1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCGLIB_BOX3
#define __VCGLIB_BOX3
#include <vcg/space/point3.h>
#include <vcg/math/matrix44.h>
#include <vcg/space/line3.h>
#include <vcg/space/plane3.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
Templated class for 3D boxes.
This is the class for definition of a axis aligned bounding box in 3D space. It is stored just as two Point3
@param BoxScalarType (template parameter) Specifies the type of scalar used to represent coords.
*/
template <class BoxScalarType>
class Box3
{
public:
/// The scalar type
typedef BoxScalarType ScalarType;
/// min coordinate point
Point3<BoxScalarType> min;
/// max coordinate point
Point3<BoxScalarType> max;
/// The bounding box constructor
inline Box3() { this->SetNull(); }
/// Copy constructor
//inline Box3( const Box3 & b ) { min=b.min; max=b.max; }
/// Min Max constructor
inline Box3( const Point3<BoxScalarType> & mi, const Point3<BoxScalarType> & ma ) { min = mi; max = ma; }
/// Point Radius Constructor
inline Box3(const Point3<BoxScalarType> & center, const BoxScalarType & radius) {
min = center-Point3<BoxScalarType>(radius,radius,radius);
max = center+Point3<BoxScalarType>(radius,radius,radius);
}
/// The bounding box distructor
inline ~Box3() { }
/// Operator to compare two bounding box
inline bool operator == ( Box3<BoxScalarType> const & p ) const
{
return min==p.min && max==p.max;
}
/// Operator to dispare two bounding box
inline bool operator != ( Box3<BoxScalarType> const & p ) const
{
return min!=p.min || max!=p.max;
}
/** Offset of a vector (s,s,s)
*/
void Offset( const BoxScalarType s )
{
Offset( Point3<BoxScalarType> (s,s,s));
}
/** Offset the two corner of the box of a vector delta.
* adding delta to max and -delta to min.
@param delta offset vector
*/
void Offset( const Point3<BoxScalarType> & delta )
{
min -= delta;
max += delta;
}
/// Initializing the bounding box
void Set( const Point3<BoxScalarType> & p )
{
min = max = p;
}
/// Set the bounding box to a null value
void SetNull()
{
min.X()= 1; max.X()= -1;
min.Y()= 1; max.Y()= -1;
min.Z()= 1; max.Z()= -1;
}
/** Modify the current bbox to contain also the passed box.
* Adding a null bounding box does nothing
*/
void Add( Box3<BoxScalarType> const & b )
{
if(b.IsNull()) return; // Adding a null bbox should do nothing
if(IsNull()) *this=b;
else
{
if(min.X() > b.min.X()) min.X() = b.min.X();
if(min.Y() > b.min.Y()) min.Y() = b.min.Y();
if(min.Z() > b.min.Z()) min.Z() = b.min.Z();
if(max.X() < b.max.X()) max.X() = b.max.X();
if(max.Y() < b.max.Y()) max.Y() = b.max.Y();
if(max.Z() < b.max.Z()) max.Z() = b.max.Z();
}
}
/** Modify the current bbox to contain also the passed point
*/
void Add( const Point3<BoxScalarType> & p )
{
if(IsNull()) Set(p);
else
{
if(min.X() > p.X()) min.X() = p.X();
if(min.Y() > p.Y()) min.Y() = p.Y();
if(min.Z() > p.Z()) min.Z() = p.Z();
if(max.X() < p.X()) max.X() = p.X();
if(max.Y() < p.Y()) max.Y() = p.Y();
if(max.Z() < p.Z()) max.Z() = p.Z();
}
}
/** Modify the current bbox to contain also the passed sphere
*/
void Add( const Point3<BoxScalarType> & p, const BoxScalarType radius )
{
if(IsNull()) Set(p);
else
{
min.X() = std::min(min.X(),p.X()-radius);
min.Y() = std::min(min.Y(),p.Y()-radius);
min.Z() = std::min(min.Z(),p.Z()-radius);
max.X() = std::max(max.X(),p.X()+radius);
max.Y() = std::max(max.Y(),p.Y()+radius);
max.Z() = std::max(max.Z(),p.Z()+radius);
}
}
/** Modify the current bbox to contain also the box b transformed according to the matrix m
*/
void Add( const Matrix44<BoxScalarType> &m, const Box3<BoxScalarType> & b )
{
if(b.IsNull()) return; // Adding a null bbox should do nothing
const Point3<BoxScalarType> &mn= b.min;
const Point3<BoxScalarType> &mx= b.max;
Add(m*(Point3<BoxScalarType>(mn[0],mn[1],mn[2])));
Add(m*(Point3<BoxScalarType>(mx[0],mn[1],mn[2])));
Add(m*(Point3<BoxScalarType>(mn[0],mx[1],mn[2])));
Add(m*(Point3<BoxScalarType>(mx[0],mx[1],mn[2])));
Add(m*(Point3<BoxScalarType>(mn[0],mn[1],mx[2])));
Add(m*(Point3<BoxScalarType>(mx[0],mn[1],mx[2])));
Add(m*(Point3<BoxScalarType>(mn[0],mx[1],mx[2])));
Add(m*(Point3<BoxScalarType>(mx[0],mx[1],mx[2])));
}
/** Calcola l'intersezione tra due bounding box. Al bounding box viene assegnato il valore risultante.
@param b Il bounding box con il quale si vuole effettuare l'intersezione
*/
void Intersect( const Box3<BoxScalarType> & b )
{
if(min.X() < b.min.X()) min.X() = b.min.X();
if(min.Y() < b.min.Y()) min.Y() = b.min.Y();
if(min.Z() < b.min.Z()) min.Z() = b.min.Z();
if(max.X() > b.max.X()) max.X() = b.max.X();
if(max.Y() > b.max.Y()) max.Y() = b.max.Y();
if(max.Z() > b.max.Z()) max.Z() = b.max.Z();
if(min.X()>max.X() || min.Y()>max.Y() || min.Z()>max.Z()) SetNull();
}
/** Trasla il bounding box di un valore definito dal parametro.
@param p Il bounding box trasla sulla x e sulla y in base alle coordinate del parametro
*/
void Translate( const Point3<BoxScalarType> & p )
{
min += p;
max += p;
}
/** true if the point belong to the closed box
*/
bool IsIn( Point3<BoxScalarType> const & p ) const
{
return (
min.X() <= p.X() && p.X() <= max.X() &&
min.Y() <= p.Y() && p.Y() <= max.Y() &&
min.Z() <= p.Z() && p.Z() <= max.Z()
);
}
/** true if the point belong to the open box (open on the max side)
* e.g. if p in [min,max)
*/
bool IsInEx( Point3<BoxScalarType> const & p ) const
{
return (
min.X() <= p.X() && p.X() < max.X() &&
min.Y() <= p.Y() && p.Y() < max.Y() &&
min.Z() <= p.Z() && p.Z() < max.Z()
);
}
/** Verifica se due bounding box collidono cioe' se hanno una intersezione non vuota. Per esempio
due bounding box adiacenti non collidono.
@param b A bounding box
@return True se collidoo, false altrimenti
*/
/* old version
bool Collide(Box3<BoxScalarType> const &b)
{
Box3<BoxScalarType> bb=*this;
bb.Intersect(b);
return bb.IsValid();
}
*/
bool Collide(Box3<BoxScalarType> const &b) const
{
return b.min.X()<max.X() && b.max.X()>min.X() &&
b.min.Y()<max.Y() && b.max.Y()>min.Y() &&
b.min.Z()<max.Z() && b.max.Z()>min.Z() ;
}
/**
return true if the box is null (e.g. invalid or not initialized);
*/
bool IsNull() const { return min.X()>max.X() || min.Y()>max.Y() || min.Z()>max.Z(); }
/** return true if the box is empty (e.g. if min == max)
*/
bool IsEmpty() const { return min==max; }
/// Return the lenght of the diagonal of the box .
BoxScalarType Diag() const
{
return Distance(min,max);
}
/// Calcola il quadrato della diagonale del bounding box.
BoxScalarType SquaredDiag() const
{
return SquaredDistance(min,max);
}
/// Return the center of the box.
Point3<BoxScalarType> Center() const
{
return (min+max)/2;
}
/// Compute bounding box size.
Point3<BoxScalarType> Dim() const
{
return (max-min);
}
/// Returns global coords of a local point expressed in [0..1]^3
Point3<BoxScalarType> LocalToGlobal(Point3<BoxScalarType> const & p) const{
return Point3<BoxScalarType>(
min[0] + p[0]*(max[0]-min[0]),
min[1] + p[1]*(max[1]-min[1]),
min[2] + p[2]*(max[2]-min[2]));
}
/// Returns local coords expressed in [0..1]^3 of a point in 3D
Point3<BoxScalarType> GlobalToLocal(Point3<BoxScalarType> const & p) const{
return Point3<BoxScalarType>(
(p[0]-min[0])/(max[0]-min[0]),
(p[1]-min[1])/(max[1]-min[1]),
(p[2]-min[2])/(max[2]-min[2])
);
}
/// Return the volume of the box.
BoxScalarType Volume() const
{
return (max.X()-min.X())*(max.Y()-min.Y())*(max.Z()-min.Z());
}
/// Calcola la dimensione del bounding box sulla x.
inline BoxScalarType DimX() const { return max.X()-min.X();}
/// Calcola la dimensione del bounding box sulla y.
inline BoxScalarType DimY() const { return max.Y()-min.Y();}
/// Calcola la dimensione del bounding box sulla z.
inline BoxScalarType DimZ() const { return max.Z()-min.Z();}
/// Calcola il lato di lunghezza maggiore
inline unsigned char MaxDim() const {
int i;
Point3<BoxScalarType> diag = max-min;
if(diag[0]>diag[1]) i=0; else i=1;
return (diag[i]>diag[2])? i: 2;
}
/// Calcola il lato di lunghezza minore
inline unsigned char MinDim() const {
int i;
Point3<BoxScalarType> diag = max-min;
if(diag[0]<diag[1]) i=0; else i=1;
return (diag[i]<diag[2])? i: 2;
}
template <class Q>
inline void Import( const Box3<Q> & b )
{
min.Import(b.min);
max.Import(b.max);
}
template <class Q>
static inline Box3 Construct( const Box3<Q> & b )
{
return Box3(Point3<BoxScalarType>::Construct(b.min),Point3<BoxScalarType>::Construct(b.max));
}
/// gives the ith box vertex in order: (x,y,z),(X,y,z),(x,Y,z),(X,Y,z),(x,y,Z),(X,y,Z),(x,Y,Z),(X,Y,Z)
Point3<BoxScalarType> P(const int & i) const {
return Point3<BoxScalarType>(
min[0]+ (i%2) * DimX(),
min[1]+ ((i / 2)%2) * DimY(),
min[2]+ (i>3)* DimZ());
}
}; // end class definition
template <class T> Box3<T> Point3<T>::GetBBox(Box3<T> &bb) const {
bb.Set( *this );
return bb;
}
typedef Box3<short> Box3s;
typedef Box3<int> Box3i;
typedef Box3<float> Box3f;
typedef Box3<double> Box3d;
/*@}*/
} // end namespace
#endif
|