPlyElement(materialElem);
//Create the vertex properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor vertex(nanoply::NNP_VERTEX_ELEM);
if (mesh.coordVec.size() > 0)
{
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_PXYZ, (*mesh.coordVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_NXYZ, (*mesh.normalVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 4, unsigned char>(nanoply::NNP_CRGBA, (*mesh.infoVec.begin()).c.V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, float>(nanoply::NNP_DENSITY, &(*mesh.infoVec.begin()).density));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, int>(std::string("materialId"), &(*mesh.infoVec.begin()).materialId));
}
//Create the face properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor face(nanoply::NNP_FACE_ELEM);
if (mesh.faceIndex.size() > 0)
face.dataDescriptor.push_back(new nanoply::DataDescriptor<VertexIndex, 3, int>(nanoply::NNP_FACE_VERTEX_LIST, (*mesh.faceIndex.begin()).V()));
//Create the material properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor material(std::string("material"));
if (mesh.material.size() > 0)
{
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("kd"), (*mesh.material.begin()).kd.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("ks"), (*mesh.material.begin()).ks.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 1, float>(std::string("rho"), &(*mesh.material.begin()).rho));
}
//Create the mesh descriptor
std::vector<nanoply::ElementDescriptor*> meshDescr;
meshDescr.push_back(&vertex);
meshDescr.push_back(&face);
meshDescr.push_back(&material);
//Save the file
bool result = nanoply::SaveModel(infoSave.filename, meshDescr, infoSave);
for (int i = 0; i < vertex.dataDescriptor.size(); i++)
delete vertex.dataDescriptor[i];
for (int i = 0; i < face.dataDescriptor.size(); i++)
delete face.dataDescriptor[i];
for (int i = 0; i < material.dataDescriptor.size(); i++)
delete material.dataDescriptor[i];
return result;
}
int main()
{
MyMesh mesh1;
mesh1.FillMesh();
Save("example_ascii.ply", mesh1, false);
Save("example_binary.ply", mesh1, true);
MyMesh mesh2, mesh3;
Load("example_ascii.ply", mesh2);
Load("example_binary.ply", mesh3);
if (mesh2 == mesh1)
std::cout << "Write and read ASCII ply file: SUCCESS\n";
else
std::cout << "Write and read ASCII ply file: FAIL\n";
if (mesh3 == mesh1)
std::cout << "Write and read binary ply file: SUCCESS\n";
else
std::cout << "Write and read binary ply file: FAIL\n";
return true;
}
|