1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
// BSD 3-Clause License
//
// Copyright (c) 2017, Bailin Deng
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef MESHNORMALFILTER_H_
#define MESHNORMALFILTER_H_
#include "MeshTypes.h"
#include "SDFilter.h"
#include <cmath>
#include <algorithm>
namespace SDFilter
{
class MeshFilterParameters : public Parameters
{
public:
MeshFilterParameters()
:mesh_update_method(ITERATIVE_UPDATE), mesh_update_closeness_weight(0.001), mesh_update_iter(20)
{
// Use an threshold value corresponding to eps_angle_degree degrees change of normal vectors between two iterations
double eps_angle_degree = 0.2;
avg_disp_eps = 2 * std::sin(eps_angle_degree * 0.5 * M_PI / 180);
}
virtual ~MeshFilterParameters(){}
// Methods for mesh vertex update according to filtered normals
enum MeshUpdateMethod
{
ITERATIVE_UPDATE, // ShapeUp styled iterative solver
POISSON_UPDATE, // Poisson-based update from [Wang et al. 2015]
};
MeshUpdateMethod mesh_update_method;
double mesh_update_closeness_weight; // Weight for the closeness term in mesh update
int mesh_update_iter; // Number of mesh update iterations
virtual bool valid_parameters() const
{
if(!Parameters::valid_parameters()){
return false;
}
if(mesh_update_iter <= 0){
std::cerr << "Error: MeshUpdateIterations must be positive" << std::endl;
return false;
}
if(mesh_update_closeness_weight < 0){
std::cerr << "Error: MeshUpdateClosenessWeight must be positive" << std::endl;
return false;
}
return true;
}
protected:
virtual bool load_option(const OptionInterpreter &opt)
{
return Parameters::load_option(opt) ||
opt.load("MeshUpdateClosenessWeight", mesh_update_closeness_weight) ||
opt.load("MeshUpdateIterations", mesh_update_iter);
}
virtual void output_options()
{
Parameters::output_options();
std::cout << "Mesh update closeness weight: " << mesh_update_closeness_weight << std::endl;
std::cout << "Mesh update iterations: " << mesh_update_iter << std::endl;
}
};
class MeshNormalFilter : public SDFilter
{
public:
MeshNormalFilter(const TriMesh &mesh)
:mesh_(mesh), print_error_evaluation_(false), linear_solver_(Parameters::LDLT), system_matrix_factorized_(false){}
virtual ~MeshNormalFilter() {}
// Pass param by value, to allow changing the value of eta
bool filter(MeshFilterParameters param, TriMesh &output_mesh)
{
assert(param.valid_parameters());
Timer timer;
Timer::EventID mesh_flter_begin_time = timer.get_time();
// Rescale the eta parameter, according to average distance between neighboring face centroids
param.eta *= average_neighbor_face_centroid_dist(mesh_);
if(!SDFilter::filter(param)){
std::cerr << "Error in performing SD filter" << std::endl;
return false;
}
Timer::EventID update_begin_time = timer.get_time();
// Normalize the filtered face normals
Matrix3X target_normals = signals_.block(0, 0, 3, signals_.cols());
target_normals.colwise().normalize();
if(param.mesh_update_method == MeshFilterParameters::ITERATIVE_UPDATE){
if(!iterative_mesh_update(param, target_normals, output_mesh)){
std::cerr << "Error in iteative mesh update" << std::endl;
return false;
}
}
else{
if(!Poisson_mesh_update(target_normals, output_mesh)){
std::cerr << "Error in Poisson mesh update" << std::endl;
return false;
}
}
Timer::EventID update_end_time = timer.get_time();
if(print_timing_){
std::cout << "Mesh udpate timing: " << timer.elapsed_time(update_begin_time, update_end_time) << " secs" << std::endl;
std::cout << "Mesh filter total timing: " << timer.elapsed_time(mesh_flter_begin_time, update_end_time) << " secs" << std::endl;
}
if(print_error_evaluation_)
{
std::cout << std::endl;
show_normalized_mesh_displacement_norm(output_mesh);
show_normal_error_statistics(output_mesh, target_normals, 2, 10);
}
return true;
}
protected:
TriMesh mesh_;
bool print_error_evaluation_; // The printing of mesh update error
bool get_neighborhood(const Parameters ¶m, Eigen::Matrix2Xi &neighbor_pairs, Eigen::VectorXd &neighbor_dist)
{
// Neighborhood radius set to three times of eta
double radius = 3.0 * param.eta;
int n_faces = mesh_.n_faces();
int n_vtx = mesh_.n_vertices();
Matrix3X face_centroids(3, n_faces);
std::vector< std::vector<int> > upper_neighbor_lists(n_faces), lower_neighbor_lists(n_faces); // Lists of neighbor faces with indices larger/smaller than the current face
OMP_PARALLEL
{
// Pre-compute face centroids
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
face_centroids.col(i) = to_eigen_vec3d(mesh_.calc_face_centroid(TriMesh::FaceHandle(i)));
}
// Store neighbor lists for each face
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
std::queue<int> face_queue;
std::vector<bool> face_visited(n_faces, false), vtx_visited(n_vtx, false);
face_visited[i] = true;
face_queue.push(i);
Eigen::Vector3d center_face_centroid = face_centroids.col(i);
while(!face_queue.empty())
{
TriMesh::FaceHandle fh(face_queue.front());
face_queue.pop();
// Enumerate the three vertices of the current face, and check their neighboring faces
for(TriMesh::ConstFaceVertexIter cfv_it = mesh_.cfv_iter(fh); cfv_it.is_valid(); ++ cfv_it)
{
int current_vtx = cfv_it->idx();
if(!vtx_visited[current_vtx])
{
vtx_visited[current_vtx] = true;
for(TriMesh::ConstVertexFaceIter cvf_it = mesh_.cvf_iter(*cfv_it); cvf_it.is_valid(); ++ cvf_it)
{
int current_face = cvf_it->idx();
if(!face_visited[current_face])
{
face_visited[current_face] = true;
double dist = (face_centroids.col(current_face) - center_face_centroid).norm();
if(dist < radius)
{
face_queue.push(current_face);
if(current_face < i){
// Make sure each neigbor list only stores indices smaller than its face index
lower_neighbor_lists[i].push_back(current_face);
}
else if(current_face > i){
upper_neighbor_lists[i].push_back(current_face);
}
}
}
}
}
}
}
}
// Sort the neighbor lists
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
std::sort(upper_neighbor_lists[i].begin(), upper_neighbor_lists[i].end());
std::sort(lower_neighbor_lists[i].begin(), lower_neighbor_lists[i].end());
}
}
// For each upper neighbor list, check the lower neighbor list of the candidate neighbor to make sure the neighboring relationship is symmetric
Eigen::VectorXi lower_neighbor_front_idx(n_faces); // Indices for keeping track of elements that have been checked in each lower neighbor list
lower_neighbor_front_idx.setZero();
VectorXIdx segment_start_addr(n_faces); // Starting address for the segment of each face within the neighbor pair array
Eigen::Index n_neighbor_pairs = 0;
for(int i = 0; i < n_faces; ++ i)
{
std::vector<int> ¤t_upper_list = upper_neighbor_lists[i];
int j = 0;
while(j < static_cast<int>(current_upper_list.size()))
{
// Try to locate the current face in the lower list of the current upper neighbor.
// If it can be found, then the neighboring relationship is symmetric
int neighbor_idx = current_upper_list[j];
std::vector<int> &lower_list = lower_neighbor_lists[neighbor_idx];
int lower_list_size = lower_list.size();
int current_lower_list_idx = lower_neighbor_front_idx(neighbor_idx);
while(current_lower_list_idx < lower_list_size && lower_list[current_lower_list_idx] < i){
current_lower_list_idx ++;
}
lower_neighbor_front_idx(neighbor_idx) = current_lower_list_idx;
// If the current upper neighbor is not symmetric, remove it from the upper neighbor list.
// Otherwise, move on to check the next upper neighbor.
if(current_lower_list_idx < lower_list_size && lower_list[current_lower_list_idx] == i){
j++;
}
else{
current_upper_list.erase(current_upper_list.begin() + j);
}
}
segment_start_addr(i) = n_neighbor_pairs;
n_neighbor_pairs += current_upper_list.size();
}
neighbor_pairs.resize(2, n_neighbor_pairs);
neighbor_dist.resize(n_neighbor_pairs);
OMP_PARALLEL
{
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
std::vector<int> &upper_neighbors = upper_neighbor_lists[i];
if(!upper_neighbors.empty()){
Eigen::Index start_col = segment_start_addr(i);
Eigen::Index n_cols = upper_neighbors.size();
neighbor_pairs.block(0, start_col, 1, n_cols).setConstant(i);
neighbor_pairs.block(1, start_col, 1, n_cols) = Eigen::Map<Eigen::VectorXi>(upper_neighbors.data(), upper_neighbors.size()).transpose();
}
}
OMP_FOR
for(Eigen::Index i = 0; i < n_neighbor_pairs; ++ i)
{
int idx1 = neighbor_pairs(0, i), idx2 = neighbor_pairs(1, i);
neighbor_dist(i) = (face_centroids.col(idx1) - face_centroids.col(idx2)).norm();
}
}
//std::cout << "n_neighbor_pairs:" << n_neighbor_pairs << std::endl;
//std::cout << "Average neighborhood size: " << 2.0 * n_neighbor_pairs / n_faces << std::endl;
return n_neighbor_pairs > Eigen::Index(0);
}
void get_initial_data(Eigen::MatrixXd &guidance, Eigen::MatrixXd &init_signals, Eigen::VectorXd &area_weights)
{
init_signals.resize(3, mesh_.n_faces());
for(TriMesh::ConstFaceIter cf_it = mesh_.faces_begin(); cf_it != mesh_.faces_end(); ++ cf_it)
{
Eigen::Vector3d f_normal = to_eigen_vec3d(mesh_.calc_face_normal(*cf_it)).normalized();
init_signals.col(cf_it->idx()) = f_normal;
}
guidance = init_signals;
get_face_area_weights(mesh_, area_weights);
}
void reset_mesh_update_system()
{
system_matrix_factorized_ = false;
}
void set_mesh(const TriMesh &mesh, bool invalidate_update_system)
{
mesh_ = mesh;
if(invalidate_update_system){
reset_mesh_update_system();
}
}
private:
// Pre-computed information for mesh update problem
// \min_X ||AX - B||^2 + w ||X - X0||^2,
// where X are new mesh vertex positions, A is a mean-centering matrix, B are the target mean-centered positions,
// X0 are initial vertex positions, and w > 0 is a closeness weight.
// This amounts to solving a linear system
// (A^T A + w I) X = A^T B + w X0.
// We precompute matrix A^T, and pre-factorize A^T A + w I
LinearSolver linear_solver_; // Linear system solver for mesh update
SparseMatrixXd At_; // Transpose of part of the linear least squares matrix that corresponds to mean centering of face vertices
bool system_matrix_factorized_; // Whether the matrix
// Set up and pre-factorize the linear system for iterative mesh update
bool setup_mesh_udpate_system(const Matrix3Xi &face_vtx_idx, double w_closeness)
{
if(system_matrix_factorized_)
{
return true;
}
int n_faces = mesh_.n_faces();
int n_vtx = mesh_.n_vertices();
std::vector<Triplet> A_triplets(9 * n_faces);
std::vector<Triplet> I_triplets(n_vtx);
// Matrix for mean centering of three vertices
Eigen::Matrix3d mean_centering_mat;
get_mean_centering_matrix(mean_centering_mat);
OMP_PARALLEL
{
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
Eigen::Vector3i vtx_idx = face_vtx_idx.col(i);
int triplet_addr = 9 * i;
int row_idx = 3 * i;
for(int j = 0; j < 3; ++ j)
{
for(int k = 0; k < 3; ++ k){
A_triplets[triplet_addr++] = Triplet(row_idx, vtx_idx(k), mean_centering_mat(j, k));
}
row_idx++;
}
}
OMP_FOR
for(int i = 0; i < n_vtx; ++ i)
{
I_triplets[i] = Triplet(i, i, w_closeness);
}
}
SparseMatrixXd A(3 * n_faces, n_vtx);
A.setFromTriplets(A_triplets.begin(), A_triplets.end());
At_ = A.transpose();
At_.makeCompressed();
SparseMatrixXd wI(n_vtx, n_vtx);
wI.setFromTriplets(I_triplets.begin(), I_triplets.end());
SparseMatrixXd M = At_ * A + wI;
linear_solver_.reset_pattern();
if(!linear_solver_.compute(M)){
std::cerr << "Error: failed to pre-factorize mesh update system" << std::endl;
return false;
}
system_matrix_factorized_ = true;
return true;
}
void get_face_area_weights(const TriMesh &mesh, Eigen::VectorXd &face_area_weights) const
{
face_area_weights.resize(mesh.n_faces());
for(TriMesh::ConstFaceIter cf_it = mesh.faces_begin(); cf_it != mesh.faces_end(); ++ cf_it)
{
face_area_weights(cf_it->idx()) = mesh.calc_sector_area(mesh.halfedge_handle(*cf_it));
}
face_area_weights /= face_area_weights.mean();
}
bool iterative_mesh_update(const MeshFilterParameters ¶m, const Matrix3X &target_normals, TriMesh &output_mesh)
{
// Rescale closeness weight using the ratio between face number and vertex number, and take its square root
double w_closeness = param.mesh_update_closeness_weight * double(mesh_.n_faces()) / mesh_.n_vertices();
output_mesh = mesh_;
Matrix3Xi face_vtx_idx;
get_face_vertex_indices(output_mesh, face_vtx_idx);
if(!setup_mesh_udpate_system(face_vtx_idx, w_closeness)){
return false;
}
std::cout << "Starting iterative mesh update......" << std::endl;
Matrix3X vtx_pos;
get_vertex_points(output_mesh, vtx_pos);
int n_faces = output_mesh.n_faces();
Eigen::Matrix3Xd target_plane_local_frames(3, 2 * n_faces); // Local frame for the target plane of each face
std::vector<bool> local_frame_initialized(n_faces, false);
Eigen::MatrixX3d wX0 = vtx_pos.transpose() * w_closeness; // Part of the linear system right-hand-side that corresponds to initial vertex positions
Eigen::MatrixX3d B(3 * n_faces, 3); // Per-face target position of the new vertices
int n_vtx = output_mesh.n_vertices();
Eigen::MatrixX3d rhs(n_vtx, 3), sol(n_vtx, 3);
for(int iter = 0; iter < param.mesh_update_iter; ++ iter)
{
OMP_PARALLEL
{
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
Eigen::Vector3d current_normal = to_eigen_vec3d(output_mesh.calc_face_normal(TriMesh::FaceHandle(i)));
Eigen::Vector3d target_normal = target_normals.col(i);
Eigen::Matrix3d face_vtx_pos;
get_mean_centered_face_vtx_pos(vtx_pos, face_vtx_idx.col(i), face_vtx_pos);
Eigen::Matrix3Xd target_pos;
// If the current normal is not pointing away from the target normal, simply project the points onto the target plane
if(current_normal.dot(target_normal) >= 0){
target_pos = face_vtx_pos - target_normal * (target_normal.transpose() * face_vtx_pos);
}
else{
// Otherwise, project the points onto a line in the target plane
typedef Eigen::Matrix<double, 3, 2> Matrix32d;
Matrix32d current_local_frame;
if(local_frame_initialized[i]){
current_local_frame = target_plane_local_frames.block(0, 2*i, 3, 2);
}
else{
Eigen::JacobiSVD<Eigen::Vector3d, Eigen::FullPivHouseholderQRPreconditioner> jSVD_normal(target_normal, Eigen::ComputeFullU);
current_local_frame = jSVD_normal.matrixU().block(0, 1, 3, 2);
target_plane_local_frames.block(0, 2*i, 3, 2) = current_local_frame;
local_frame_initialized[i] = true;
}
Matrix32d local_coord = face_vtx_pos.transpose() * current_local_frame;
Eigen::JacobiSVD<Matrix32d> jSVD_coord(local_coord, Eigen::ComputeFullV);
Eigen::Vector2d fitting_line_direction = jSVD_coord.matrixV().col(0);
Eigen::Vector3d line_direction_3d = current_local_frame * fitting_line_direction;
target_pos = line_direction_3d * (line_direction_3d.transpose() * face_vtx_pos);
}
B.block(3 * i, 0, 3, 3) = target_pos.transpose();
}
}
// Solver linear system
rhs = At_ * B + wX0;
if(!linear_solver_.solve(rhs, sol)){
std::cerr << "Error: failed to solve mesh update system" << std::endl;
return false;
}
vtx_pos = sol.transpose();
set_vertex_points(output_mesh, vtx_pos);
}
return true;
}
bool Poisson_mesh_update(const Matrix3X &target_normals, TriMesh &output_mesh)
{
output_mesh = mesh_;
Matrix3Xi face_vtx_idx;
get_face_vertex_indices(output_mesh, face_vtx_idx);
std::cout << "Starting Poisson mesh update......" << std::endl;
Matrix3X vtx_pos;
get_vertex_points(output_mesh, vtx_pos);
int n_faces = output_mesh.n_faces();
int n_vtx = output_mesh.n_vertices();
Eigen::VectorXd face_area_weights;
get_face_area_weights(output_mesh, face_area_weights);
// Compute the initial centroid
Eigen::Vector3d initial_centroid = compute_centroid(face_vtx_idx, face_area_weights, vtx_pos);
// Set up the linear least squares system
SparseMatrixXd A(3*n_faces + 1, n_vtx);
Eigen::MatrixX3d B(3*n_faces + 1, 3);
std::vector<Triplet> A_triplets(9 * n_faces + 1);
// Set the target position of the first vertex at the origin
A_triplets.back() = Triplet(3*n_faces, 0, 1.0);
B.row(3*n_faces).setZero();
OMP_PARALLEL
{
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
// Compute rotation from current face to the target plane
Eigen::Vector3d init_normal = to_eigen_vec3d(output_mesh.calc_face_normal(TriMesh::FaceHandle(i)));
Eigen::Vector3d target_normal = target_normals.col(i);
Eigen::Quaternion<double> rot = Eigen::Quaternion<double>::FromTwoVectors(init_normal, target_normal);
Eigen::Vector3i vtx_idx = face_vtx_idx.col(i);
Eigen::Matrix3d face_vtx_pos;
for(int j = 0; j < 3; ++ j){
face_vtx_pos.col(j) = vtx_pos.col(vtx_idx(j));
}
double area_weight = std::sqrt(face_area_weights(i));
for(int j = 0; j < 3; ++ j)
{
// Search for coefficients such that
// [v1 - (a * v2 + (1 - a) * v3)] * (v2 - v3) = 0
// ==> a = [(v1 - v3) * (v2 - v3)] / ||v2 - v3||^2
// Then the gradient coefficients become (1, -a, a - 1)
int i1 = j, i2 = (j+1)%3, i3 = (j+2)%3;
Eigen::Vector3d v1 = face_vtx_pos.col(i1),
v2 = face_vtx_pos.col(i2),
v3 = face_vtx_pos.col(i3);
double a = 0.5;
if((v2 - v3).norm() > 1e-12){
a = (v1 - v3).dot(v2 - v3) / (v2 - v3).squaredNorm();
}
// Compute gradient coefficient w.r.t vertex positions
Eigen::Vector3d current_grad_coef;
current_grad_coef(i1) = 1.0;
current_grad_coef(i2) = -a;
current_grad_coef(i3) = a - 1.0;
current_grad_coef *= area_weight;
// Fill gradient coefficients into matrix
int triplet_addr = i*9 + j*3;
int row_idx = 3*i + j;
A_triplets[triplet_addr++] = Triplet(row_idx, vtx_idx(i1), current_grad_coef(i1));
A_triplets[triplet_addr++] = Triplet(row_idx, vtx_idx(i2), current_grad_coef(i2));
A_triplets[triplet_addr] = Triplet(row_idx, vtx_idx(i3), current_grad_coef(i3));
// Put the target gradient on the right-hand-side
Eigen::Vector3d target_grad = rot * (face_vtx_pos * current_grad_coef);
B.row(row_idx) = target_grad.transpose();
}
}
}
// Solver linear system
A.setFromTriplets(A_triplets.begin(), A_triplets.end());
SparseMatrixXd At = A.transpose();
SparseMatrixXd M = At * A;
Eigen::MatrixX3d rhs = At * B;
Eigen::MatrixX3d sol(n_vtx, 3);
linear_solver_.reset_pattern();
if(!(linear_solver_.compute(M) && linear_solver_.solve(rhs, sol))){
std::cerr << "Error: failed to solve linear system for Poisson mesh update" << std::endl;
return false;
}
// Align the new mesh with the intial mesh
vtx_pos = sol.transpose();
Eigen::Vector3d new_centroid = compute_centroid(face_vtx_idx, area_weights_, vtx_pos);
vtx_pos.colwise() += initial_centroid - new_centroid;
set_vertex_points(output_mesh, vtx_pos);
return true;
}
// Generate the matrix for mean-centering of the vertices of a triangle
void get_mean_centering_matrix(Eigen::Matrix3d &mat)
{
mat = Eigen::Matrix3d::Identity() - Eigen::Matrix3d::Constant(1.0/3);
}
void get_mean_centered_face_vtx_pos(const Eigen::Matrix3Xd &vtx_pos, const Eigen::Vector3i &face_vtx, Eigen::Matrix3d &face_vtx_pos)
{
for(int i = 0; i < 3; ++ i){
face_vtx_pos.col(i) = vtx_pos.col(face_vtx(i));
}
Eigen::Vector3d mean_pt = face_vtx_pos.rowwise().mean();
face_vtx_pos.colwise() -= mean_pt;
}
// Compute the centroid of a mesh given its vertex positions and face areas
Eigen::Vector3d compute_centroid(const Eigen::Matrix3Xi &face_vtx_idx, const Eigen::VectorXd &face_areas, const Eigen::Matrix3Xd &vtx_pos)
{
int n_faces = face_vtx_idx.cols();
Eigen::Matrix3Xd face_centroids(3, n_faces);
OMP_PARALLEL
{
OMP_FOR
for(int i = 0; i < n_faces; ++ i)
{
Eigen::Vector3d c = Eigen::Vector3d::Zero();
Eigen::Vector3i face_vtx = face_vtx_idx.col(i);
for(int j = 0; j < 3; ++ j){
c += vtx_pos.col(face_vtx(j));
}
face_centroids.col(i) = c / 3.0;
}
}
return (face_centroids * face_areas) / face_areas.sum();
}
////////// Methods for evaluating the quality of the updated mesh /////////////
// Compute the L2 norm between the initial mesh and filtered mesh
void show_normalized_mesh_displacement_norm(const TriMesh &filtered_mesh)
{
Eigen::Matrix3Xd init_vtx_pos, new_vtx_pos;
get_vertex_points(mesh_, init_vtx_pos);
get_vertex_points(filtered_mesh, new_vtx_pos);
Eigen::VectorXd vtx_disp_sqr_norm = (init_vtx_pos - new_vtx_pos).colwise().squaredNorm();
// Computer normalized vertex area weights from the original mesh
Eigen::VectorXd face_area_weights;
get_face_area_weights(mesh_, face_area_weights);
Eigen::Matrix3Xi face_vtx_indices;
get_face_vertex_indices(mesh_, face_vtx_indices);
int n_faces = mesh_.n_faces();
Eigen::VectorXd vtx_area(mesh_.n_vertices());
vtx_area.setZero();
for(int i = 0; i < n_faces; ++ i){
for(int j = 0; j < 3; ++ j){
vtx_area(face_vtx_indices(j, i)) += face_area_weights(i);
}
}
vtx_area /= vtx_area.sum();
std::cout << "Normalized mesh displacement norm: " <<
std::sqrt(vtx_area.dot(vtx_disp_sqr_norm)) / average_edge_length(mesh_) << std::endl;
}
void show_error_statistics(const Eigen::VectorXd &err_values, double bin_size, int n_bins)
{
int n_elems = err_values.size();
Eigen::VectorXi error_bin_idx(n_elems);
OMP_PARALLEL
{
OMP_FOR
for(int i = 0; i < n_elems; ++ i){
error_bin_idx(i) = std::min(n_bins, static_cast<int>(std::floor(err_values(i) / bin_size)));
}
}
Eigen::VectorXd bin_count(n_bins + 1);
bin_count.setZero();
for(int i = 0; i < n_elems; ++ i)
{
bin_count( error_bin_idx(i) ) += 1;
}
bin_count /= bin_count.sum();
for(int i = 0; i < n_bins; ++ i)
{
double lower_val = bin_size * i;
double upper_val = bin_size * (i+1);
std::cout << lower_val << " to " << upper_val << ": " << bin_count(i) * 100 << "%" << std::endl;
}
std::cout << "Over " << bin_size * n_bins << ": " << bin_count(n_bins) * 100 << "%" << std::endl;
}
// Show statistics of the deviation between the new normals and target normals (in degrees)
void show_normal_error_statistics(const TriMesh &mesh, const Matrix3X &target_normals, int bin_size_in_degrees, int n_bins)
{
// Compute the normal deviation angle, and the number of flipped normals
int n_faces = mesh.n_faces();
Eigen::VectorXd face_normal_error_angle(n_faces);
for(int i = 0; i < n_faces; ++ i)
{
Eigen::Vector3d normal = to_eigen_vec3d(mesh.calc_face_normal(TriMesh::FaceHandle(i)));
double error_angle_cos = std::max(-1.0, std::min(1.0, normal.dot(target_normals.col(i))));
face_normal_error_angle(i) = std::acos(error_angle_cos);
}
face_normal_error_angle *= (180 / M_PI);
std::cout << "Statistics of deviation between new normals and target normals:" << std::endl;
std::cout << "===============================================================" << std::endl;
show_error_statistics(face_normal_error_angle, bin_size_in_degrees, n_bins);
}
};
}
#endif /* MESHNORMALFILTER_H_ */
|