1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2018 Francis Williams <francis@fwilliams.info>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_MARCHING_TETS_H
#define IGL_MARCHING_TETS_H
#include "igl_inline.h"
#include <Eigen/Core>
#include <Eigen/Sparse>
namespace igl {
// marching_tets( TV, TT, S, isovalue, SV, SF, J, BC)
//
// performs the marching tetrahedra algorithm on a tet mesh defined by TV and
// TT with scalar values defined at each vertex in TV. The output is a
// triangle mesh approximating the isosurface coresponding to the value
// isovalue.
//
// Input:
// TV #tet_vertices x 3 array -- The vertices of the tetrahedral mesh
// TT #tets x 4 array -- The indexes of each tet in the tetrahedral mesh
// S #tet_vertices x 1 array -- The values defined on each tet vertex
// isovalue scalar -- The isovalue of the level set we want to compute
//
// Output:
// SV #SV x 3 array -- The vertices of the output level surface mesh
// SF #SF x 3 array -- The face indexes of the output level surface mesh
// J #SF list of indices into TT revealing which tet each face comes from
// BC #SV x #TV list of barycentric coordinates so that SV = BC*TV
template <typename DerivedTV,
typename DerivedTT,
typename DerivedS,
typename DerivedSV,
typename DerivedSF,
typename DerivedJ,
typename BCType>
IGL_INLINE void marching_tets(
const Eigen::MatrixBase<DerivedTV>& TV,
const Eigen::MatrixBase<DerivedTT>& TT,
const Eigen::MatrixBase<DerivedS>& S,
double isovalue,
Eigen::PlainObjectBase<DerivedSV>& SV,
Eigen::PlainObjectBase<DerivedSF>& SF,
Eigen::PlainObjectBase<DerivedJ>& J,
Eigen::SparseMatrix<BCType>& BC);
// marching_tets( TV, TT, S, SV, SF, J, BC)
//
// Performs the marching tetrahedra algorithm on a tet mesh defined by TV and
// TT with scalar values defined at each vertex in TV. The output is a
// triangle mesh approximating the isosurface coresponding to an isovalue of 0.
//
// Input:
// TV #tet_vertices x 3 array -- The vertices of the tetrahedral mesh
// TT #tets x 4 array -- The indexes of each tet in the tetrahedral mesh
// S #tet_vertices x 1 array -- The values defined on each tet vertex
// isovalue scalar -- The isovalue of the level set we want to compute
//
// Output:
// SV #SV x 3 array -- The vertices of the output level surface mesh
// SF #SF x 3 array -- The face indexes of the output level surface mesh
// J #SF list of indices into TT revealing which tet each face comes from
// BC #SV x #TV list of barycentric coordinates so that SV = BC*TV
template <typename DerivedTV,
typename DerivedTT,
typename DerivedS,
typename DerivedSV,
typename DerivedSF,
typename DerivedJ,
typename BCType>
IGL_INLINE void marching_tets(
const Eigen::MatrixBase<DerivedTV>& TV,
const Eigen::MatrixBase<DerivedTT>& TT,
const Eigen::MatrixBase<DerivedS>& S,
Eigen::PlainObjectBase<DerivedSV>& SV,
Eigen::PlainObjectBase<DerivedSF>& SF,
Eigen::PlainObjectBase<DerivedJ>& J,
Eigen::SparseMatrix<BCType>& BC) {
return igl::marching_tets(TV, TT, S, 0.0, SV, SF, J, BC);
}
// marching_tets( TV, TT, S, isovalue, SV, SF, J)
//
// performs the marching tetrahedra algorithm on a tet mesh defined by TV and
// TT with scalar values defined at each vertex in TV. The output is a
// triangle mesh approximating the isosurface coresponding to the value
// isovalue.
//
// Input:
// TV #tet_vertices x 3 array -- The vertices of the tetrahedral mesh
// TT #tets x 4 array -- The indexes of each tet in the tetrahedral mesh
// S #tet_vertices x 1 array -- The values defined on each tet vertex
// isovalue scalar -- The isovalue of the level set we want to compute
//
// Output:
// SV #SV x 3 array -- The vertices of the output level surface mesh
// SF #SF x 3 array -- The face indexes of the output level surface mesh
// J #SF list of indices into TT revealing which tet each face comes from
template <typename DerivedTV,
typename DerivedTT,
typename DerivedS,
typename DerivedSV,
typename DerivedSF,
typename DerivedJ>
IGL_INLINE void marching_tets(
const Eigen::MatrixBase<DerivedTV>& TV,
const Eigen::MatrixBase<DerivedTT>& TT,
const Eigen::MatrixBase<DerivedS>& S,
double isovalue,
Eigen::PlainObjectBase<DerivedSV>& SV,
Eigen::PlainObjectBase<DerivedSF>& SF,
Eigen::PlainObjectBase<DerivedJ>& J) {
Eigen::SparseMatrix<double> _BC;
return igl::marching_tets(TV, TT, S, isovalue, SV, SF, J, _BC);
}
// marching_tets( TV, TT, S, isovalue, SV, SF, BC)
//
// performs the marching tetrahedra algorithm on a tet mesh defined by TV and
// TT with scalar values defined at each vertex in TV. The output is a
// triangle mesh approximating the isosurface coresponding to the value
// isovalue.
//
// Input:
// TV #tet_vertices x 3 array -- The vertices of the tetrahedral mesh
// TT #tets x 4 array -- The indexes of each tet in the tetrahedral mesh
// S #tet_vertices x 1 array -- The values defined on each tet vertex
// isovalue scalar -- The isovalue of the level set we want to compute
//
// Output:
// SV #SV x 3 array -- The vertices of the output level surface mesh
// SF #SF x 3 array -- The face indexes of the output level surface mesh
// BC #SV x #TV list of barycentric coordinates so that SV = BC*TV
template <typename DerivedTV,
typename DerivedTT,
typename DerivedS,
typename DerivedSV,
typename DerivedSF,
typename BCType>
IGL_INLINE void marching_tets(
const Eigen::MatrixBase<DerivedTV>& TV,
const Eigen::MatrixBase<DerivedTT>& TT,
const Eigen::MatrixBase<DerivedS>& S,
double isovalue,
Eigen::PlainObjectBase<DerivedSV>& SV,
Eigen::PlainObjectBase<DerivedSF>& SF,
Eigen::SparseMatrix<BCType>& BC) {
Eigen::VectorXi _J;
return igl::marching_tets(TV, TT, S, isovalue, SV, SF, _J, BC);
}
// marching_tets( TV, TT, S, isovalue, SV, SF)
//
// performs the marching tetrahedra algorithm on a tet mesh defined by TV and
// TT with scalar values defined at each vertex in TV. The output is a
// triangle mesh approximating the isosurface coresponding to the value
// isovalue.
//
// Input:
// TV #tet_vertices x 3 array -- The vertices of the tetrahedral mesh
// TT #tets x 4 array -- The indexes of each tet in the tetrahedral mesh
// S #tet_vertices x 1 array -- The values defined on each tet vertex
// isovalue scalar -- The isovalue of the level set we want to compute
//
// Output:
// SV #SV x 3 array -- The vertices of the output level surface mesh
// SF #SF x 3 array -- The face indexes of the output level surface mesh
template <typename DerivedTV,
typename DerivedTT,
typename DerivedS,
typename DerivedSV,
typename DerivedSF>
IGL_INLINE void marching_tets(
const Eigen::MatrixBase<DerivedTV>& TV,
const Eigen::MatrixBase<DerivedTT>& TT,
const Eigen::MatrixBase<DerivedS>& S,
double isovalue,
Eigen::PlainObjectBase<DerivedSV>& SV,
Eigen::PlainObjectBase<DerivedSF>& SF) {
Eigen::VectorXi _J;
Eigen::SparseMatrix<double> _BC;
return igl::marching_tets(TV, TT, S, isovalue, SV, SF, _J, _BC);
}
}
#ifndef IGL_STATIC_LIBRARY
# include "marching_tets.cpp"
#endif
#endif // IGL_MARCHING_TETS_H
|