1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2017 Amir Vaxman <avaxman@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include <igl/shapeup.h>
#include <igl/min_quad_with_fixed.h>
#include <igl/igl_inline.h>
#include <igl/setdiff.h>
#include <igl/cat.h>
#include <igl/PI.h>
#include <Eigen/Core>
#include <vector>
namespace igl
{
//This projection does nothing but render points into projP. Mostly used for "echoing" the global step
IGL_INLINE bool shapeup_identity_projection(const Eigen::PlainObjectBase<Eigen::MatrixXd>& P, const Eigen::PlainObjectBase<Eigen::VectorXi>& SC, const Eigen::PlainObjectBase<Eigen::MatrixXi>& S, Eigen::PlainObjectBase<Eigen::MatrixXd>& projP){
projP.conservativeResize(SC.rows(), 3*SC.maxCoeff());
for (int i=0;i<S.rows();i++){
Eigen::RowVector3d avgCurrP=Eigen::RowVector3d::Zero();
for (int j=0;j<SC(i);j++)
avgCurrP+=P.row(S(i,j))/(double)(SC(i));
for (int j=0;j<SC(i);j++)
projP.block(i,3*j,1,3)=P.row(S(i,j))-avgCurrP;
}
return true;
}
//the projection assumes that the sets are vertices of polygons in order
IGL_INLINE bool shapeup_regular_face_projection(const Eigen::PlainObjectBase<Eigen::MatrixXd>& P, const Eigen::PlainObjectBase<Eigen::VectorXi>& SC, const Eigen::PlainObjectBase<Eigen::MatrixXi>& S, Eigen::PlainObjectBase<Eigen::MatrixXd>& projP){
projP.conservativeResize(SC.rows(), 3*SC.maxCoeff());
for (int currRow=0;currRow<SC.rows();currRow++){
//computing average
int N=SC(currRow);
const Eigen::RowVectorXi SRow=S.row(currRow);
Eigen::RowVector3d avgCurrP=Eigen::RowVector3d::Zero();
Eigen::MatrixXd targetPolygon(N, 3);
Eigen::MatrixXd sourcePolygon(N, 3);
for (int j=0;j<N;j++)
avgCurrP+=P.row(SRow(j))/(double)(N);
for (int j=0;j<N;j++)
targetPolygon.row(j)=P.row(SRow(j))-avgCurrP;
//creating perfectly regular source polygon
for (int j=0;j<N;j++)
sourcePolygon.row(j)<<cos(2*igl::PI*(double)j/(double(N))), sin(2*igl::PI*(double)j/(double(N))),0.0;
//finding closest similarity transformation between source and target
Eigen::MatrixXd corrMat=sourcePolygon.transpose()*targetPolygon;
Eigen::JacobiSVD<Eigen::Matrix3d> svd(corrMat, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::MatrixXd R=svd.matrixU()*svd.matrixV().transpose();
//getting scale by edge length change average. TODO: by singular values
Eigen::VectorXd sourceEdgeLengths(N);
Eigen::VectorXd targetEdgeLengths(N);
for (int j=0;j<N;j++){
sourceEdgeLengths(j)=(sourcePolygon.row((j+1)%N)-sourcePolygon.row(j)).norm();
targetEdgeLengths(j)=(targetPolygon.row((j+1)%N)-targetPolygon.row(j)).norm();
}
double scale=(targetEdgeLengths.cwiseQuotient(sourceEdgeLengths)).mean();
for (int j=0;j<N;j++)
projP.block(currRow,3*j,1,3)=sourcePolygon.row(j)*R*scale;
}
return true;
}
template <
typename DerivedP,
typename DerivedSC,
typename DerivedS,
typename Derivedw>
IGL_INLINE bool shapeup_precomputation(const Eigen::PlainObjectBase<DerivedP>& P,
const Eigen::PlainObjectBase<DerivedSC>& SC,
const Eigen::PlainObjectBase<DerivedS>& S,
const Eigen::PlainObjectBase<DerivedS>& E,
const Eigen::PlainObjectBase<DerivedSC>& b,
const Eigen::PlainObjectBase<Derivedw>& wShape,
const Eigen::PlainObjectBase<Derivedw>& wSmooth,
ShapeupData & sudata)
{
using namespace std;
using namespace Eigen;
sudata.P=P;
sudata.SC=SC;
sudata.S=S;
sudata.b=b;
typedef typename DerivedP::Scalar Scalar;
//checking for consistency of the input
assert(SC.rows()==S.rows());
assert(SC.rows()==wShape.rows());
assert(E.rows()==wSmooth.rows());
assert(b.rows()!=0); //would lead to matrix becoming SPD
sudata.DShape.conservativeResize(SC.sum(), P.rows()); //Shape matrix (integration);
sudata.DClose.conservativeResize(b.rows(), P.rows()); //Closeness matrix for positional constraints
sudata.DSmooth.conservativeResize(E.rows(), P.rows()); //smoothness matrix
//Building shape matrix
std::vector<Triplet<Scalar> > DShapeTriplets;
int currRow=0;
for (int i=0;i<S.rows();i++){
Scalar avgCoeff=1.0/(Scalar)SC(i);
for (int j=0;j<SC(i);j++){
for (int k=0;k<SC(i);k++){
if (j==k)
DShapeTriplets.push_back(Triplet<Scalar>(currRow+j, S(i,k), (1.0-avgCoeff)));
else
DShapeTriplets.push_back(Triplet<Scalar>(currRow+j, S(i,k), (-avgCoeff)));
}
}
currRow+=SC(i);
}
sudata.DShape.setFromTriplets(DShapeTriplets.begin(), DShapeTriplets.end());
//Building closeness matrix
std::vector<Triplet<Scalar> > DCloseTriplets;
for (int i=0;i<b.size();i++)
DCloseTriplets.push_back(Triplet<Scalar>(i,b(i), 1.0));
sudata.DClose.setFromTriplets(DCloseTriplets.begin(), DCloseTriplets.end());
//Building smoothness matrix
std::vector<Triplet<Scalar> > DSmoothTriplets;
for (int i=0; i<E.rows(); i++) {
DSmoothTriplets.push_back(Triplet<Scalar>(i, E(i, 0), -1));
DSmoothTriplets.push_back(Triplet<Scalar>(i, E(i, 1), 1));
}
SparseMatrix<Scalar> tempMat;
igl::cat(1, sudata.DShape, sudata.DClose, tempMat);
igl::cat(1, tempMat, sudata.DSmooth, sudata.A);
//weight matrix
vector<Triplet<Scalar> > WTriplets;
//one weight per set in S.
currRow=0;
for (int i=0;i<SC.rows();i++){
for (int j=0;j<SC(i);j++)
WTriplets.push_back(Triplet<double>(currRow+j,currRow+j,sudata.shapeCoeff*wShape(i)));
currRow+=SC(i);
}
for (int i=0;i<b.size();i++)
WTriplets.push_back(Triplet<double>(SC.sum()+i, SC.sum()+i, sudata.closeCoeff));
for (int i=0;i<E.rows();i++)
WTriplets.push_back(Triplet<double>(SC.sum()+b.size()+i, SC.sum()+b.size()+i, sudata.smoothCoeff*wSmooth(i)));
sudata.W.conservativeResize(SC.sum()+b.size()+E.rows(), SC.sum()+b.size()+E.rows());
sudata.W.setFromTriplets(WTriplets.begin(), WTriplets.end());
sudata.At=sudata.A.transpose(); //for efficieny, as we use the transpose a lot in the iteration
sudata.Q=sudata.At*sudata.W*sudata.A;
return min_quad_with_fixed_precompute(sudata.Q,VectorXi(),SparseMatrix<double>(),true,sudata.solver_data);
}
template <
typename DerivedP,
typename DerivedSC,
typename DerivedS>
IGL_INLINE bool shapeup_solve(const Eigen::PlainObjectBase<DerivedP>& bc,
const std::function<bool(const Eigen::PlainObjectBase<DerivedP>&, const Eigen::PlainObjectBase<DerivedSC>&, const Eigen::PlainObjectBase<DerivedS>&, Eigen::PlainObjectBase<DerivedP>&)>& local_projection,
const Eigen::PlainObjectBase<DerivedP>& P0,
const ShapeupData & sudata,
const bool quietIterations,
Eigen::PlainObjectBase<DerivedP>& P)
{
using namespace Eigen;
using namespace std;
MatrixXd currP=P0;
MatrixXd prevP=P0;
MatrixXd projP;
assert(bc.rows()==sudata.b.rows());
MatrixXd rhs(sudata.A.rows(), 3); rhs.setZero();
rhs.block(sudata.DShape.rows(), 0, sudata.b.rows(),3)=bc; //this stays constant throughout the iterations
if (!quietIterations){
cout<<"Shapeup Iterations, "<<sudata.DShape.rows()<<" constraints, solution size "<<P0.size()<<endl;
cout<<"**********************************************************************************************"<<endl;
}
projP.conservativeResize(sudata.SC.rows(), 3*sudata.SC.maxCoeff());
for (int iter=0;iter<sudata.maxIterations;iter++){
local_projection(currP, sudata.SC,sudata.S,projP);
//constructing the projection part of the (DShape rows of the) right hand side
int currRow=0;
for (int i=0;i<sudata.S.rows();i++)
for (int j=0;j<sudata.SC(i);j++)
rhs.row(currRow++)=projP.block(i, 3*j, 1,3);
DerivedP lsrhs=-sudata.At*sudata.W*rhs;
MatrixXd Y(0,3), Beq(0,3); //We do not use the min_quad_solver fixed variables mechanism; they are treated with the closeness energy of ShapeUp.
min_quad_with_fixed_solve(sudata.solver_data, lsrhs,Y,Beq,currP);
double currChange=(currP-prevP).lpNorm<Infinity>();
if (!quietIterations)
cout << "Iteration "<<iter<<", integration Linf error: "<<currChange<< endl;
prevP=currP;
if (currChange<sudata.pTolerance){
P=currP;
return true;
}
}
P=currP;
return false; //we went over maxIterations
}
}
#ifdef IGL_STATIC_LIBRARY
template bool igl::shapeup_precomputation< typename Eigen::Matrix<double, -1, -1, 0, -1, -1>, typename Eigen::Matrix<int, -1, 1, 0, -1, 1>, typename Eigen::Matrix<int, -1, -1, 0, -1, -1>, typename Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, igl::ShapeupData&);
template bool igl::shapeup_solve<typename Eigen::Matrix<double, -1, -1, 0, -1, -1>, typename Eigen::Matrix<int, -1, 1, 0, -1, 1>, typename Eigen::Matrix<int, -1, -1, 0, -1, -1> >(const Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >& bc, const std::function<bool(const Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, const Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, const Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >& ) >& local_projection, const Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >& P0, const igl::ShapeupData & sudata, const bool quietIterations, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >& P);
#endif
|