1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#include "../src/meshoptimizer.h"
#include <vector>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
double timestamp()
{
return emscripten_get_now() * 1e-3;
}
#elif defined(_WIN32)
struct LARGE_INTEGER
{
__int64 QuadPart;
};
extern "C" __declspec(dllimport) int __stdcall QueryPerformanceCounter(LARGE_INTEGER* lpPerformanceCount);
extern "C" __declspec(dllimport) int __stdcall QueryPerformanceFrequency(LARGE_INTEGER* lpFrequency);
double timestamp()
{
LARGE_INTEGER freq, counter;
QueryPerformanceFrequency(&freq);
QueryPerformanceCounter(&counter);
return double(counter.QuadPart) / double(freq.QuadPart);
}
#else
double timestamp()
{
timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec);
}
#endif
struct Vertex
{
uint16_t data[16];
};
uint32_t murmur3(uint32_t h)
{
h ^= h >> 16;
h *= 0x85ebca6bu;
h ^= h >> 13;
h *= 0xc2b2ae35u;
h ^= h >> 16;
return h;
}
void benchCodecs(const std::vector<Vertex>& vertices, const std::vector<unsigned int>& indices, double& bestvd, double& bestid, bool verbose)
{
std::vector<Vertex> vb(vertices.size());
std::vector<unsigned int> ib(indices.size());
std::vector<unsigned char> vc(meshopt_encodeVertexBufferBound(vertices.size(), sizeof(Vertex)));
std::vector<unsigned char> ic(meshopt_encodeIndexBufferBound(indices.size(), vertices.size()));
if (verbose)
printf("source: vertex data %d bytes, index data %d bytes\n", int(vertices.size() * sizeof(Vertex)), int(indices.size() * 4));
for (int pass = 0; pass < (verbose ? 2 : 1); ++pass)
{
if (pass == 1)
meshopt_optimizeVertexCacheStrip(&ib[0], &indices[0], indices.size(), vertices.size());
else
meshopt_optimizeVertexCache(&ib[0], &indices[0], indices.size(), vertices.size());
meshopt_optimizeVertexFetch(&vb[0], &ib[0], indices.size(), &vertices[0], vertices.size(), sizeof(Vertex));
vc.resize(vc.capacity());
vc.resize(meshopt_encodeVertexBuffer(&vc[0], vc.size(), &vb[0], vertices.size(), sizeof(Vertex)));
ic.resize(ic.capacity());
ic.resize(meshopt_encodeIndexBuffer(&ic[0], ic.size(), &ib[0], indices.size()));
if (verbose)
printf("pass %d: vertex data %d bytes, index data %d bytes\n", pass, int(vc.size()), int(ic.size()));
for (int attempt = 0; attempt < 10; ++attempt)
{
double t0 = timestamp();
int rv = meshopt_decodeVertexBuffer(&vb[0], vertices.size(), sizeof(Vertex), &vc[0], vc.size());
assert(rv == 0);
(void)rv;
double t1 = timestamp();
int ri = meshopt_decodeIndexBuffer(&ib[0], indices.size(), 4, &ic[0], ic.size());
assert(ri == 0);
(void)ri;
double t2 = timestamp();
double GB = 1024 * 1024 * 1024;
if (verbose)
printf("decode: vertex %.2f ms (%.2f GB/sec), index %.2f ms (%.2f GB/sec)\n",
(t1 - t0) * 1000, double(vertices.size() * sizeof(Vertex)) / GB / (t1 - t0),
(t2 - t1) * 1000, double(indices.size() * 4) / GB / (t2 - t1));
if (pass == 0)
{
bestvd = std::max(bestvd, double(vertices.size() * sizeof(Vertex)) / GB / (t1 - t0));
bestid = std::max(bestid, double(indices.size() * 4) / GB / (t2 - t1));
}
}
}
}
void benchFilters(size_t count, double& besto8, double& besto12, double& bestq12, double& bestexp, bool verbose)
{
// note: the filters are branchless so we just run them on runs of zeroes
size_t count4 = (count + 3) & ~3;
std::vector<unsigned char> d4(count4 * 4);
std::vector<unsigned char> d8(count4 * 8);
if (verbose)
printf("filters: oct8 data %d bytes, oct12/quat12 data %d bytes\n", int(d4.size()), int(d8.size()));
for (int attempt = 0; attempt < 10; ++attempt)
{
double t0 = timestamp();
meshopt_decodeFilterOct(&d4[0], count4, 4);
double t1 = timestamp();
meshopt_decodeFilterOct(&d8[0], count4, 8);
double t2 = timestamp();
meshopt_decodeFilterQuat(&d8[0], count4, 8);
double t3 = timestamp();
meshopt_decodeFilterExp(&d8[0], count4, 8);
double t4 = timestamp();
double GB = 1024 * 1024 * 1024;
if (verbose)
printf("filter: oct8 %.2f ms (%.2f GB/sec), oct12 %.2f ms (%.2f GB/sec), quat12 %.2f ms (%.2f GB/sec), exp %.2f ms (%.2f GB/sec)\n",
(t1 - t0) * 1000, double(d4.size()) / GB / (t1 - t0),
(t2 - t1) * 1000, double(d8.size()) / GB / (t2 - t1),
(t3 - t2) * 1000, double(d8.size()) / GB / (t3 - t2),
(t4 - t3) * 1000, double(d8.size()) / GB / (t4 - t3));
besto8 = std::max(besto8, double(d4.size()) / GB / (t1 - t0));
besto12 = std::max(besto12, double(d8.size()) / GB / (t2 - t1));
bestq12 = std::max(bestq12, double(d8.size()) / GB / (t3 - t2));
bestexp = std::max(bestexp, double(d8.size()) / GB / (t4 - t3));
}
}
int main(int argc, char** argv)
{
meshopt_encodeIndexVersion(1);
bool verbose = false;
for (int i = 1; i < argc; ++i)
if (strcmp(argv[i], "-v") == 0)
verbose = true;
const int N = 1000;
std::vector<Vertex> vertices;
vertices.reserve((N + 1) * (N + 1));
for (int x = 0; x <= N; ++x)
{
for (int y = 0; y <= N; ++y)
{
Vertex v;
for (int k = 0; k < 16; ++k)
{
uint32_t h = murmur3((x * (N + 1) + y) * 16 + k);
// use random k-bit sequence for each word to test all encoding types
// note: this doesn't stress the sentinel logic too much but it's all branchless so it's probably fine?
v.data[k] = h & ((1 << (k + 1)) - 1);
}
vertices.push_back(v);
}
}
std::vector<unsigned int> indices;
indices.reserve(N * N * 6);
for (int x = 0; x < N; ++x)
{
for (int y = 0; y < N; ++y)
{
indices.push_back((x + 0) * N + (y + 0));
indices.push_back((x + 1) * N + (y + 0));
indices.push_back((x + 0) * N + (y + 1));
indices.push_back((x + 0) * N + (y + 1));
indices.push_back((x + 1) * N + (y + 0));
indices.push_back((x + 1) * N + (y + 1));
}
}
double bestvd = 0, bestid = 0;
benchCodecs(vertices, indices, bestvd, bestid, verbose);
double besto8 = 0, besto12 = 0, bestq12 = 0, bestexp = 0;
benchFilters(8 * N * N, besto8, besto12, bestq12, bestexp, verbose);
printf("Algorithm :\tvtx\tidx\toct8\toct12\tquat12\texp\n");
printf("Score (GB/s):\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n",
bestvd, bestid, besto8, besto12, bestq12, bestexp);
}
|