1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*
* An untyped lambda calculus [1] interpreter using De Bruijn indices [2] and normal order
* evaluation strategy [3].
*
* [1] https://en.wikipedia.org/wiki/Lambda_calculus
* [2] https://en.wikipedia.org/wiki/De_Bruijn_index
* [3] https://en.wikipedia.org/wiki/Evaluation_strategy#Normal_order
*/
#include <metalang99.h>
// Syntactic terms {
#define var(i) ML99_call(var, i)
#define appl(M, N) ML99_call(appl, M, N)
#define lam(M) ML99_call(lam, M)
#define var_IMPL(i) v(VAR(i))
#define appl_IMPL(M, N) v(APPL(M, N))
#define lam_IMPL(M) v(LAM(M))
#define VAR(i) ML99_CHOICE(var, i)
#define APPL(M, N) ML99_CHOICE(appl, M, N)
#define LAM(M) ML99_CHOICE(lam, M)
// } (Syntactic terms)
// Variable substitution: `M[1=x]` {
#define subst(M, x) ML99_call(subst, M, x)
#define subst_IMPL(M, x) substAux_IMPL(M, x, 1)
#define substAux_IMPL(M, x, depth) ML99_callUneval(ML99_matchWithArgs, M, substAux_, x, depth)
#define substAux_var_IMPL(i, x, depth) \
ML99_IF( \
ML99_NAT_EQ(i, depth), \
v(x), \
ML99_call(ML99_if, ML99_callUneval(ML99_greater, i, depth), v(VAR(ML99_DEC(i)), VAR(i))))
#define substAux_appl_IMPL(M, N, x, depth) \
appl(substAux_IMPL(M, x, depth), substAux_IMPL(N, x, depth))
#define substAux_lam_IMPL(M, x, depth) \
lam(ML99_call(substAux, v(M), incFreeVars_IMPL(x), v(ML99_INC(depth))))
// } (Variable substitution)
// Increment free variables in `M` {
#define incFreeVars(M) ML99_call(incFreeVars, M)
#define incFreeVars_IMPL(M) incFreeVarsAux_IMPL(M, 1)
#define incFreeVarsAux_IMPL(M, depth) ML99_callUneval(ML99_matchWithArgs, M, incFreeVarsAux_, depth)
#define incFreeVarsAux_var_IMPL(i, depth) \
ML99_call(ML99_if, ML99_callUneval(ML99_greaterEq, i, depth), v(VAR(ML99_INC(i)), VAR(i)))
#define incFreeVarsAux_appl_IMPL(M, N, depth) \
appl(incFreeVarsAux_IMPL(M, depth), incFreeVarsAux_IMPL(N, depth))
#define incFreeVarsAux_lam_IMPL(M, depth) lam(incFreeVarsAux_IMPL(M, ML99_INC(depth)))
// } (Increment free variables)
// Evaluation {
#define eval(M) ML99_call(eval, M)
#define eval_IMPL(M) ML99_callUneval(ML99_match, M, eval_)
#define eval_var_IMPL(i) v(VAR(i))
#define eval_appl_IMPL(M, N) ML99_callUneval(ML99_matchWithArgs, M, eval_appl_, N)
#define eval_lam_IMPL(M) lam(eval_IMPL(M))
#define eval_appl_var_IMPL(i, N) appl(v(VAR(i)), eval_IMPL(N))
#define eval_appl_appl_IMPL(M, N, N1) \
ML99_call(ML99_matchWithArgs, eval(appl_IMPL(M, N)), v(eval_appl_appl_, N1))
#define eval_appl_lam_IMPL(M, N) eval(subst_IMPL(M, N))
#define eval_appl_appl_var_IMPL eval_appl_var_IMPL
#define eval_appl_appl_appl_IMPL(M, N, N1) appl(appl_IMPL(M, N), eval_IMPL(N1))
#define eval_appl_appl_lam_IMPL eval_appl_lam_IMPL
// } (Evaluation)
// Syntactical equality {
#define termEq(lhs, rhs) ML99_matchWithArgs(lhs, v(termEq_), rhs)
#define termEq_var_IMPL(i, rhs) termEqPropagate(var, rhs, i)
#define termEq_appl_IMPL(M, N, rhs) termEqPropagate(appl, rhs, M, N)
#define termEq_lam_IMPL(M, rhs) termEqPropagate(lam, rhs, M)
#define termEqPropagate(term_kind, rhs, ...) \
ML99_IF( \
ML99_IDENT_EQ(TERM_, ML99_CHOICE_TAG(rhs), term_kind), \
ML99_matchWithArgs(v(rhs), v(termEq_##term_kind##_), v(__VA_ARGS__)), \
ML99_false())
#define termEq_var_var_IMPL(j, i) v(ML99_NAT_EQ(i, j))
#define termEq_appl_appl_IMPL(M, N, M1, N1) ML99_and(termEq(v(M), v(M1)), termEq(v(N), v(N1)))
#define termEq_lam_lam_IMPL(M, M1) termEq(v(M), v(M1))
#define TERM_var_var ()
#define TERM_appl_appl ()
#define TERM_lam_lam ()
// } (Syntactical equality)
#define ASSERT_REDUCES_TO(lhs, rhs) \
/* Use two interpreter passes: one for `eval(lhs)`, one for `termEq`. Thereby we achieve more \
* Metalang99 reduction steps available. */ \
ML99_ASSERT_UNEVAL(ML99_EVAL(termEq(v(ML99_EVAL(eval(v(lhs)))), v(ML99_EVAL(eval(v(rhs)))))))
// The identity combinator {
#define I LAM(VAR(1))
ASSERT_REDUCES_TO(APPL(I, VAR(5)), VAR(5));
// } (The identity combinator)
// The K, S combinators {
#define K LAM(LAM(VAR(2)))
#define S LAM(LAM(LAM(APPL(APPL(VAR(3), VAR(1)), APPL(VAR(2), VAR(1))))))
ASSERT_REDUCES_TO(APPL(APPL(S, K), K), I);
ASSERT_REDUCES_TO(APPL(APPL(APPL(S, K), S), K), K);
ASSERT_REDUCES_TO(APPL(APPL(APPL(S, K), VAR(5)), VAR(6)), VAR(6));
ASSERT_REDUCES_TO(APPL(APPL(K, VAR(5)), VAR(6)), VAR(5));
// } (The K, S combinators)
// Church booleans {
#define T LAM(LAM(VAR(2)))
#define F LAM(LAM(VAR(1)))
#define NOT LAM(APPL(APPL(VAR(1), F), T))
#define AND LAM(LAM(APPL(APPL(VAR(2), VAR(1)), VAR(2))))
#define OR LAM(LAM(APPL(APPL(VAR(2), VAR(2)), VAR(1))))
#define XOR LAM(LAM(APPL(APPL(VAR(2), APPL(NOT, VAR(1))), VAR(1))))
#define IF LAM(LAM(LAM(APPL(APPL(VAR(3), VAR(2)), VAR(1)))))
ASSERT_REDUCES_TO(APPL(NOT, T), F);
ASSERT_REDUCES_TO(APPL(NOT, F), T);
ASSERT_REDUCES_TO(APPL(NOT, APPL(NOT, T)), T);
ASSERT_REDUCES_TO(APPL(NOT, APPL(NOT, F)), F);
ASSERT_REDUCES_TO(APPL(APPL(AND, T), T), T);
ASSERT_REDUCES_TO(APPL(APPL(AND, T), F), F);
ASSERT_REDUCES_TO(APPL(APPL(AND, F), T), F);
ASSERT_REDUCES_TO(APPL(APPL(AND, F), F), F);
ASSERT_REDUCES_TO(APPL(APPL(OR, T), T), T);
ASSERT_REDUCES_TO(APPL(APPL(OR, T), F), T);
ASSERT_REDUCES_TO(APPL(APPL(OR, F), T), T);
ASSERT_REDUCES_TO(APPL(APPL(OR, F), F), F);
ASSERT_REDUCES_TO(APPL(APPL(XOR, T), T), F);
ASSERT_REDUCES_TO(APPL(APPL(XOR, T), F), T);
ASSERT_REDUCES_TO(APPL(APPL(XOR, F), T), T);
ASSERT_REDUCES_TO(APPL(APPL(XOR, F), F), F);
ASSERT_REDUCES_TO(APPL(APPL(APPL(IF, T), VAR(5)), VAR(6)), VAR(5));
ASSERT_REDUCES_TO(APPL(APPL(APPL(IF, F), VAR(5)), VAR(6)), VAR(6));
// } (Church booleans)
// Church numerals {
#define ZERO LAM(LAM(VAR(1)))
#define SUCC LAM(LAM(LAM(APPL(VAR(2), APPL(APPL(VAR(3), VAR(2)), VAR(1))))))
#define ONE APPL(SUCC, ZERO)
#define TWO APPL(SUCC, ONE)
#define THREE APPL(SUCC, TWO)
#define FOUR APPL(SUCC, THREE)
#define ADD LAM(LAM(LAM(LAM(APPL(APPL(VAR(4), VAR(2)), APPL(APPL(VAR(3), VAR(2)), VAR(1)))))))
#define MUL LAM(LAM(LAM(LAM(APPL(APPL(VAR(4), APPL(VAR(3), VAR(2))), VAR(1))))))
ASSERT_REDUCES_TO(APPL(APPL(ADD, ZERO), ZERO), ZERO);
ASSERT_REDUCES_TO(APPL(APPL(ADD, ZERO), ONE), ONE);
ASSERT_REDUCES_TO(APPL(APPL(ADD, ONE), ZERO), ONE);
ASSERT_REDUCES_TO(APPL(APPL(ADD, ONE), TWO), THREE);
ASSERT_REDUCES_TO(APPL(APPL(MUL, ZERO), ZERO), ZERO);
ASSERT_REDUCES_TO(APPL(APPL(MUL, ZERO), ONE), ZERO);
ASSERT_REDUCES_TO(APPL(APPL(MUL, ONE), ZERO), ZERO);
ASSERT_REDUCES_TO(APPL(APPL(MUL, TWO), TWO), FOUR);
// } (Church numerals)
// Church pairs {
#define PAIR LAM(LAM(LAM(APPL(APPL(VAR(1), VAR(3)), VAR(2)))))
#define FST LAM(APPL(VAR(1), T))
#define SND LAM(APPL(VAR(1), F))
ASSERT_REDUCES_TO(APPL(FST, APPL(APPL(PAIR, VAR(5)), VAR(6))), VAR(5));
ASSERT_REDUCES_TO(APPL(SND, APPL(APPL(PAIR, VAR(5)), VAR(6))), VAR(6));
// } (Church pairs)
// Church lists {
#define NIL F
#define CONS PAIR
#define IS_NIL LAM(APPL(APPL(VAR(1), LAM(LAM(LAM(F)))), T))
#define LIST_1_2_3 APPL(APPL(CONS, VAR(1)), APPL(APPL(CONS, VAR(2)), APPL(APPL(CONS, VAR(3)), NIL)))
ASSERT_REDUCES_TO(APPL(IS_NIL, NIL), T);
ASSERT_REDUCES_TO(APPL(IS_NIL, LIST_1_2_3), F);
// } (Church lists)
// Recursion via self-application (or the Y combinator) is perfectly expressible, though when
// executed, it exhausts the Metalang99 recursion engine limit.
int main(void) {}
|