File: node.cpp

package info (click to toggle)
meshoptimizer 0.15%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,148 kB
  • sloc: cpp: 11,845; ansic: 6,343; javascript: 305; makefile: 109; python: 24
file content (206 lines) | stat: -rw-r--r-- 5,520 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// This file is part of gltfpack; see gltfpack.h for version/license details
#include "gltfpack.h"

#include <math.h>
#include <string.h>

void markScenes(cgltf_data* data, std::vector<NodeInfo>& nodes)
{
	for (size_t i = 0; i < nodes.size(); ++i)
		nodes[i].scene = -1;

	for (size_t i = 0; i < data->scenes_count; ++i)
		for (size_t j = 0; j < data->scenes[i].nodes_count; ++j)
		{
			NodeInfo& ni = nodes[data->scenes[i].nodes[j] - data->nodes];

			if (ni.scene >= 0)
				ni.scene = -2; // multiple scenes
			else
				ni.scene = int(i);
		}

	for (size_t i = 0; i < data->nodes_count; ++i)
	{
		cgltf_node* root = &data->nodes[i];
		while (root->parent)
			root = root->parent;

		nodes[i].scene = nodes[root - data->nodes].scene;
	}
}

void markAnimated(cgltf_data* data, std::vector<NodeInfo>& nodes, const std::vector<Animation>& animations)
{
	for (size_t i = 0; i < animations.size(); ++i)
	{
		const Animation& animation = animations[i];

		for (size_t j = 0; j < animation.tracks.size(); ++j)
		{
			const Track& track = animation.tracks[j];

			// mark nodes that have animation tracks that change their base transform as animated
			if (!track.dummy)
			{
				NodeInfo& ni = nodes[track.node - data->nodes];

				ni.animated_paths |= (1 << track.path);
			}
		}
	}

	for (size_t i = 0; i < data->nodes_count; ++i)
	{
		NodeInfo& ni = nodes[i];

		for (cgltf_node* node = &data->nodes[i]; node; node = node->parent)
			ni.animated |= nodes[node - data->nodes].animated_paths != 0;
	}
}

void markNeededNodes(cgltf_data* data, std::vector<NodeInfo>& nodes, const std::vector<Mesh>& meshes, const std::vector<Animation>& animations, const Settings& settings)
{
	// mark all joints as kept
	for (size_t i = 0; i < data->skins_count; ++i)
	{
		const cgltf_skin& skin = data->skins[i];

		// for now we keep all joints directly referenced by the skin and the entire ancestry tree; we keep names for joints as well
		for (size_t j = 0; j < skin.joints_count; ++j)
		{
			NodeInfo& ni = nodes[skin.joints[j] - data->nodes];

			ni.keep = true;
		}
	}

	// mark all animated nodes as kept
	for (size_t i = 0; i < animations.size(); ++i)
	{
		const Animation& animation = animations[i];

		for (size_t j = 0; j < animation.tracks.size(); ++j)
		{
			const Track& track = animation.tracks[j];

			if (settings.anim_const || !track.dummy)
			{
				NodeInfo& ni = nodes[track.node - data->nodes];

				ni.keep = true;
			}
		}
	}

	// mark all mesh nodes as kept
	for (size_t i = 0; i < meshes.size(); ++i)
	{
		const Mesh& mesh = meshes[i];

		for (size_t j = 0; j < mesh.nodes.size(); ++j)
		{
			NodeInfo& ni = nodes[mesh.nodes[j] - data->nodes];

			ni.keep = true;
		}
	}

	// mark all light/camera nodes as kept
	for (size_t i = 0; i < data->nodes_count; ++i)
	{
		const cgltf_node& node = data->nodes[i];

		if (node.light || node.camera)
		{
			nodes[i].keep = true;
		}
	}

	// mark all named nodes as needed (if -kn is specified)
	if (settings.keep_nodes)
	{
		for (size_t i = 0; i < data->nodes_count; ++i)
		{
			const cgltf_node& node = data->nodes[i];

			if (node.name && *node.name)
			{
				nodes[i].keep = true;
			}
		}
	}
}

void remapNodes(cgltf_data* data, std::vector<NodeInfo>& nodes, size_t& node_offset)
{
	// to keep a node, we currently need to keep the entire ancestry chain
	for (size_t i = 0; i < data->nodes_count; ++i)
	{
		if (!nodes[i].keep)
			continue;

		for (cgltf_node* node = &data->nodes[i]; node; node = node->parent)
			nodes[node - data->nodes].keep = true;
	}

	// generate sequential indices for all nodes; they aren't sorted topologically
	for (size_t i = 0; i < data->nodes_count; ++i)
	{
		NodeInfo& ni = nodes[i];

		if (ni.keep)
		{
			ni.remap = int(node_offset);

			node_offset++;
		}
	}
}

void decomposeTransform(float translation[3], float rotation[4], float scale[3], const float* transform)
{
	float m[4][4] = {};
	memcpy(m, transform, 16 * sizeof(float));

	// extract translation from last row
	translation[0] = m[3][0];
	translation[1] = m[3][1];
	translation[2] = m[3][2];

	// compute determinant to determine handedness
	float det =
	    m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) -
	    m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) +
	    m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);

	float sign = (det < 0.f) ? -1.f : 1.f;

	// recover scale from axis lengths
	scale[0] = sqrtf(m[0][0] * m[0][0] + m[1][0] * m[1][0] + m[2][0] * m[2][0]) * sign;
	scale[1] = sqrtf(m[0][1] * m[0][1] + m[1][1] * m[1][1] + m[2][1] * m[2][1]) * sign;
	scale[2] = sqrtf(m[0][2] * m[0][2] + m[1][2] * m[1][2] + m[2][2] * m[2][2]) * sign;

	// normalize axes to get a pure rotation matrix
	float rsx = (scale[0] == 0.f) ? 0.f : 1.f / scale[0];
	float rsy = (scale[1] == 0.f) ? 0.f : 1.f / scale[1];
	float rsz = (scale[2] == 0.f) ? 0.f : 1.f / scale[2];

	float r00 = m[0][0] * rsx, r10 = m[1][0] * rsx, r20 = m[2][0] * rsx;
	float r01 = m[0][1] * rsy, r11 = m[1][1] * rsy, r21 = m[2][1] * rsy;
	float r02 = m[0][2] * rsz, r12 = m[1][2] * rsz, r22 = m[2][2] * rsz;

	// "branchless" version of Mike Day's matrix to quaternion conversion
	int qc = r22 < 0 ? (r00 > r11 ? 0 : 1) : (r00 < -r11 ? 2 : 3);
	float qs1 = qc & 2 ? -1.f : 1.f;
	float qs2 = qc & 1 ? -1.f : 1.f;
	float qs3 = (qc - 1) & 2 ? -1.f : 1.f;

	float qt = 1.f - qs3 * r00 - qs2 * r11 - qs1 * r22;
	float qs = 0.5f / sqrtf(qt);

	rotation[qc ^ 0] = qs * qt;
	rotation[qc ^ 1] = qs * (r01 + qs1 * r10);
	rotation[qc ^ 2] = qs * (r20 + qs2 * r02);
	rotation[qc ^ 3] = qs * (r12 + qs3 * r21);
}