File: ql.mm

package info (click to toggle)
metamath-databases 0.0.0~20210101.git55fe226-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 48,584 kB
  • sloc: makefile: 7; sh: 6
file content (12529 lines) | stat: -rw-r--r-- 572,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
$( ql.mm - Version of 11-Apr-2012
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
    Metamath source file for logic, set theory, numbers, and Hilbert space
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#

                           ~~ PUBLIC DOMAIN ~~
This work is waived of all rights, including copyright, according to the CC0
Public Domain Dedication.  http://creativecommons.org/publicdomain/zero/1.0/

Norman Megill - email: nm(at)alum(dot)mit(dot)edu - http://metamath.org

$)

$( placeholder
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        AUQL - Algebraic Unified Quantum Logic of M. Pavicic
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        Ortholattices
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Basic syntax and axioms
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Declare the primitive constant symbols. $)
  $c ( $.  $( Left parenthesis $)
  $c ) $.  $( Right parenthesis $)
  $c = $. $( Equality (read:  'equals') $)
  $c == $. $( Biconditional (read:  'equivalent') $)
  $c v $. $( Disjunction (read:  'or') $)
  $c ^ $. $( Conjuction (read:  'and') $)
  $c 1 $. $( True constant (upside down ' ) (read:  'true') $)
  $c 0 $. $( False constant ( ' ) (read:  'false') $)
  $c ' $. $( Orthocomplement $)
  $c wff $. $( Well-formed formula symbol (read:  'the following symbol
               sequence is a wff') $)
  $c term $. $( Term $)
  $c |- $. $( Turnstile (read:  'the following symbol sequence is provable' or
              'a proof exists for') $)

  $( Relations as operations $)
  $c C $. $( Commutes relation or commutator operation $)
  $c =< $.  $( Less-than-or-equal-to $)
  $c =<2 $.  $( Less-than-or-equal-to analogue for terms $)
  $c ->0 $. $( Right arrow (read:  'implies') $)
  $c ->1 $. $( Right arrow (read:  'implies') $)
  $c ->2 $. $( Right arrow (read:  'implies') $)
  $c ->3 $. $( Right arrow (read:  'implies') $)
  $c ->4 $. $( Right arrow (read:  'implies') $)
  $c ->5 $. $( Right arrow (read:  'implies') $)
  $c ==0 $. $( Classical identity $)
  $c ==1 $. $( Asymmetrical identity $)
  $c ==2 $. $( Asymmetrical identity $)
  $c ==3 $. $( Asymmetrical identity $)
  $c ==4 $. $( Asymmetrical identity $)
  $c ==5 $. $( Asymmetrical identity $)
  $c ==OA $. $( Orthoarguesian identity $)
  $c , $.  $( Comma $)
  $c <->3 $. $( Biconditional (read:  'equivalent') $)
  $c <->1 $. $( Biconditional (read:  'equivalent') $)
  $c u3 $. $( Disjunction (read:  'or') $)
  $c ^3 $. $( Conjuction (read:  'and') $)

  $( Introduce some variable names we will use to terms. $)
  $v a $.
  $v b $.
  $v c $.
  $v d $.
  $v e $.
  $v f $.
  $v g $.
  $v h $.
  $v j $.
  $v k $.
  $v l $.

  $v i $.
  $v m $.
  $v n $.
  $v p $.
  $v q $.
  $v r $.
  $v t $.
  $v u $.
  $v w $.
  $v x $.
  $v y $.
  $v z $.

  $v a0 a1 a2 b0 b1 b2 c0 c1 c2 p0 p1 p2 $.


  $(
     Specify some variables that we will use to represent terms.
     The fact that a variable represents a wff is relevant only to a theorem
     referring to that variable, so we may use $f hypotheses.  The symbol
     ` term ` specifies that the variable that follows it represents a term.
  $)

  $( Let variable ` a ` be a term. $)
  wva $f term a $.
  $( Let variable ` b ` be a term. $)
  wvb $f term b $.
  $( Let variable ` c ` be a term. $)
  wvc $f term c $.
  $( Let variable ` d ` be a term. $)
  wvd $f term d $.
  $( Let variable ` e ` be a term. $)
  wve $f term e $.
  $( Let variable ` f ` be a term. $)
  wvf $f term f $.
  $( Let variable ` g ` be a term. $)
  wvg $f term g $.
  $( Let variable ` h ` be a term. $)
  wvh $f term h $.
  $( Let variable ` j ` be a term. $)
  wvj $f term j $.
  $( Let variable ` k ` be a term. $)
  wvk $f term k $.
  $( Let variable ` l ` be a term. $)
  wvl $f term l $.

  $( Let variable ` i ` be a term. $)
  wvi $f term i $.
  $( Let variable ` m ` be a term. $)
  wvm $f term m $.
  $( Let variable ` n ` be a term. $)
  wvn $f term n $.
  $( Let variable ` p ` be a term. $)
  wvp $f term p $.
  $( Let variable ` q ` be a term. $)
  wvq $f term q $.
  $( Let variable ` r ` be a term. $)
  wvr $f term r $.
  $( Let variable ` t ` be a term. $)
  wvt $f term t $.
  $( Let variable ` u ` be a term. $)
  wvu $f term u $.
  $( Let variable ` w ` be a term. $)
  wvw $f term w $.
  $( Let variable ` x ` be a term. $)
  wvx $f term x $.
  $( Let variable ` y ` be a term. $)
  wvy $f term y $.
  $( Let variable ` z ` be a term. $)
  wvz $f term z $.

  $( Let variable ` a0 ` be a term. $)
  wva0 $f term a0 $.
  $( Let variable ` a1 ` be a term. $)
  wva1 $f term a1 $.
  $( Let variable ` a2 ` be a term. $)
  wva2 $f term a2 $.
  $( Let variable ` b0 ` be a term. $)
  wvb0 $f term b0 $.
  $( Let variable ` b1 ` be a term. $)
  wvb1 $f term b1 $.
  $( Let variable ` b2 ` be a term. $)
  wvb2 $f term b2 $.
  $( Let variable ` c0 ` be a term. $)
  wvc0 $f term c0 $.
  $( Let variable ` c1 ` be a term. $)
  wvc1 $f term c1 $.
  $( Let variable ` c2 ` be a term. $)
  wvc2 $f term c2 $.
  $( Let variable ` p0 ` be a term. $)
  wvp0 $f term p0 $.
  $( Let variable ` p1 ` be a term. $)
  wvp1 $f term p1 $.
  $( Let variable ` p2 ` be a term. $)
  wvp2 $f term p2 $.

  $(
     Recursively define terms and wffs.
  $)

  $( If ` a ` and ` b ` are terms, ` a = b ` is a wff. $)
  wb $a wff a = b $.
  $( If ` a ` and ` b ` are terms, ` a =< b ` is a wff. $)
  wle $a wff a =< b $.
  $( If ` a ` and ` b ` are terms, ` a C b ` is a wff. $)
  wc $a wff a C b $.


  $( If ` a ` is a term, so is ` a ' ` . $)
  wn $a term a ' $.
  $( If ` a ` and ` b ` are terms, so is ` ( a == b ) ` . $)
  tb $a term ( a == b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a v b ) ` . $)
  wo $a term ( a v b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ^ b ) ` . $)
  wa $a term ( a ^ b ) $.
$(
  @( If ` a ` and ` b ` are terms, so is ` ( a ' b ) ` . @)
  wp @a term ( a ' b ) @.
$)
  $( The logical true constant is a term. $)
  wt $a term 1 $.
  $( The logical false constant is a term. $)
  wf $a term 0 $.
  $( If ` a ` and ` b ` are terms, so is ` ( a =<2 b ) ` . $)
  wle2 $a term ( a =<2 b ) $.

  $( If ` a ` and ` b ` are terms, so is ` ( a ->0 b ) ` . $)
  wi0 $a term ( a ->0 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ->1 b ) ` . $)
  wi1 $a term ( a ->1 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ->2 b ) ` . $)
  wi2 $a term ( a ->2 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ->3 b ) ` . $)
  wi3 $a term ( a ->3 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ->4 b ) ` . $)
  wi4 $a term ( a ->4 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ->5 b ) ` . $)
  wi5 $a term ( a ->5 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ==0 b ) ` . $)
  wid0 $a term ( a ==0 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ==1 b ) ` . $)
  wid1 $a term ( a ==1 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ==2 b ) ` . $)
  wid2 $a term ( a ==2 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ==3 b ) ` . $)
  wid3 $a term ( a ==3 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ==4 b ) ` . $)
  wid4 $a term ( a ==4 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ==5 b ) ` . $)
  wid5 $a term ( a ==5 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a <->3 b ) ` . $)
  wb3 $a term ( a <->3 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a <->3 b ) ` . $)
  wb1 $a term ( a <->1 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a u3 b ) ` . $)
  wo3 $a term ( a u3 b ) $.
  $( If ` a ` and ` b ` are terms, so is ` ( a ^3 b ) ` . $)
  wan3 $a term ( a ^3 b ) $.
  $( If ` a ` , ` b ` , and ` c ` are terms, so is ` ( a == c ==OA b ) ` . $)
  wid3oa $a term ( a == c ==OA b ) $.
  $( If ` a ` , ` b ` , ` c ` , and ` d ` are terms, so is
     ` ( a == c , d ==OA b ) ` . $)
  wid4oa $a term ( a == c , d ==OA b ) $.
  $( If ` a ` and ` b ` are terms, so is ` C ( a , b ) ` . $)
  wcmtr $a term C ( a , b ) $.

  $( Axiom for ortholattices. $)
  ax-a1 $a |- a = a ' ' $.

  $( Axiom for ortholattices. $)
  ax-a2 $a |- ( a v b ) = ( b v a ) $.

  $( Axiom for ortholattices. $)
  ax-a3 $a |- ( ( a v b ) v c ) = ( a v ( b v c ) ) $.

  $( Axiom for ortholattices. $)
  ax-a4 $a |- ( a v ( b v b ' ) ) = ( b v b ' ) $.

  $(
  ax-a5 $a |- ( a v ( a ' v b ' ) ' ) = a $.
  $)

  $( Axiom for ortholattices. $)
  ax-a5 $a |- ( a v ( a ' v b ) ' ) = a $.

  $(
  df-b $a |- ( a == b ) =
           ( ( a ' ' v b ' ' ) ' v ( a ' v b ' ) ' ) $.
  $)


  ${
    r1.1 $e |- a = b $.
    $( Inference rule for ortholattices. $)
    ax-r1 $a |- b = a $.
  $}

  ${
    r2.1 $e |- a = b $.
    r2.2 $e |- b = c $.
    $( Inference rule for ortholattices. $)
    ax-r2 $a |- a = c $.
  $}

  $( Axiom ~ax-r3 is the orthomodular axiom and will be introduced
     when we start to use it. $)
  ${
    r4.1 $e |- a = b $.
    $( Inference rule for ortholattices. $)
    ax-r4 $a |- a ' = b ' $.
  $}

  ${
    r5.1 $e |- a = b $.
    $( Inference rule for ortholattices. $)
    ax-r5 $a |- ( a v c ) = ( b v c ) $.
  $}

  $( Define biconditional. $)
  df-b $a |- ( a == b ) = ( ( a ' v b ' ) ' v ( a v b ) ' ) $.

  $( Define conjunction. $)
  df-a $a |- ( a ^ b ) = ( a ' v b ' ) ' $.

  $( Define true. $)
  df-t $a |- 1 = ( a v a ' ) $.

  $( Define false. $)
  df-f $a |- 0 = 1 ' $.

  $( Define classical conditional. $)
  df-i0 $a |- ( a ->0 b ) = ( a ' v b ) $.

  $( Define Sasaki (Mittelstaedt) conditional. $)
  df-i1 $a |- ( a ->1 b ) = ( a ' v ( a ^ b ) ) $.

  $( Define Dishkant conditional. $)
  df-i2 $a |- ( a ->2 b ) = ( b v ( a ' ^ b ' ) ) $.

  $( Define Kalmbach conditional. $)
  df-i3 $a |- ( a ->3 b ) = ( ( ( a ' ^ b ) v ( a ' ^ b ' ) ) v
                ( a ^ ( a ' v b ) ) ) $.

  $( Define non-tollens conditional. $)
  df-i4 $a |- ( a ->4 b ) = ( ( ( a ^ b ) v ( a ' ^ b ) ) v
                ( ( a ' v b ) ^ b ' ) ) $.

  $( Define relevance conditional. $)
  df-i5 $a |- ( a ->5 b ) = ( ( ( a ^ b ) v ( a ' ^ b ) ) v
                ( a ' ^ b ' ) ) $.

  $( Define classical identity. $)
  df-id0 $a |- ( a ==0 b ) = ( ( a ' v b ) ^ ( b ' v a ) ) $.

  $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $)
  df-id1 $a |- ( a ==1 b ) = ( ( a v b ' ) ^ ( a ' v ( a ^ b ) ) ) $.

  $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $)
  df-id2 $a |- ( a ==2 b ) = ( ( a v b ' ) ^ ( b v ( a ' ^ b ' ) ) ) $.

  $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $)
  df-id3 $a |- ( a ==3 b ) = ( ( a ' v b ) ^ ( a v ( a ' ^ b ' ) ) ) $.

  $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $)
  df-id4 $a |- ( a ==4 b ) = ( ( a ' v b ) ^ ( b ' v ( a ^ b ) ) ) $.

  $( Defined disjunction. $)
  df-o3 $a |- ( a u3 b ) = ( a ' ->3 ( a ' ->3 b ) ) $.

  $( Defined conjunction. $)
  df-a3 $a |- ( a ^3 b ) = ( a ' u3 b ' ) ' $.

  $( Defined biconditional. $)
  df-b3 $a |- ( a <->3 b ) = ( ( a ->3 b ) ^ ( b ->3 a ) ) $.

  $( The 3-variable orthoarguesian identity term. $)
  df-id3oa $a |- ( a == c ==OA b ) = ( ( ( a ->1 c ) ^ ( b ->1 c ) )
     v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) $.

  $( The 4-variable orthoarguesian identity term. $)
  df-id4oa $a |- ( a == c , d ==OA b ) = ( ( a == d ==OA b ) v
                    ( ( a == d ==OA c ) ^ ( b == d ==OA c ) ) ) $.

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Basic lemmas
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Identity law. $)
  id $p |- a = a $=
    ( wn ax-a1 ax-r1 ax-r2 ) AABBZAACZAFGDE $.
    $( [9-Aug-97] $)

  $( Justification of definition ~df-t of true ( ` 1 ` ).  This shows that the
     definition is independent of the variable used to define it. $)
  tt $p |- ( a v a ' ) = ( b v b ' ) $=
    ( wn wo ax-a4 ax-r1 ax-a2 ax-r2 ) AACDZIBBCDZDZJIJIDZKLIJAEFJIGHIBEH $.
    $( [9-Aug-97] $)

  ${
    cm.1 $e |- a = b $.
    $( Commutative inference rule for ortholattices. $)
    cm $p |- b = a $=
      ( ax-r1 ) ABCD $.
      $( [26-May-2008] $) $( [26-May-2008] $)
  $}

  ${
    tr.1 $e |- a = b $.
    tr.2 $e |- b = c $.
    $( Transitive inference rule for ortholattices. $)
    tr $p |- a = c $=
      ( ax-r2 ) ABCDEF $.
      $( [26-May-2008] $) $( [26-May-2008] $)
  $}


  ${
    3tr1.1 $e |- a = b $.
    3tr1.2 $e |- c = a $.
    3tr1.3 $e |- d = b $.
    $( Transitive inference useful for introducing definitions. $)
    3tr1 $p |- c = d $=
      ( ax-r1 ax-r2 ) CADFABDEDBGHII $.
      $( [10-Aug-97] $)
  $}

  ${
    3tr2.1 $e |- a = b $.
    3tr2.2 $e |- a = c $.
    3tr2.3 $e |- b = d $.
    $( Transitive inference useful for eliminating definitions. $)
    3tr2 $p |- c = d $=
      ( ax-r1 3tr1 ) ABCDEACFHBDGHI $.
      $( [10-Aug-97] $)
  $}

  ${
    3tr.1 $e |- a = b $.
    3tr.2 $e |- b = c $.
    3tr.3 $e |- c = d $.
    $( Triple transitive inference. $)
    3tr $p |- a = d $=
      ( ax-r2 ) ACDABCEFHGH $.
      $( [20-Sep-98] $)
  $}

  ${
    con1.1 $e |- a ' = b ' $.
    $( Contraposition inference. $)
    con1 $p |- a = b $=
      ( wn ax-r4 ax-a1 3tr1 ) ADZDBDZDABHICEAFBFG $.
      $( [10-Aug-97] $)
  $}

  ${
    con2.1 $e |- a = b ' $.
    $( Contraposition inference. $)
    con2 $p |- a ' = b $=
      ( wn ax-r4 ax-a1 ax-r1 ax-r2 ) ADBDZDZBAICEBJBFGH $.
      $( [10-Aug-97] $)
  $}

  ${
    con3.1 $e |- a ' = b $.
    $( Contraposition inference. $)
    con3 $p |- a = b ' $=
      ( wn ax-a1 ax-r4 ax-r2 ) AADZDBDAEHBCFG $.
      $( [10-Aug-97] $)
  $}

  ${
    con4.1 $e |- a = b $.
    $( Contraposition inference. $)
    con4 $p |- a ' = b ' $=
      ( ax-r4 ) ABCD $.
      $( [31-Mar-2011] $) $( [26-May-2008] $)
  $}

  ${
    lor.1 $e |- a = b $.
    $( Inference introducing disjunct to left. $)
    lor $p |- ( c v a ) = ( c v b ) $=
      ( wo ax-r5 ax-a2 3tr1 ) ACEBCECAECBEABCDFCAGCBGH $.
      $( [10-Aug-97] $)

    $( Inference introducing disjunct to right. $)
    ror $p |- ( a v c ) = ( b v c ) $=
      ( ax-r5 ) ABCDE $.
      $( [31-Mar-2011] $) $( [26-May-2008] $)
  $}

  ${
    2or.1 $e |- a = b $.
    2or.2 $e |- c = d $.
    $( Join both sides with disjunction. $)
    2or $p |- ( a v c ) = ( b v d ) $=
      ( wo lor ax-r5 ax-r2 ) ACGADGBDGCDAFHABDEIJ $.
      $( [10-Aug-97] $)
  $}

  $( Commutative law. $)
  orcom $p |- ( a v b ) = ( b v a ) $=
    ( ax-a2 ) ABC $.
    $( [31-Mar-2011] $) $( [27-May-2008] $)

  $( Commutative law. $)
  ancom $p |- ( a ^ b ) = ( b ^ a ) $=
    ( wn wo wa ax-a2 ax-r4 df-a 3tr1 ) ACZBCZDZCKJDZCABEBAELMJKFGABHBAHI $.
    $( [10-Aug-97] $)

  $( Associative law. $)
  orass $p |- ( ( a v b ) v c ) = ( a v ( b v c ) ) $=
    ( ax-a3 ) ABCD $.
    $( [31-Mar-2011] $) $( [27-May-2008] $)

  $( Associative law. $)
  anass $p |- ( ( a ^ b ) ^ c ) = ( a ^ ( b ^ c ) ) $=
    ( wa wn wo ax-a3 df-a con2 ax-r5 lor 3tr1 ax-r4 ) ABDZEZCEZFZEAEZBCDZEZFZEN
    CDASDQUARBEZFZPFRUBPFZFQUARUBPGOUCPNUCABHIJTUDRSUDBCHIKLMNCHASHL $.
    $( [12-Aug-97] $)

  ${
    lan.1 $e |- a = b $.
    $( Introduce conjunct on left. $)
    lan $p |- ( c ^ a ) = ( c ^ b ) $=
      ( wn wo wa ax-r4 lor df-a 3tr1 ) CEZAEZFZELBEZFZECAGCBGNPMOLABDHIHCAJCBJK
      $.
      $( [10-Aug-97] $)
  $}

  ${
    ran.1 $e |- a = b $.
    $( Introduce conjunct on right. $)
    ran $p |- ( a ^ c ) = ( b ^ c ) $=
      ( wa lan ancom 3tr1 ) CAECBEACEBCEABCDFACGBCGH $.
      $( [10-Aug-97] $)
  $}

  ${
    2an.1 $e |- a = b $.
    2an.2 $e |- c = d $.
    $( Conjoin both sides of hypotheses. $)
    2an $p |- ( a ^ c ) = ( b ^ d ) $=
      ( wa lan ran ax-r2 ) ACGADGBDGCDAFHABDEIJ $.
      $( [10-Aug-97] $)
  $}

  $( Swap disjuncts. $)
  or12 $p |- ( a v ( b v c ) ) = ( b v ( a v c ) ) $=
    ( wo ax-a2 ax-r5 ax-a3 3tr2 ) ABDZCDBADZCDABCDDBACDDIJCABEFABCGBACGH $.
    $( [27-Aug-97] $)

  $( Swap conjuncts. $)
  an12 $p |- ( a ^ ( b ^ c ) ) = ( b ^ ( a ^ c ) ) $=
    ( wa ancom ran anass 3tr2 ) ABDZCDBADZCDABCDDBACDDIJCABEFABCGBACGH $.
    $( [27-Aug-97] $)

  $( Swap disjuncts. $)
  or32 $p |- ( ( a v b ) v c ) = ( ( a v c ) v b ) $=
    ( wo ax-a2 lor ax-a3 3tr1 ) ABCDZDACBDZDABDCDACDBDIJABCEFABCGACBGH $.
    $( [27-Aug-97] $)

  $( Swap conjuncts. $)
  an32 $p |- ( ( a ^ b ) ^ c ) = ( ( a ^ c ) ^ b ) $=
    ( wa ancom lan anass 3tr1 ) ABCDZDACBDZDABDCDACDBDIJABCEFABCGACBGH $.
    $( [27-Aug-97] $)

  $( Swap disjuncts. $)
  or4 $p |- ( ( a v b ) v ( c v d ) ) = ( ( a v c ) v ( b v d ) ) $=
    ( wo or12 lor ax-a3 3tr1 ) ABCDEZEZEACBDEZEZEABEJEACELEKMABCDFGABJHACLHI $.
    $( [27-Aug-97] $)

  $( Rearrange disjuncts. $)
  or42 $p |- ( ( a v b ) v ( c v d ) ) = ( ( a v d ) v ( b v c ) ) $=
    ( wo ax-a2 lor or4 ax-r2 ) ABEZCDEZEJDCEZEADEBCEEKLJCDFGABDCHI $.
    $( [4-Mar-06] $)

  $( Swap conjuncts. $)
  an4 $p |- ( ( a ^ b ) ^ ( c ^ d ) ) = ( ( a ^ c ) ^ ( b ^ d ) ) $=
    ( wa an12 lan anass 3tr1 ) ABCDEZEZEACBDEZEZEABEJEACELEKMABCDFGABJHACLHI $.
    $( [27-Aug-97] $)

  $( Disjunction expressed with conjunction. $)
  oran $p |- ( a v b ) = ( a ' ^ b ' ) ' $=
    ( wn wo wa ax-a1 2or df-a ax-r4 3tr1 ) ACZCZBCZCZDZOCZCABDKMEZCOFALBNAFBFGQ
    PKMHIJ $.
    $( [10-Aug-97] $)

  $( Conjunction expressed with disjunction. $)
  anor1 $p |- ( a ^ b ' ) = ( a ' v b ) ' $=
    ( wn wa wo df-a ax-a1 ax-r1 lor ax-r4 ax-r2 ) ABCZDACZLCZEZCMBEZCALFOPNBMBN
    BGHIJK $.
    $( [12-Aug-97] $)

  $( Conjunction expressed with disjunction. $)
  anor2 $p |- ( a ' ^ b ) = ( a v b ' ) ' $=
    ( wn wa wo df-a ax-a1 ax-r1 ax-r5 ax-r4 ax-r2 ) ACZBDLCZBCZEZCANEZCLBFOPMAN
    AMAGHIJK $.
    $( [12-Aug-97] $)

  $( Conjunction expressed with disjunction. $)
  anor3 $p |- ( a ' ^ b ' ) = ( a v b ) ' $=
    ( wn wa wo oran ax-r1 con3 ) ACBCDZABEZJICABFGH $.
    $( [15-Dec-97] $)

  $( Disjunction expressed with conjunction. $)
  oran1 $p |- ( a v b ' ) = ( a ' ^ b ) ' $=
    ( wn wo wa anor2 ax-r1 con3 ) ABCDZACBEZJICABFGH $.
    $( [15-Dec-97] $)

  $( Disjunction expressed with conjunction. $)
  oran2 $p |- ( a ' v b ) = ( a ^ b ' ) ' $=
    ( wn wo wa anor1 ax-r1 con3 ) ACBDZABCEZJICABFGH $.
    $( [15-Dec-97] $)

  $( Disjunction expressed with conjunction. $)
  oran3 $p |- ( a ' v b ' ) = ( a ^ b ) ' $=
    ( wn wo wa df-a ax-r1 con3 ) ACBCDZABEZJICABFGH $.
    $( [15-Dec-97] $)

  $( Biconditional expressed with others. $)
  dfb $p |- ( a == b ) = ( ( a ^ b ) v ( a ' ^ b ' ) ) $=
    ( tb wn wo wa df-b df-a ax-r1 oran con2 2or ax-r2 ) ABCADZBDZEDZABEZDZEABFZ
    NOFZEABGPSRTSPABHIQTABJKLM $.
    $( [10-Aug-97] $)

  $( Negated biconditional. $)
  dfnb $p |- ( a == b ) ' = ( ( a v b ) ^ ( a ' v b ' ) ) $=
    ( wa wn wo tb oran con2 ancom ax-r2 dfb ax-r4 df-a ax-r1 2an 3tr1 ) ABCZADZ
    BDZCZEZDZTDZQDZCZABFZDABEZRSEZCUBUDUCCZUEUAUIQTGHUDUCIJUFUAABKLUGUCUHUDABGU
    DUHQUHABMHNOP $.
    $( [30-Aug-97] $)

  $( Commutative law. $)
  bicom $p |- ( a == b ) = ( b == a ) $=
    ( wa wn wo tb ancom 2or dfb 3tr1 ) ABCZADZBDZCZEBACZMLCZEABFBAFKONPABGLMGHA
    BIBAIJ $.
    $( [10-Aug-97] $)

  ${
    lbi.1 $e |- a = b $.
    $( Introduce biconditional to the left. $)
    lbi $p |- ( c == a ) = ( c == b ) $=
      ( wa wn wo tb lan ax-r4 2or dfb 3tr1 ) CAEZCFZAFZEZGCBEZOBFZEZGCAHCBHNRQT
      ABCDIPSOABDJIKCALCBLM $.
      $( [10-Aug-97] $)
  $}

  ${
    rbi.1 $e |- a = b $.
    $( Introduce biconditional to the right. $)
    rbi $p |- ( a == c ) = ( b == c ) $=
      ( tb lbi bicom 3tr1 ) CAECBEACEBCEABCDFACGBCGH $.
      $( [10-Aug-97] $)
  $}

  ${
    2bi.1 $e |- a = b $.
    2bi.2 $e |- c = d $.
    $( Join both sides with biconditional. $)
    2bi $p |- ( a == c ) = ( b == d ) $=
      ( tb lbi rbi ax-r2 ) ACGADGBDGCDAFHABDEIJ $.
      $( [10-Aug-97] $)
  $}

  $( Alternate defintion of "false". $)
  dff2 $p |- 0 = ( a v a ' ) ' $=
    ( wf wt wn wo df-f df-t ax-r4 ax-r2 ) BCDAADEZDFCJAGHI $.
    $( [10-Aug-97] $)

  $( Alternate defintion of "false". $)
  dff $p |- 0 = ( a ^ a ' ) $=
    ( wf wn wo wa dff2 ancom anor2 ax-r2 ax-r1 ) BAACZDCZAKEZAFMLMKAELAKGAAHIJI
    $.
    $( [29-Aug-97] $)

  $( Disjunction with 0. $)
  or0 $p |- ( a v 0 ) = a $=
    ( wf wo wn dff2 ax-a2 ax-r4 ax-r2 lor ax-a5 ) ABCAADZACZDZCABMABAKCZDMAENLA
    KFGHIAAJH $.
    $( [10-Aug-97] $)

  $( Disjunction with 0. $)
  or0r $p |- ( 0 v a ) = a $=
    ( wf wo ax-a2 or0 ax-r2 ) BACABCABADAEF $.
    $( [26-Nov-97] $)

  $( Disjunction with 1. $)
  or1 $p |- ( a v 1 ) = 1 $=
    ( wt wo wn df-t lor ax-a4 ax-r2 ax-r1 ) ABCZAADCZBJAKCKBKAAEZFAAGHBKLIH $.
    $( [10-Aug-97] $)

  $( Disjunction with 1. $)
  or1r $p |- ( 1 v a ) = 1 $=
    ( wt wo ax-a2 or1 ax-r2 ) BACABCBBADAEF $.
    $( [26-Nov-97] $)

  $( Conjunction with 1. $)
  an1 $p |- ( a ^ 1 ) = a $=
    ( wt wa wn wo df-a wf df-f ax-r1 lor or0 ax-r2 con2 ) ABCADZBDZEZDAABFPAPNG
    ENOGNGOHIJNKLML $.
    $( [10-Aug-97] $)

  $( Conjunction with 1. $)
  an1r $p |- ( 1 ^ a ) = a $=
    ( wt wa ancom an1 ax-r2 ) BACABCABADAEF $.
    $( [26-Nov-97] $)

  $( Conjunction with 0. $)
  an0 $p |- ( a ^ 0 ) = 0 $=
    ( wf wa wn wo df-a wt or1 df-f con2 lor 3tr1 ax-r2 ) ABCADZBDZEZDBABFPBNGEG
    PONHOGNBGIJZKQLJM $.
    $( [10-Aug-97] $)

  $( Conjunction with 0. $)
  an0r $p |- ( 0 ^ a ) = 0 $=
    ( wf wa ancom an0 ax-r2 ) BACABCBBADAEF $.
    $( [26-Nov-97] $)

  $( Idempotent law. $)
  oridm $p |- ( a v a ) = a $=
    ( wo wn wf ax-a1 or0 ax-r1 ax-r4 ax-r2 lor ax-a5 ) AABAACZDBZCZBAANAALCNAEL
    MMLLFGHIJADKI $.
    $( [10-Aug-97] $)

  $( Idempotent law. $)
  anidm $p |- ( a ^ a ) = a $=
    ( wa wn wo df-a oridm con2 ax-r2 ) AABACZIDZCAAAEJAIFGH $.
    $( [10-Aug-97] $)

  $( Distribution of disjunction over disjunction. $)
  orordi $p |- ( a v ( b v c ) ) =
               ( ( a v b ) v ( a v c ) ) $=
    ( wo oridm ax-r1 ax-r5 or4 ax-r2 ) ABCDZDAADZJDABDACDDAKJKAAEFGAABCHI $.
    $( [27-Aug-97] $)

  $( Distribution of disjunction over disjunction. $)
  orordir $p |- ( ( a v b ) v c ) =
               ( ( a v c ) v ( b v c ) ) $=
    ( wo oridm ax-r1 lor or4 ax-r2 ) ABDZCDJCCDZDACDBCDDCKJKCCEFGABCCHI $.
    $( [27-Aug-97] $)

  $( Distribution of conjunction over conjunction. $)
  anandi $p |- ( a ^ ( b ^ c ) ) =
               ( ( a ^ b ) ^ ( a ^ c ) ) $=
    ( wa anidm ax-r1 ran an4 ax-r2 ) ABCDZDAADZJDABDACDDAKJKAAEFGAABCHI $.
    $( [27-Aug-97] $)

  $( Distribution of conjunction over conjunction. $)
  anandir $p |- ( ( a ^ b ) ^ c ) =
               ( ( a ^ c ) ^ ( b ^ c ) ) $=
    ( wa anidm ax-r1 lan an4 ax-r2 ) ABDZCDJCCDZDACDBCDDCKJKCCEFGABCCHI $.
    $( [27-Aug-97] $)

  $( Identity law. $)
  biid $p |- ( a == a ) = 1 $=
    ( wa wn wo tb wt anidm 2or dfb df-t 3tr1 ) AABZACZMBZDAMDAAEFLANMAGMGHAAIAJ
    K $.
    $( [10-Aug-97] $)

  $( Identity law. $)
  1b $p |- ( 1 == a ) = a $=
    ( wt tb wa wn wo dfb wf ancom df-f ax-r1 lan ax-r2 2or an1 an0 or0 ) BACBAD
    ZBEZAEZDZFZABAGUBAHFZAUBABDZTHDZFUCRUDUAUEBAIUATSDUESTISHTHSJKLMNUDAUEHAOTP
    NMAQMM $.
    $( [10-Aug-97] $)

  ${
    bi1.1 $e |- a = b $.
    $( Identity inference. $)
    bi1 $p |- ( a == b ) = 1 $=
      ( tb wt rbi biid ax-r2 ) ABDBBDEABBCFBGH $.
      $( [30-Aug-97] $)
  $}

  ${
    1bi.1 $e |- a = b $.
    $( Identity inference. $)
    1bi $p |- 1 = ( a == b ) $=
      ( tb wt bi1 ax-r1 ) ABDEABCFG $.
      $( [30-Aug-97] $)
  $}

  $( Absorption law. $)
  orabs $p |- ( a v ( a ^ b ) ) = a $=
    ( wa wo wn df-a lor ax-a5 ax-r2 ) AABCZDAAEBEZDEZDAJLAABFGAKHI $.
    $( [11-Aug-97] $)

  $( Absorption law. $)
  anabs $p |- ( a ^ ( a v b ) ) = a $=
    ( wo wa wn ax-a1 ax-r5 lan df-a ax-r2 ax-a5 con2 ) AABCZDZAEZOEZBCZECZEZANA
    QDSMQAAPBAFGHAQIJRAOBKLJ $.
    $( [11-Aug-97] $)

  $( Contraposition law. $)
  conb $p |- ( a == b ) = ( a ' == b ' ) $=
    ( wa wn wo tb ax-a2 ax-a1 2an lor ax-r2 dfb 3tr1 ) ABCZADZBDZCZEZQODZPDZCZE
    ZABFOPFRQNEUBNQGNUAQASBTAHBHIJKABLOPLM $.
    $( [10-Aug-97] $)

  ${
    leoa.1 $e |- ( a v c ) = b $.
    $( Relation between two methods of expressing "less than or equal to". $)
    leoa $p |- ( a ^ b ) = a $=
      ( wa wo ax-r1 lan anabs ax-r2 ) ABEAACFZEABKAKBDGHACIJ $.
      $( [11-Aug-97] $)
  $}

  ${
    leao.1 $e |- ( c ^ b ) = a $.
    $( Relation between two methods of expressing "less than or equal to". $)
    leao $p |- ( a v b ) = b $=
      ( wo wa ax-a2 ax-r1 ancom ax-r2 lor orabs ) ABEZBBCFZEZBMBAEOABGANBACBFZN
      PADHNPBCIHJKJBCLJ $.
      $( [11-Aug-97] $)
  $}

  $( Mittelstaedt implication. $)
  mi $p |- ( ( a v b ) == b ) = ( b v ( a ' ^ b ' ) ) $=
    ( wo tb wa wn dfb ancom ax-a2 lan anabs ax-r2 oran con2 ran anass anidm 2or
    ) ABCZBDSBEZSFZBFZEZCBAFZUBEZCSBGTBUCUETBSEZBSBHUFBBACZEBSUGBABIJBAKLLUCUDU
    BUBEZEZUEUCUEUBEUIUAUEUBSUEABMNOUDUBUBPLUHUBUDUBQJLRL $.
    $( [12-Aug-97] $)

  $( Dishkant implication. $)
  di $p |- ( ( a ^ b ) == a ) = ( a ' v ( a ^ b ) ) $=
    ( wn wo tb wa conb ax-a1 ax-r1 rbi mi ax-r2 ancom df-a 2an lor 3tr1 ) BCZAC
    ZDZCZAEZSRCZSCZFZDZABFZAESUGDUBUACZSEZUFUAAGUITSEUFUHTSTUHTHIJRSKLLUGUAAUGB
    AFZUAABMZBANLJUGUESUGUJUEUKBUCAUDBHAHOLPQ $.
    $( [12-Aug-97] $)

  $( Lemma in proof of Th. 1 of Pavicic 1987. $)
  omlem1 $p |- ( ( a v ( a ' ^ ( a v b ) ) ) v ( a v b ) ) =
               ( a v b ) $=
    ( wn wo wa ax-a2 ax-a3 3tr1 ax-r2 ax-r1 oridm ax-r5 ancom 2or orabs 3tr2 )
    AACZABDZEZDZADBDZRADZSDZTRDZRUDRTDUAUCTRFTABGZRASGHUEUCRRQEZDRUBRSUFUBAADZB
    DZRUHUBUHARDUBAABGARFIJUGABAKLIQRMNRQOIP $.
    $( [12-Aug-97] $)

  $( Lemma in proof of Th. 1 of Pavicic 1987. $)
  omlem2 $p |- ( ( a v b ) ' v ( a v ( a ' ^ ( a v b ) ) ) ) = 1 $=
    ( wo wn wa wt ax-a2 anor2 2or ax-a3 ax-r1 df-t 3tr1 ) ABCZDZACZADNEZCZAOCZS
    DZCOAQCCZFPSQTOAGANHIRUAOAQJKSLM $.
    $( [12-Aug-97] $)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Relationship analogues (ordering; commutation)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Define 'less than or equal to' analogue. $)
  df-le $a |- ( a =<2 b ) = ( ( a v b ) == b ) $.

  $( Since we don't have strong BMP in AUQL, we must add extra definitions
     to eliminate the middle = .  $)
  ${
    df-le1.1 $e |- ( a v b ) = b $.
    $( Define 'less than or equal to'.  See ~ df-le2 for the other
       direction. $)
    df-le1 $a |- a =< b $.
  $}

  ${
    df-le2.1 $e |- a =< b $.
    $( Define 'less than or equal to'.  See ~ df-le1 for the other
       direction. $)
    df-le2 $a |- ( a v b ) = b $.
  $}

  ${
    df-c1.1 $e |- a = ( ( a ^ b ) v ( a ^ b ' ) ) $.
    $( Define 'commutes'.  See ~ df-c2 for the other direction. $)
    df-c1 $a |- a C b $.
  $}

  ${
    df-c2.1 $e |- a C b $.
    $( Define 'commutes'.  See ~ df-c1 for the other direction. $)
    df-c2 $a |- a = ( ( a ^ b ) v ( a ^ b ' ) ) $.
  $}

  $( Define 'commutator'. $)
  df-cmtr $a |- C ( a , b ) = ( ( ( a ^ b ) v ( a ^ b ' ) ) v
             ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $.

  ${
    df2le1.1 $e |- ( a ^ b ) = a $.
    $( Alternate definition of 'less than or equal to'. $)
    df2le1 $p |- a =< b $=
      ( leao df-le1 ) ABABACDE $.
      $( [27-Aug-97] $)
  $}

  ${
    df2le2.1 $e |- a =< b $.
    $( Alternate definition of 'less than or equal to'. $)
    df2le2 $p |- ( a ^ b ) = a $=
      ( df-le2 leoa ) ABBABCDE $.
      $( [27-Aug-97] $)
  $}

  ${
    letr.1 $e |- a =< b $.
    letr.2 $e |- b =< c $.
    $( Transitive law for l.e. $)
    letr $p |- a =< c $=
      ( wa wo df-le2 ax-r5 ax-r1 ax-a3 3tr2 lan anabs ax-r2 df2le1 ) ACACFAABCG
      ZGZFACRAQABGZCGZCRTQSBCABDHIJBCEHABCKLMAQNOP $.
      $( [27-Aug-97] $)
  $}

  ${
    bltr.1 $e |- a = b $.
    bltr.2 $e |- b =< c $.
    $( Transitive inference. $)
    bltr $p |- a =< c $=
      ( wo ax-r5 df-le2 ax-r2 df-le1 ) ACACFBCFCABCDGBCEHIJ $.
      $( [28-Aug-97] $)
  $}

  ${
    lbtr.1 $e |- a =< b $.
    lbtr.2 $e |- b = c $.
    $( Transitive inference. $)
    lbtr $p |- a =< c $=
      ( wa ax-r1 lan df2le2 ax-r2 df2le1 ) ACACFABFACBABCEGHABDIJK $.
      $( [28-Aug-97] $)
  $}

  ${
    le3tr1.1 $e |- a =< b $.
    le3tr1.2 $e |- c = a $.
    le3tr1.3 $e |- d = b $.
    $( Transitive inference useful for introducing definitions. $)
    le3tr1 $p |- c =< d $=
      ( bltr ax-r1 lbtr ) CBDCABFEHDBGIJ $.
      $( [27-Aug-97] $)
  $}

  ${
    le3tr2.1 $e |- a =< b $.
    le3tr2.2 $e |- a = c $.
    le3tr2.3 $e |- b = d $.
    $( Transitive inference useful for eliminating definitions. $)
    le3tr2 $p |- c =< d $=
      ( ax-r1 le3tr1 ) ABCDEACFHBDGHI $.
      $( [27-Aug-97] $)
  $}

  ${
    bile.1 $e |- a = b $.
    $( Biconditional to l.e. $)
    bile $p |- a =< b $=
      ( wo ax-r5 oridm ax-r2 df-le1 ) ABABDBBDBABBCEBFGH $.
      $( [27-Aug-97] $)
  $}

  $( An ortholattice inequality, corresponding to a theorem provable in Hilbert
     space.  Part of Definition 2.1 p. 2092, in M. Pavicic and N. Megill,
     "Quantum and Classical Implicational Algebras with Primitive Implication,"
     _Int.  J. of Theor.  Phys._ 37, 2091-2098 (1998). $)
  qlhoml1a $p |- a =< a ' ' $=
    ( wn ax-a1 bile ) AABBACD $.
    $( [3-Feb-02] $)

  $( An ortholattice inequality, corresponding to a theorem provable in Hilbert
     space. $)
  qlhoml1b $p |- a ' ' =< a $=
    ( wn ax-a1 ax-r1 bile ) ABBZAAFACDE $.
    $( [3-Feb-02] $)

  ${
    lebi.1 $e |- a =< b $.
    lebi.2 $e |- b =< a $.
    $( L.e. to biconditional. $)
    lebi $p |- a = b $=
      ( wo df-le2 ax-r1 ax-a2 ax-r2 ) AABEZBABAEZJKABADFGBAHIABCFI $.
      $( [27-Aug-97] $)
  $}

  $( Anything is l.e. 1. $)
  le1 $p |- a =< 1 $=
    ( wt or1 df-le1 ) ABACD $.
    $( [30-Aug-97] $)

  $( 0 is l.e. anything. $)
  le0 $p |- 0 =< a $=
    ( wf wo ax-a2 or0 ax-r2 df-le1 ) BABACABCABADAEFG $.
    $( [30-Aug-97] $)

  $( Identity law for less-than-or-equal. $)
  leid $p |- a =< a $=
    ( id bile ) AAABC $.
    $( [24-Dec-98] $)

  ${
    le.1 $e |- a =< b $.
    $( Add disjunct to right of l.e. $)
    ler $p |- a =< ( b v c ) $=
      ( wo ax-a3 ax-r1 df-le2 ax-r5 ax-r2 df-le1 ) ABCEZALEZABEZCEZLOMABCFGNBCA
      BDHIJK $.
      $( [27-Aug-97] $)

    $( Add disjunct to right of l.e. $)
    lerr $p |- a =< ( c v b ) $=
      ( wo ler ax-a2 lbtr ) ABCECBEABCDFBCGH $.
      $( [11-Nov-97] $)

    $( Add conjunct to left of l.e. $)
    lel $p |- ( a ^ c ) =< b $=
      ( wa an32 df2le2 ran ax-r2 df2le1 ) ACEZBKBEABEZCEKACBFLACABDGHIJ $.
      $( [27-Aug-97] $)

    $( Add disjunct to right of both sides. $)
    leror $p |- ( a v c ) =< ( b v c ) $=
      ( wo orordir ax-r1 df-le2 ax-r5 ax-r2 df-le1 ) ACEZBCEZLMEZABEZCEZMPNABCF
      GOBCABDHIJK $.
      $( [27-Aug-97] $)

    $( Add conjunct to right of both sides. $)
    leran $p |- ( a ^ c ) =< ( b ^ c ) $=
      ( wa anandir ax-r1 df2le2 ran ax-r2 df2le1 ) ACEZBCEZLMEZABEZCEZLPNABCFGO
      ACABDHIJK $.
      $( [27-Aug-97] $)

    $( Contrapositive for l.e. $)
    lecon $p |- b ' =< a ' $=
      ( wn wa wo ax-a2 oran df-le2 3tr2 con3 df2le1 ) BDZADZMNEZBBAFABFODBBAGBA
      HABCIJKL $.
      $( [27-Aug-97] $)
  $}

  ${
    lecon1.1 $e |- a ' =< b ' $.
    $( Contrapositive for l.e. $)
    lecon1 $p |- b =< a $=
      ( wn lecon ax-a1 le3tr1 ) BDZDADZDBAIHCEBFAFG $.
      $( [7-Nov-97] $)
  $}

  ${
    lecon2.1 $e |- a ' =< b $.
    $( Contrapositive for l.e. $)
    lecon2 $p |- b ' =< a $=
      ( wn ax-a1 lbtr lecon1 ) ABDZADBHDCBEFG $.
      $( [19-Dec-98] $)
  $}

  ${
    lecon3.1 $e |- a =< b ' $.
    $( Contrapositive for l.e. $)
    lecon3 $p |- b =< a ' $=
      ( wn lecon lecon2 lecon1 ) ADZBBDZHAICEFG $.
      $( [19-Dec-98] $)
  $}

  $( L.e. absorption. $)
  leo $p |- a =< ( a v b ) $=
    ( wo anabs df2le1 ) AABCABDE $.
    $( [27-Aug-97] $)

  $( L.e. absorption. $)
  leor $p |- a =< ( b v a ) $=
    ( wo leo ax-a2 lbtr ) AABCBACABDABEF $.
    $( [11-Nov-97] $)

  $( L.e. absorption. $)
  lea $p |- ( a ^ b ) =< a $=
    ( wa wo ax-a2 orabs ax-r2 df-le1 ) ABCZAIADAIDAIAEABFGH $.
    $( [27-Aug-97] $)

  $( L.e. absorption. $)
  lear $p |- ( a ^ b ) =< b $=
    ( wa ancom lea bltr ) ABCBACBABDBAEF $.
    $( [11-Nov-97] $)

  $( L.e. absorption. $)
  leao1 $p |- ( a ^ b ) =< ( a v c ) $=
    ( wa wo lea leo letr ) ABDAACEABFACGH $.
    $( [8-Jul-00] $)

  $( L.e. absorption. $)
  leao2 $p |- ( b ^ a ) =< ( a v c ) $=
    ( wa wo lear leo letr ) BADAACEBAFACGH $.
    $( [8-Jul-00] $)

  $( L.e. absorption. $)
  leao3 $p |- ( a ^ b ) =< ( c v a ) $=
    ( wa wo lea leor letr ) ABDACAEABFACGH $.
    $( [8-Jul-00] $)

  $( L.e. absorption. $)
  leao4 $p |- ( b ^ a ) =< ( c v a ) $=
    ( wa wo lear leor letr ) BADACAEBAFACGH $.
    $( [8-Jul-00] $)

  ${
    lel.1 $e |- a =< b $.
    $( Add disjunct to left of both sides. $)
    lelor $p |- ( c v a ) =< ( c v b ) $=
      ( wo leror ax-a2 le3tr1 ) ACEBCECAECBEABCDFCAGCBGH $.
      $( [25-Oct-97] $)

    $( Add conjunct to left of both sides. $)
    lelan $p |- ( c ^ a ) =< ( c ^ b ) $=
      ( wa leran ancom le3tr1 ) ACEBCECAECBEABCDFCAGCBGH $.
      $( [25-Oct-97] $)
  $}

  ${
    le2.1 $e |- a =< b $.
    le2.2 $e |- c =< d $.
    $( Disjunction of 2 l.e.'s. $)
    le2or $p |- ( a v c ) =< ( b v d ) $=
      ( wo leror lelor letr ) ACGBCGBDGABCEHCDBFIJ $.
      $( [25-Oct-97] $)

    $( Conjunction of 2 l.e.'s. $)
    le2an $p |- ( a ^ c ) =< ( b ^ d ) $=
      ( wa leran lelan letr ) ACGBCGBDGABCEHCDBFIJ $.
      $( [25-Oct-97] $)
  $}

  ${
    lel2.1 $e |- a =< b $.
    lel2.2 $e |- c =< b $.
    $( Disjunction of 2 l.e.'s. $)
    lel2or $p |- ( a v c ) =< b $=
      ( wo le2or oridm lbtr ) ACFBBFBABCBDEGBHI $.
      $( [11-Nov-97] $)

    $( Conjunction of 2 l.e.'s. $)
    lel2an $p |- ( a ^ c ) =< b $=
      ( wa le2an anidm lbtr ) ACFBBFBABCBDEGBHI $.
      $( [11-Nov-97] $)
  $}

  ${
    ler2.1 $e |- a =< b $.
    ler2.2 $e |- a =< c $.
    $( Disjunction of 2 l.e.'s. $)
    ler2or $p |- a =< ( b v c ) $=
      ( wo oridm ax-r1 le2or bltr ) AAAFZBCFKAAGHABACDEIJ $.
      $( [11-Nov-97] $)

    $( Conjunction of 2 l.e.'s. $)
    ler2an $p |- a =< ( b ^ c ) $=
      ( wa anidm ax-r1 le2an bltr ) AAAFZBCFKAAGHABACDEIJ $.
      $( [11-Nov-97] $)
  $}

  $( Half of distributive law. $)
  ledi $p |- ( ( a ^ b ) v ( a ^ c ) ) =< ( a ^ ( b v c ) ) $=
    ( wa wo anidm ax-r1 lea le2or oridm lbtr ancom bltr le2an ) ABDZACDZEZQQDZA
    BCEZDRQQFGQAQSQAAEAOAPAABHACHIAJKOBPCOBADBABLBAHMPCADCACLCAHMINM $.
    $( [28-Aug-97] $)

  $( Half of distributive law. $)
  ledir $p |- ( ( b ^ a ) v ( c ^ a ) ) =< ( ( b v c ) ^ a ) $=
    ( wa wo ledi ancom 2or le3tr1 ) ABDZACDZEABCEZDBADZCADZELADABCFMJNKBAGCAGHL
    AGI $.
    $( [30-Nov-98] $)

  $( Half of distributive law. $)
  ledio $p |- ( a v ( b ^ c ) ) =< ( ( a v b ) ^ ( a v c ) ) $=
    ( wa wo anidm ax-r1 leo le2an bltr ax-a2 lbtr le2or oridm ) ABCDZEABEZACEZD
    ZRERARORAAADZRSAAFGAPAQABHACHIJBPCQBBAEPBAHBAKLCCAEQCAHCAKLIMRNL $.
    $( [28-Aug-97] $)

  $( Half of distributive law. $)
  ledior $p |- ( ( b ^ c ) v a ) =< ( ( b v a ) ^ ( c v a ) ) $=
    ( wa wo ledio ax-a2 2an le3tr1 ) ABCDZEABEZACEZDJAEBAEZCAEZDABCFJAGMKNLBAGC
    AGHI $.
    $( [30-Nov-98] $)

  $( Commutation with 0.  Kalmbach 83 p. 20. $)
  comm0 $p |- a C 0 $=
    ( wf wo wa wn ax-a2 or0 ax-r2 ax-r1 an0 wt df-f con2 lan an1 2or df-c1 ) AB
    ABACZABDZABEZDZCZRARABCABAFAGHIUBRSBUAAAJUAAKDATKABKLMNAOHPIHQ $.
    $( [27-Aug-97] $)

  $( Commutation with 1.  Kalmbach 83 p. 20. $)
  comm1 $p |- 1 C a $=
    ( wt wn wo wa df-t ancom an1 ax-r2 2or ax-r1 df-c1 ) BABAACZDZBAEZBMEZDZAFQ
    NOAPMOABEABAGAHIPMBEMBMGMHIJKIL $.
    $( [27-Aug-97] $)

  ${
    lecom.1 $e |- a =< b $.
    $( Comparable elements commute.  Beran 84 2.3(iii) p. 40. $)
    lecom $p |- a C b $=
      ( wn wa wo orabs ax-r1 df2le2 ax-r5 ax-r2 df-c1 ) ABAAABDZEZFZABEZNFOAAMG
      HAPNPAABCIHJKL $.
      $( [30-Aug-97] $)
  $}

  ${
    bctr.1 $e |- a = b $.
    bctr.2 $e |- b C c $.
    $( Transitive inference. $)
    bctr $p |- a C c $=
      ( wa wn wo df-c2 ran 2or 3tr1 df-c1 ) ACBBCFZBCGZFZHAACFZAOFZHBCEIDQNRPAB
      CDJABODJKLM $.
      $( [30-Aug-97] $)
  $}

  ${
    cbtr.1 $e |- a C b $.
    cbtr.2 $e |- b = c $.
    $( Transitive inference. $)
    cbtr $p |- a C c $=
      ( wa wn wo df-c2 lan ax-r4 2or ax-r2 df-c1 ) ACAABFZABGZFZHACFZACGZFZHABD
      IORQTBCAEJPSABCEKJLMN $.
      $( [30-Aug-97] $)
  $}

  ${
    comcom2.1 $e |- a C b $.
    $( Commutation equivalence.  Kalmbach 83 p. 23.  Does not use OML. $)
    comcom2 $p |- a C b ' $=
      ( wn wa wo df-c2 ax-a1 lan ax-r5 ax-r2 ax-a2 df-c1 ) ABDZAANDZEZANEZFZQPF
      AABEZQFRABCGSPQBOABHIJKPQLKM $.
      $( [27-Aug-97] $)
  $}

  $( Commutation law.  Does not use OML. $)
  comorr $p |- a C ( a v b ) $=
    ( wo leo lecom ) AABCABDE $.
    $( [30-Aug-97] $)

  $( Commutation law.  Does not use OML. $)
  coman1 $p |- ( a ^ b ) C a $=
    ( wa lea lecom ) ABCAABDE $.
    $( [30-Aug-97] $)

  $( Commutation law.  Does not use OML. $)
  coman2 $p |- ( a ^ b ) C b $=
    ( wa ancom coman1 bctr ) ABCBACBABDBAEF $.
    $( [9-Nov-97] $)

  $( Identity law for commutation.  Does not use OML. $)
  comid $p |- a C a $=
    ( wo comorr oridm cbtr ) AAABAAACADE $.
    $( [9-Nov-97] $)

  ${
    distlem.1 $e |- ( a ^ ( b v c ) ) =< b $.
    $( Distributive law inference (uses OL only). $)
    distlem $p |- ( a ^ ( b v c ) ) = ( ( a ^ b ) v ( a ^ c ) ) $=
      ( wo wa lea ler2an leo letr ledi lebi ) ABCEZFZABFZACFZEZNOQNABAMGDHOPIJA
      BCKL $.
      $( [17-Nov-98] $)
  $}

  ${
    str.1 $e |- a =< ( b v c ) $.
    str.2 $e |- ( a ^ ( b v c ) ) =< b $.
    $( Strengthening rule. $)
    str $p |- a =< b $=
      ( wo wa id bile ler2an letr ) AABCFZGBAALAAAHIDJEK $.
      $( [18-Nov-98] $)
  $}

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Commutator (ortholattice theorems)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Commutative law for commutator. $)
  cmtrcom $p |- C ( a , b ) = C ( b , a ) $=
    ( wa wn wo wcmtr ancom 2or or4 ax-r2 df-cmtr 3tr1 ) ABCZABDZCZEZADZBCZQNCZE
    ZEZBACZBQCZENACZNQCZEEZABFBAFUAUBUDEZUCUEEZEUFPUGTUHMUBOUDABGANGHRUCSUEQBGQ
    NGHHUBUDUCUEIJABKBAKL $.
    $( [24-Jan-99] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Weak "orthomodular law" in ortholattices.
        All theorems here do not require R3 and
        are true in all ortholattices.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Weak A1. $)
  wa1 $p |- ( a == a ' ' ) = 1 $=
    ( wn ax-a1 bi1 ) AABBACD $.
    $( [27-Sep-97] $)

  $( Weak A2. $)
  wa2 $p |- ( ( a v b ) == ( b v a ) ) = 1 $=
    ( wo ax-a2 bi1 ) ABCBACABDE $.
    $( [27-Sep-97] $)

  $( Weak A3. $)
  wa3 $p |- ( ( ( a v b ) v c ) == ( a v ( b v c ) ) ) = 1 $=
    ( wo ax-a3 bi1 ) ABDCDABCDDABCEF $.
    $( [27-Sep-97] $)

  $( Weak A4. $)
  wa4 $p |- ( ( a v ( b v b ' ) ) == ( b v b ' ) ) = 1 $=
    ( wn wo ax-a4 bi1 ) ABBCDZDGABEF $.
    $( [27-Sep-97] $)

  $( Weak A5. $)
  wa5 $p |- ( ( a v ( a ' v b ' ) ' ) == a ) = 1 $=
    ( wn wo ax-a5 bi1 ) AACBCZDCDAAGEF $.
    $( [27-Sep-97] $)

  $( Weak A6. $)
  wa6 $p |- ( ( a == b ) == ( ( a ' v b ' ) ' v ( a v b ) ' ) )
             = 1 $=
    ( tb wn wo df-b bi1 ) ABCADBDEDABEDEABFG $.
    $( [12-Jul-98] $)

  ${
    wr1.1 $e |- ( a == b ) = 1 $.
    $( Weak R1. $)
    wr1 $p |- ( b == a ) = 1 $=
      ( tb wt bicom ax-r2 ) BADABDEBAFCG $.
      $( [2-Sep-97] $)
  $}

  ${
    wr3.1 $e |- ( 1 == a ) = 1 $.
    $( Weak R3. $)
    wr3 $p |- a = 1 $=
      ( wt tb 1b ax-r1 ax-r2 ) ACADZCHAAEFBG $.
      $( [2-Sep-97] $)
  $}

  ${
    wr4.1 $e |- ( a == b ) = 1 $.
    $( Weak R4. $)
    wr4 $p |- ( a ' == b ' ) = 1 $=
      ( wn tb wt conb ax-r1 ax-r2 ) ADBDEZABEZFKJABGHCI $.
      $( [2-Sep-97] $)
  $}

  $( Absorption law. $)
  wa5b $p |- ( ( a v ( a ^ b ) ) == a ) = 1 $=
    ( wa wo orabs bi1 ) AABCDAABEF $.
    $( [27-Sep-97] $)

  $( Absorption law. $)
  wa5c $p |- ( ( a ^ ( a v b ) ) == a ) = 1 $=
    ( wo wa anabs bi1 ) AABCDAABEF $.
    $( [27-Sep-97] $)

  $( Contraposition law. $)
  wcon $p |- ( ( a == b ) == ( a ' == b ' ) ) = 1 $=
    ( tb wn conb bi1 ) ABCADBDCABEF $.
    $( [27-Sep-97] $)

  $( Commutative law. $)
  wancom $p |- ( ( a ^ b ) == ( b ^ a ) ) = 1 $=
    ( wa ancom bi1 ) ABCBACABDE $.
    $( [27-Sep-97] $)

  $( Associative law. $)
  wanass $p |- ( ( ( a ^ b ) ^ c ) == ( a ^ ( b ^ c ) ) ) = 1 $=
    ( wa anass bi1 ) ABDCDABCDDABCEF $.
    $( [27-Sep-97] $)

  ${
    wwbmp.1 $e |- a = 1 $.
    wwbmp.2 $e |- ( a == b ) = 1 $.
    $( Weak weak equivalential detachment (WBMP). $)
    wwbmp $p |- b = 1 $=
      ( wt tb rbi ax-r1 ax-r2 wr3 ) BEBFZABFZELKAEBCGHDIJ $.
      $( [2-Sep-97] $)
  $}

  ${
    wwbmpr.1 $e |- b = 1 $.
    wwbmpr.2 $e |- ( a == b ) = 1 $.
    $( Weak weak equivalential detachment (WBMP). $)
    wwbmpr $p |- a = 1 $=
      ( wr1 wwbmp ) BACABDEF $.
      $( [24-Sep-97] $)
  $}

  ${
    wcon1.1 $e |- ( a ' == b ' ) = 1 $.
    $( Weak contraposition. $)
    wcon1 $p |- ( a == b ) = 1 $=
      ( tb wn wt conb ax-r2 ) ABDAEBEDFABGCH $.
      $( [24-Sep-97] $)
  $}

  ${
    wcon2.1 $e |- ( a == b ' ) = 1 $.
    $( Weak contraposition. $)
    wcon2 $p |- ( a ' == b ) = 1 $=
      ( wn tb wt conb ax-a1 rbi ax-r1 ax-r2 ) ADZBEZABDZEZFMLDZNEZOLBGOQAPNAHIJ
      KCK $.
      $( [24-Sep-97] $)
  $}

  ${
    wcon3.1 $e |- ( a ' == b ) = 1 $.
    $( Weak contraposition. $)
    wcon3 $p |- ( a == b ' ) = 1 $=
      ( wn tb wt ax-a1 ax-r1 lbi ax-r2 wcon1 ) ABDZADZLDZEMBEFNBMBNBGHICJK $.
      $( [24-Sep-97] $)
  $}

  ${
    wlem3.1.1 $e |- ( a v b ) = b $.
    wlem3.1.2 $e |- ( b ' v a ) = 1 $.
    $( Weak analogue to lemma used in proof of Th. 3.1 of Pavicic 1993. $)
    wlem3.1 $p |- ( a == b ) = 1 $=
      ( tb wn wo wt wa dfb leoa oran ax-r1 ax-r2 con3 2or ax-a2 ) ABEZBFZAGZHRA
      BIZAFSIZGZTABJUCASGTUAAUBSABBCKUBBUBFZABGZBUEUDABLMCNOPASQNNDN $.
      $( [2-Sep-97] $)
  $}

  $( Theorem structurally similar to orthomodular law but does not require
     R3. $)
  woml $p |- ( ( a v ( a ' ^ ( a v b ) ) ) == ( a v b ) ) = 1 $=
    ( wn wo wa omlem1 omlem2 wlem3.1 ) AACABDZEDIABFABGH $.
    $( [2-Sep-97] $)

  ${
    wwoml2.1 $e |- a =< b $.
    $( Weak orthomodular law. $)
    wwoml2 $p |- ( ( a v ( a ' ^ b ) ) == b ) = 1 $=
      ( wn wa wo tb wt df-le2 ax-r1 lan lor rbi lbi woml 3tr2 ) AADZBEZFZABFZGA
      QTEZFZTGSBGHSUBTRUAABTQTBABCIZJKLMTBSUCNABOP $.
      $( [2-Sep-97] $)
  $}

  ${
    wwoml3.1 $e |- a =< b $.
    wwoml3.2 $e |- ( b ^ a ' ) = 0 $.
    $( Weak orthomodular law. $)
    wwoml3 $p |- ( a == b ) = 1 $=
      ( wf wo tb wn wa wt ax-r1 ancom ax-r2 lor rbi or0 wwoml2 3tr2 ) AEFZBGAAH
      ZBIZFZBGABGJSUBBEUAAEBTIZUAUCEDKBTLMNOSABAPOABCQR $.
      $( [2-Sep-97] $)
  $}

  ${
    wwcomd.1 $e |- a ' C b $.
    $( Commutation dual (weak).  Kalmbach 83 p. 23. $)
    wwcomd $p |- a = ( ( a v b ) ^ ( a v b ' ) ) $=
      ( wo wn wa df-c2 oran ax-a2 anor2 ax-r1 con3 2an ax-r4 3tr1 ax-r2 con1 )
      AABDZABEZDZFZAEZUBBFZUBSFZDZUAEZUBBCGUDUCDUDEZUCEZFZEUEUFUDUCHUCUDIUAUIRU
      GTUHABHTUCUCTEABJKLMNOPQ $.
      $( [2-Sep-97] $)

  $}

  ${
    wwcom3ii.1 $e |- b ' C a $.
    $( Lemma 3(ii) (weak) of Kalmbach 83 p. 23. $)
    wwcom3ii $p |- ( a ^ ( a ' v b ) ) = ( a ^ b ) $=
      ( wa wn wo wwcomd lan anass ax-r1 ax-a2 anabs ax-r2 2an ) ABDZAAEZBFZDZOA
      BAFZBPFZDZDZRBUAABACGHUBASDZTDZRUDUBASTIJUCATQUCAABFZDASUEABAKHABLMBPKNMM
      J $.
      $( [2-Sep-97] $)
  $}

  ${
    wwfh.1 $e |- b C a $.
    wwfh.2 $e |- c C a $.
    $( Foulis-Holland Theorem (weak). $)
    wwfh1 $p |- ( ( a ^ ( b v c ) ) == ( ( a ^ b ) v ( a ^ c ) ) )
               = 1 $=
      ( wo wa tb wn wf df-a ax-r1 con3 ax-r2 2an ax-a1 bctr wwcom3ii anandi lan
      wt bicom ledi ancom 2or con2 anass 3tr1 an12 oran dff an0 wwoml3 ) ABCFZG
      ZABGZACGZFZHURUOHUAUOURUBURUOABCUCUOURIZGZAUNBIZCIZGZGZGZJUTUNAGZAIZVAFZV
      GVBFZGZGZVEUOVFUSVJAUNUDURVJURVHIZVIIZFZVJIUPVLUQVMABKACKUEVNVJVJVNIVHVIK
      LMNUFOVKUNAVCGZGZVEVKUNAVJGZGVPUNAVJUGVQVOUNAVHGZAVIGZGAVAGZAVBGZGVQVOVRV
      TVSWAAVAVAIZBABWBBPLDQRAVBVBIZCACWCCPLEQROAVHVISAVAVBSUHTNUNAVCUINNVEAJGJ
      VDJAVDUNUNIZGZJVCWDUNVCUNUNVCIBCUJLMTJWEUNUKLNTAULNNUMN $.
      $( [3-Sep-97] $)
  $}

  ${
    wwfh2.1 $e |- a C b $.
    wwfh2.2 $e |- c ' C a $.
    $( Foulis-Holland Theorem (weak). $)
    wwfh2 $p |- ( ( b ^ ( a v c ) ) == ( ( b ^ a ) v ( b ^ c ) ) )
               = 1 $=
      ( wo wa tb wt bicom wn wf con2 ran ax-r2 lan an4 ax-r1 wwcom3ii anass dff
      ledi oran df-a ax-r4 ax-a1 bctr ancom ax-r5 comcom2 an12 3tr1 an0 wwoml3
      ) BACFZGZBAGZBCGZFZHUSUPHIUPUSJUSUPBACUBUPUSKZGZAKZCBURKZGZGZGZLVAVBCGZVD
      GZVFVAVBUOGZVDGZVHVAVBBGZUOVCGZGZVJVAUPBKVBFZVCGZGZVMUTVOUPUSVOUSUQKZVCGZ
      KVOKUQURUCVRVOVQVNVCUQVNBAUDMNUEOMPVPBVNGZVLGVMBUOVNVCQVSVKVLVSBVBGVKBVBV
      BKZABAVTAUFZRDUGSBVBUHONOOVBBUOVCQOVIVGVDVIVBVTCFZGVGUOWBVBAVTCWAUIPVBCCK
      AEUJSONOVBCVDTOVFVBLGLVELVBBCVCGGZURVCGZVELWDWCBCVCTRCBVCUKURUAULPVBUMOOU
      NO $.
      $( [3-Sep-97] $)

  $}

  ${
    wwfh3.1 $e |- b ' C a $.
    wwfh3.2 $e |- c ' C a $.
    $( Foulis-Holland Theorem (weak). $)
    wwfh3 $p |- ( ( a v ( b ^ c ) ) == ( ( a v b ) ^ ( a v c ) ) )
               = 1 $=
      ( wa wo tb wn wt conb oran df-a con2 lan ax-r4 ax-r2 2or 2bi comcom2
      wwfh1 ) ABCFZGZABGZACGZFZHZAIZBIZCIZGZFZUHUIFZUHUJFZGZHZJUGUCIZUFIZHUPUCU
      FKUQULURUOUCULUCUHUBIZFZIULIAUBLUTULUSUKUHUBUKBCMNOPQNUFUOUFUDIZUEIZGZIUO
      IUDUEMVCUOVAUMVBUNUDUMABLNUEUNACLNRPQNSQUHUIUJUIADTUJAETUAQ $.
      $( [3-Sep-97] $)
  $}

  ${
    wwfh4.1 $e |- a ' C b $.
    wwfh4.2 $e |- c C a $.
    $( Foulis-Holland Theorem (weak). $)
    wwfh4 $p |- ( ( b v ( a ^ c ) ) == ( ( b v a ) ^ ( b v c ) ) )
               = 1 $=
      ( wa wo tb wn wt conb oran df-a con2 lan ax-r4 ax-r2 2or 2bi comcom2 bctr
      ax-a1 ax-r1 wwfh2 ) BACFZGZBAGZBCGZFZHZBIZAIZCIZGZFZUKULFZUKUMFZGZHZJUJUF
      IZUIIZHUSUFUIKUTUOVAURUFUOUFUKUEIZFZIUOIBUELVCUOVBUNUKUEUNACMNOPQNUIURUIU
      GIZUHIZGZIURIUGUHMVFURVDUPVEUQUGUPBALNUHUQBCLNRPQNSQULUKUMULBDTUMIZAVGCAC
      VGCUBUCEUATUDQ $.
      $( [3-Sep-97] $)
  $}

  $( Weak OM-like absorption law for ortholattices. $)
  womao $p |- ( a ' ^ ( a v ( a ' ^ ( a v b ) ) ) ) =
                                ( a ' ^ ( a v b ) ) $=
    ( wn wo wa lea lear leo lel2or letr ler2an leor lebi ) ACZANABDZEZDZEZPRNON
    QFRQONQGAOPABHNOGIJKPNQNOFPALKM $.
    $( [8-Nov-98] $)

  $( Weak OM-like absorption law for ortholattices. $)
  womaon $p |- ( a ^ ( a ' v ( a ^ ( a ' v b ) ) ) ) =
                                 ( a ^ ( a ' v b ) ) $=
    ( wn wo wa lea lear leo lel2or letr ler2an leor lebi ) AACZANBDZEZDZEZPRAOA
    QFRQOAQGNOPNBHAOGIJKPAQAOFPNLKM $.
    $( [8-Nov-98] $)

  $( Weak OM-like absorption law for ortholattices. $)
  womaa $p |- ( a ' v ( a ^ ( a ' v ( a ^ b ) ) ) ) =
                                ( a ' v ( a ^ b ) ) $=
    ( wn wa wo leo lear lel2or lea leor ler2an letr lebi ) ACZANABDZEZDZEZPNPQN
    OFAPGHNRONQFOQROAPABIONJKQNJLHM $.
    $( [8-Nov-98] $)

  $( Weak OM-like absorption law for ortholattices. $)
  womaan $p |- ( a v ( a ' ^ ( a v ( a ' ^ b ) ) ) ) =
                                 ( a v ( a ' ^ b ) ) $=
    ( wn wa wo leo lear lel2or lea leor ler2an letr lebi ) AACZANBDZEZDZEZPAPQA
    OFNPGHAROAQFOQRONPNBIOAJKQAJLHM $.
    $( [8-Nov-98] $)

  $( Absorption law for ortholattices. $)
  anorabs2 $p |- ( a ^ ( b v ( a ^ ( b v c ) ) ) ) =
                                 ( a ^ ( b v c ) ) $=
    ( wo wa lea lear leo lel2or letr ler2an leor lebi ) ABABCDZEZDZEZOQANAPFQPN
    APGBNOBCHANGIJKOAPANFOBLKM $.
    $( [13-Nov-98] $)

  $( Absorption law for ortholattices. $)
  anorabs $p |- ( a ' ^ ( b v ( a ' ^ ( a v b ) ) ) ) =
                                  ( a ' ^ ( a v b ) ) $=
    ( wn wo wa anorabs2 ax-a2 lan lor 3tr1 ) ACZBKBADZEZDZEMKBKABDZEZDZEPKBAFQN
    KPMBOLKABGHZIHRJ $.
    $( [8-Nov-98] $)

  $( Axiom KA2a in Pavicic and Megill, 1998 $)
  ska2a $p |- ( ( ( a v c ) == ( b v c ) ) ==
              ( ( c v a ) == ( c v b ) ) ) = 1 $=
    ( wo tb ax-a2 2bi bi1 ) ACDZBCDZECADZCBDZEIKJLACFBCFGH $.
    $( [9-Nov-98] $)

  $( Axiom KA2b in Pavicic and Megill, 1998 $)
  ska2b $p |- ( ( ( a v c ) == ( b v c ) ) ==
              ( ( a ' ^ c ' ) ' == ( b ' ^ c ' ) ' ) ) = 1 $=
    ( wo tb wn wa oran 2bi bi1 ) ACDZBCDZEAFCFZGFZBFMGFZEKNLOACHBCHIJ $.
    $( [9-Nov-98] $)

  $( Lemma for KA4 soundness (OR version) - uses OL only. $)
  ka4lemo $p |- ( ( a v b ) v ( ( a v c ) == ( b v c ) ) ) = 1 $=
    ( wo tb wt le1 wn df-t wa ax-a2 lbtr lelor leror oran con2 ax-r1 ax-r2 bltr
    2an leo ax-a3 ledio le3tr1 dfb anor1 anandir ax-r5 ax-r4 3tr1 lor letr lebi
    ) ABDZACDZBCDZEZDZFURGFUNCDZUSHZDZURUSIVAUNABJZCDZDZUTDZURUSVDUTCVCUNCCVBDZ
    VCCVBUACVBKLMNVEUNVCUTDZDURUNVCUTUBVGUQUNVGUOUPJZUTDZUQVCVHUTVFCADZCBDZJVCV
    HCABUCVBCKUOVJUPVKACKBCKTUDNUQVIUQVHUOHZUPHZJZDVIUOUPUEVNUTVHVNAHZCHZJZBHZV
    PJZJZUTVLVQVMVSUOVQACOPUPVSBCOPTVOVRJZVPJZWAHZCDZHVTUTWACUFWBVTVOVRVPUGQUSW
    DUNWCCABOUHUIUJRUKRQLMSULSUM $.
    $( [25-Oct-97] $)

  $( Lemma for KA4 soundness (AND version) - uses OL only. $)
  ka4lem $p |- ( ( a ^ b ) ' v ( ( a ^ c ) == ( b ^ c ) ) ) = 1 $=
    ( wa wn tb wo wt df-a con2 2bi conb ax-r1 ax-r2 2or ka4lemo ) ABDZEZACDZBCD
    ZFZGAEZBEZGZUBCEZGZUCUEGZFZGHRUDUAUHQUDABIJUAUFEZUGEZFZUHSUITUJACIBCIKUHUKU
    FUGLMNOUBUCUEPN $.
    $( [25-Oct-97] $)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
 Kalmbach axioms (soundness proofs) that are true in all ortholattices
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    sklem.1 $e |- a =< b $.
    $( Soundness lemma. $)
    sklem $p |- ( a ' v b ) = 1 $=
      ( wn wo wt or12 df-t ax-r5 ax-r1 ax-a3 ax-a2 3tr2 ax-r2 df-le2 lor or1 )
      ADZABEZEZBFEZRBEZFTAUBEZUARABGAREZBEZFBEZUCUAUFUEFUDBAHIJARBKFBLMNSBRABCO
      PBQM $.
      $( [30-Aug-97] $)
  $}

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA1. $)
  ska1 $p |- ( a == a ) = 1 $=
    ( biid ) AB $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA3. $)
  ska3 $p |- ( ( a == b ) ' v ( a ' == b ' ) ) = 1 $=
    ( wn tb wo wt conb ax-r4 lor ax-a2 df-t 3tr1 ) ACBCDZABDZCZEMMCZEOMEFOPMNMA
    BGHIOMJMKL $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA5. $)
  ska5 $p |- ( ( a ^ b ) == ( b ^ a ) ) = 1 $=
    ( wa ancom bi1 ) ABCBACABDE $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA6. $)
  ska6 $p |- ( ( a ^ ( b ^ c ) ) == ( ( a ^ b ) ^ c ) ) = 1 $=
    ( wa anass ax-r1 bi1 ) ABCDDZABDCDZIHABCEFG $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA7. $)
  ska7 $p |- ( ( a ^ ( a v b ) ) == a ) = 1 $=
    ( wo wa anabs bi1 ) AABCDAABEF $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA8. $)
  ska8 $p |- ( ( a ' ^ a ) == ( ( a ' ^ a ) ^ b ) ) = 1 $=
    ( wn wa wf an0 ax-r1 ancom ax-r2 dff ran 3tr2 bi1 ) ACZADZOBDZEEBDZOPEBEDZQ
    REBFGBEHIEANDOAJANHIZEOBSKLM $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA9. $)
  ska9 $p |- ( a == a ' ' ) = 1 $=
    ( wn ax-a1 bi1 ) AABBACD $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom
     KA10. $)
  ska10 $p |- ( ( a v b ) ' == ( a ' ^ b ' ) ) = 1 $=
    ( wo wn wa oran con2 bi1 ) ABCZDADBDEZIJABFGH $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom
     KA11. $)
  ska11 $p |- ( ( a v ( a ' ^ ( a v b ) ) ) == ( a v b ) ) = 1 $=
    ( woml ) ABC $.
    $( [2-Sep-97] $)
      $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom
     KA12. $)
  ska12 $p |- ( ( a == b ) == ( b == a ) ) = 1 $=
    ( tb bicom bi1 ) ABCBACABDE $.
    $( [30-Aug-97] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom
     KA13. $)
  ska13 $p |- ( ( a == b ) ' v ( a ' v b ) ) = 1 $=
    ( tb wn wo wa ledio lea letr ancom bltr leror dfb ax-a2 le3tr1 sklem ) ABCZ
    ADZBEZABFZRBDZFEZBREZQSUBTREZUCUBUDTUAEZFUDTRUAGUDUEHITBRTBAFBABJBAHKLIABMR
    BNOP $.
    $( [30-Aug-97] $)

  ${
    skr0.1 $e |- a = 1 $.
    skr0.2 $e |- ( a ' v b ) = 1 $.
    $( Soundness theorem for Kalmbach's quantum propositional logic axiom
       KR0. $)
    skr0 $p |- b = 1 $=
      ( wn wo wt wf ax-a2 or0 ax-r1 ax-r4 df-f ax-r2 ax-r5 3tr1 ) BAEZBFZGBHFZH
      BFBRBHISBBJKQHBQGEZHAGCLHTMKNOPDN $.
      $( [30-Aug-97] $)
  $}

  $( Lemma for 2-variable WOML proof. $)
  wlem1 $p |- ( ( a == b ) ' v ( ( a ->1 b ) ^ ( b ->1 a ) ) ) = 1 $=
    ( tb wn wi1 wa wo wt le1 df-t ax-a2 ax-r2 dfb ledio df-i1 ancom ax-r5 ax-r1
    2an bltr lbtr lelor lebi ) ABCZDZABEZBAEZFZGZHUIIHUEUDGZUIHUDUEGUJUDJUDUEKL
    UDUHUEUDABFZADZBDZFGZUHABMUNUKULGZUKUMGZFZUHUKULUMNUHUQUFUOUGUPUFULUKGUOABO
    ULUKKLUGUMBAFZGZUPBAOUSURUMGUPUMURKURUKUMBAPQLLSRUATUBTUC $.
    $( [11-Nov-98] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom
     KA15. $)
  ska15 $p |- ( ( a ->3 b ) ' v ( a ' v b ) ) = 1 $=
    ( wi3 wn wo wa df-i3 ax-a2 lea lear le2or bltr oridm lbtr sklem ) ABCZADZBE
    ZPQBFZQBDZFZEZARFZEZRABGUDRRERUBRUCRUBUASERSUAHUAQSBQTIQBJKLARJKRMNLO $.
    $( [2-Nov-97] $)

  ${
    skmp3.1 $e |- a = 1 $.
    skmp3.2 $e |- ( a ->3 b ) = 1 $.
    $( Soundness proof for KMP3. $)
    skmp3 $p |- b = 1 $=
      ( wi3 wn wo ska15 skr0 ) ABCABEAFBGDABHII $.
      $( [2-Nov-97] $)
  $}

  ${
    lei3.1 $e |- a =< b $.
    $( L.e. to Kalmbach implication. $)
    lei3 $p |- ( a ->3 b ) = 1 $=
      ( wn wa wo wi3 wt ax-a3 ax-a2 ancom lecon df2le2 ax-r2 sklem lan an1 3tr1
      2or anor2 con2 lor df-i3 df-t ) ADZBEZUEBDZEZFAUEBFZEZFZUFUFDZFZABGHUKUFU
      HUJFZFUMUFUHUJIUNULUFUGAFAUGFZUNULUGAJUHUGUJAUHUGUEEUGUEUGKUGUEABCLMNUJAH
      EAUIHAABCOPAQNSUFUOABTUARUBNABUCUFUDR $.
      $( [3-Nov-97] $)
  $}

  $( E2 - OL theorem proved by EQP $)
  mccune2 $p |- ( a v ( ( a ' ^ ( ( a v b ' ) ^ ( a v b ) ) ) v (
                a ' ^ ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) ) ) = 1 $=
    ( wn wo wa wt ax-a3 ax-r1 anor2 lear lel2or id bile ler2an lebi anor3 oran3
    lea 2or ax-r2 ax-a2 lor df-t 3tr1 ) AABCZDZABDZEZCZAUIDZCZDZDZUJUKDZAACZUHE
    ZUOUOBEZUOUEEZDZEZDZDFUNUMAUIUKGHVAULAVAUKUIDULUPUKUTUIAUHIUTUSUIUTUSUOUSJU
    SUOUSUQUOURUOBRUOUERKUSUSUSLMNOUSUFCZUGCZDUIUQVBURVCABIABPSUFUGQTTSUKUIUATU
    BUJUCUD $.
    $( [14-Nov-98] $)

  $( E3 - OL theorem proved by EQP $)
  mccune3 $p |- ( ( ( ( a ' ^ b ) v ( a ' ^ b ' ) ) v ( a ^ ( a '
                v b ) ) ) ' v ( a ' v b ) ) = 1 $=
    ( wn wa wo wi3 wt df-i3 ax-r1 ax-r4 ax-r5 ska15 ax-r2 ) ACZBDNBCDEANBEZDEZC
    ZOEABFZCZOEGQSOPRRPABHIJKABLM $.
    $( [14-Nov-98] $)

  $( Equivalence for Kalmbach implication. $)
  i3n1 $p |- ( a ' ->3 b ' ) = ( ( ( a ^ b ' ) v ( a ^ b ) ) v
                ( a ' ^ ( a v b ' ) ) ) $=
    ( wn wi3 wa wo df-i3 ax-a1 ran 2an 2or ax-r5 lan ax-r1 ax-r2 ) ACZBCZDPCZQE
    ZRQCZEZFZPRQFZEZFZAQEZABEZFZPAQFZEZFZPQGUKUEUHUBUJUDUFSUGUAARQAHZIARBTULBHJ
    KUIUCPARQULLMKNO $.
    $( [9-Nov-97] $)

  $( Equivalence for Kalmbach implication. $)
  ni31 $p |- ( a ->3 b ) ' = ( ( ( a v b ' ) ^ ( a v b ) ) ^
                ( a ' v ( a ^ b ' ) ) ) $=
    ( wi3 wn wo wa df-i3 oran anor2 con2 ax-r1 2an ax-r4 ax-r2 df-a anor1 lor )
    ABCZABDZEZABEZFZADZASFZEZFZRUCBFZUCSFZEZAUCBEZFZEZUFDZABGULUIDZUKDZFZDUMUIU
    KHUPUFUNUBUOUEUIUBUIUGDZUHDZFZDUBDUGUHHUSUBUQTURUAUGTABIJUAURABHKLMNJUKUEUK
    UCUJDZEZDUEDAUJOVAUEUTUDUCUDUTABPKQMNJLMNNJ $.
    $( [9-Nov-97] $)

  $( Identity for Kalmbach implication. $)
  i3id $p |- ( a ->3 a ) = 1 $=
    ( wn wa wo wi3 wt wf ancom dff ax-r1 ax-r2 anidm 2or ax-a2 or0 df-t lan an1
    df-i3 3tr1 ) ABZACZUAUACZDZAUAADZCZDZAUADZAAEFUGUEUHUDUAUFAUDUAGDZUAUDGUADU
    IUBGUCUAUBAUACZGUAAHGUJAIJKUALMGUANKUAOKUFAFCAUEFAUEUHFUAANZFUHAPZJKQARKMUK
    KAASULT $.
    $( [2-Nov-97] $)

  ${
    li3.1 $e |- a = b $.
    $( Introduce Kalmbach implication to the left. $)
    li3 $p |- ( c ->3 a ) = ( c ->3 b ) $=
      ( wn wa wo wi3 lan ax-r4 2or lor df-i3 3tr1 ) CEZAFZOAEZFZGZCOAGZFZGOBFZO
      BEZFZGZCOBGZFZGCAHCBHSUEUAUGPUBRUDABODIQUCOABDJIKTUFCABODLIKCAMCBMN $.
      $( [2-Nov-97] $)
  $}

  ${
    ri3.1 $e |- a = b $.
    $( Introduce Kalmbach implication to the right. $)
    ri3 $p |- ( a ->3 c ) = ( b ->3 c ) $=
      ( wn wa wo wi3 ax-r4 ran 2or ax-r5 2an df-i3 3tr1 ) AEZCFZPCEZFZGZAPCGZFZ
      GBEZCFZUCRFZGZBUCCGZFZGACHBCHTUFUBUHQUDSUEPUCCABDIZJPUCRUIJKABUAUGDPUCCUI
      LMKACNBCNO $.
      $( [2-Nov-97] $)
  $}

  ${
    2i3.1 $e |- a = b $.
    2i3.2 $e |- c = d $.
    $( Join both sides with Kalmbach implication. $)
    2i3 $p |- ( a ->3 c ) = ( b ->3 d ) $=
      ( wi3 li3 ri3 ax-r2 ) ACGADGBDGCDAFHABDEIJ $.
      $( [2-Nov-97] $)
  $}

  ${
    ud1lem0a.1 $e |- a = b $.
    $( Introduce ` ->1 ` to the left. $)
    ud1lem0a $p |- ( c ->1 a ) = ( c ->1 b ) $=
      ( wn wa wo wi1 lan lor df-i1 3tr1 ) CEZCAFZGMCBFZGCAHCBHNOMABCDIJCAKCBKL
      $.
      $( [23-Nov-97] $)

    $( Introduce ` ->1 ` to the right. $)
    ud1lem0b $p |- ( a ->1 c ) = ( b ->1 c ) $=
      ( wn wa wo wi1 ax-r4 ran 2or df-i1 3tr1 ) AEZACFZGBEZBCFZGACHBCHNPOQABDIA
      BCDJKACLBCLM $.
      $( [23-Nov-97] $)
  $}

  ${
    ud1lem0ab.1 $e |- a = b $.
    ud1lem0ab.2 $e |- c = d $.
    $( Join both sides of hypotheses with ` ->1 ` . $)
    ud1lem0ab $p |- ( a ->1 c ) = ( b ->1 d ) $=
      ( wi1 ud1lem0b ud1lem0a ax-r2 ) ACGBCGBDGABCEHCDBFIJ $.
      $( [19-Dec-98] $)
  $}

  ${
    ud2lem0a.1 $e |- a = b $.
    $( Introduce ` ->2 ` to the left. $)
    ud2lem0a $p |- ( c ->2 a ) = ( c ->2 b ) $=
      ( wn wa wo wi2 ax-r4 lan 2or df-i2 3tr1 ) ACEZAEZFZGBNBEZFZGCAHCBHABPRDOQ
      NABDIJKCALCBLM $.
      $( [23-Nov-97] $)

    $( Introduce ` ->2 ` to the right. $)
    ud2lem0b $p |- ( a ->2 c ) = ( b ->2 c ) $=
      ( wn wa wo wi2 ax-r4 ran lor df-i2 3tr1 ) CAEZCEZFZGCBEZOFZGACHBCHPRCNQOA
      BDIJKACLBCLM $.
      $( [23-Nov-97] $)
  $}

  ${
    ud3lem0a.1 $e |- a = b $.
    $( Introduce Kalmbach implication to the left. $)
    ud3lem0a $p |- ( c ->3 a ) = ( c ->3 b ) $=
      ( li3 ) ABCDE $.
      $( [23-Nov-97] $)

    $( Introduce Kalmbach implication to the right. $)
    ud3lem0b $p |- ( a ->3 c ) = ( b ->3 c ) $=
      ( ri3 ) ABCDE $.
      $( [23-Nov-97] $)
  $}

  ${
    ud4lem0a.1 $e |- a = b $.
    $( Introduce ` ->4 ` to the left. $)
    ud4lem0a $p |- ( c ->4 a ) = ( c ->4 b ) $=
      ( wa wn wo wi4 lan 2or lor ax-r4 2an df-i4 3tr1 ) CAEZCFZAEZGZQAGZAFZEZGC
      BEZQBEZGZQBGZBFZEZGCAHCBHSUEUBUHPUCRUDABCDIABQDIJTUFUAUGABQDKABDLMJCANCBN
      O $.
      $( [23-Nov-97] $)

    $( Introduce ` ->4 ` to the right. $)
    ud4lem0b $p |- ( a ->4 c ) = ( b ->4 c ) $=
      ( wa wn wo wi4 ran ax-r4 2or ax-r5 df-i4 3tr1 ) ACEZAFZCEZGZPCGZCFZEZGBCE
      ZBFZCEZGZUCCGZTEZGACHBCHRUEUAUGOUBQUDABCDIPUCCABDJZIKSUFTPUCCUHLIKACMBCMN
      $.
      $( [23-Nov-97] $)
  $}

  ${
    ud5lem0a.1 $e |- a = b $.
    $( Introduce ` ->5 ` to the left. $)
    ud5lem0a $p |- ( c ->5 a ) = ( c ->5 b ) $=
      ( wa wn wo wi5 lan 2or ax-r4 df-i5 3tr1 ) CAEZCFZAEZGZOAFZEZGCBEZOBEZGZOB
      FZEZGCAHCBHQUBSUDNTPUAABCDIABODIJRUCOABDKIJCALCBLM $.
      $( [23-Nov-97] $)

    $( Introduce ` ->5 ` to the right. $)
    ud5lem0b $p |- ( a ->5 c ) = ( b ->5 c ) $=
      ( wa wn wo wi5 ran ax-r4 2or df-i5 3tr1 ) ACEZAFZCEZGZOCFZEZGBCEZBFZCEZGZ
      UAREZGACHBCHQUCSUDNTPUBABCDIOUACABDJZIKOUARUEIKACLBCLM $.
      $( [23-Nov-97] $)
  $}

  $( Correspondence between Sasaki and Dishkant conditionals. $)
  i1i2 $p |- ( a ->1 b ) = ( b ' ->2 a ' ) $=
    ( wn wa wo wi1 wi2 ax-a1 2an ancom ax-r2 lor df-i1 df-i2 3tr1 ) ACZABDZEPBC
    ZCZPCZDZEABFRPGQUAPQTSDUAATBSAHBHITSJKLABMRPNO $.
    $( [25-Nov-98] $)

  $( Correspondence between Sasaki and Dishkant conditionals. $)
  i2i1 $p |- ( a ->2 b ) = ( b ' ->1 a ' ) $=
    ( wn wi2 wi1 ax-a1 ud2lem0b ud2lem0a i1i2 3tr1 ) ABCZCZDACZCZLDABDKMEANLAFG
    BLABFHKMIJ $.
    $( [7-Feb-99] $)

  $( Correspondence between Sasaki and Dishkant conditionals. $)
  i1i2con1 $p |- ( a ->1 b ' ) = ( b ->2 a ' ) $=
    ( wn wi1 wi2 i1i2 ax-a1 ax-r1 ud2lem0b ax-r2 ) ABCZDKCZACZEBMEAKFLBMBLBGHIJ
    $.
    $( [28-Feb-99] $)

  $( Correspondence between Sasaki and Dishkant conditionals. $)
  i1i2con2 $p |- ( a ' ->1 b ) = ( b ' ->2 a ) $=
    ( wn wi1 wi2 i1i2 ax-a1 ax-r1 ud2lem0a ax-r2 ) ACZBDBCZKCZELAEKBFMALAMAGHIJ
    $.
    $( [28-Feb-99] $)

  $( Correspondence between Kalmbach and non-tollens conditionals. $)
  i3i4 $p |- ( a ->3 b ) = ( b ' ->4 a ' ) $=
    ( wn wa wi3 wi4 ax-a2 ancom ax-a1 ran ax-r2 2or ax-r5 2an df-i3 df-i4 3tr1
    wo ) ACZBDZSBCZDZRZASBRZDZRUASDZUACZSDZRZUGSRZSCZDZRABEUASFUCUIUEULUCUBTRUI
    TUBGUBUFTUHSUAHTBSDUHSBHBUGSBIZJKLKUEUDADULAUDHUDUJAUKUDBSRUJSBGBUGSUMMKAIN
    KLABOUASPQ $.
    $( [7-Feb-99] $)

  $( Correspondence between Kalmbach and non-tollens conditionals. $)
  i4i3 $p |- ( a ->4 b ) = ( b ' ->3 a ' ) $=
    ( wi4 wn wi3 ax-a1 ud4lem0a ud4lem0b ax-r2 i3i4 ax-r1 ) ABCZADZDZBDZDZCZOME
    ZLAPCQBPABFGANPAFHIRQOMJKI $.
    $( [7-Feb-99] $)

  $( Converse of ` ->5 ` . $)
  i5con $p |- ( a ->5 b ) = ( b ' ->5 a ' ) $=
    ( wa wn wo wi5 ancom ax-a2 ax-a1 ran ax-r2 2an 2or ax-a3 3tr1 df-i5 ) ABCZA
    DZBCZEZRBDZCZEZUARCZUADZRCZEUERDZCZEZABFUARFUBTEUDUFUHEZEUCUIUBUDTUJRUAGTSQ
    EUJQSHSUFQUHSBRCUFRBGBUERBIZJKQBACUHABGBUEAUGUKAILKMKMTUBHUDUFUHNOABPUARPO
    $.
    $( [7-Feb-99] $)

  $( Antecedent of 0 on Sasaki conditional. $)
  0i1 $p |- ( 0 ->1 a ) = 1 $=
    ( wf wi1 wn wa wo wt df-i1 ax-a2 df-f con2 lor ax-r2 or1 3tr ) BACBDZBAEZFZ
    QGFZGBAHRQPFSPQIPGQBGJKLMQNO $.
    $( [24-Dec-98] $)

  $( Antecedent of 1 on Sasaki conditional. $)
  1i1 $p |- ( 1 ->1 a ) = a $=
    ( wt wi1 wn wa wo df-i1 wf df-f ax-r1 ancom an1 ax-r2 2or ax-a2 or0 ) BACBD
    ZBAEZFZABAGSHAFZAQHRAHQIJRABEABAKALMNTAHFAHAOAPMMM $.
    $( [24-Dec-98] $)

  $( Identity law for Sasaki conditional. $)
  i1id $p |- ( a ->1 a ) = 1 $=
    ( wi1 wn wa wo wt df-i1 ax-a2 anidm lor df-t 3tr1 ax-r2 ) AABACZAADZEZFAAGN
    AEANEPFNAHOANAIJAKLM $.
    $( [25-Dec-98] $)

  $( Identity law for Dishkant conditional. $)
  i2id $p |- ( a ->2 a ) = 1 $=
    ( wi2 wn wa wo wt df-i2 anidm lor df-t ax-r1 ax-r2 ) AABAACZMDZEZFAAGOAMEZF
    NMAMHIFPAJKLL $.
    $( [26-Jun-03] $)

  $( Lemma for unified disjunction. $)
  ud1lem0c $p |- ( a ->1 b ) ' = ( a ^ ( a ' v b ' ) ) $=
    ( wi1 wn wo wa df-i1 df-a ax-r1 lor ax-r4 ax-r2 con3 con2 ) ABCZAADZBDEZFZO
    PABFZEZRDABGTRRTDZRPQDZEZDUAAQHUCTUBSPSUBABHIJKLIMLN $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud2lem0c $p |- ( a ->2 b ) ' = ( b ' ^ ( a v b ) ) $=
    ( wi2 wn wo wa df-i2 oran ax-r1 lan ax-r4 ax-r2 con2 ) ABCZBDZABEZFZNBADOFZ
    EZQDZABGSORDZFZDTBRHUBQUAPOPUAABHIJKLLM $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem0c $p |- ( a ->3 b ) ' = ( ( ( a v b ' ) ^ ( a v b ) ) ^
                ( a ' v ( a ^ b ' ) ) ) $=
    ( ni31 ) ABC $.
    $( [22-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem0c $p |- ( a ->4 b ) ' = ( ( ( a ' v b ' ) ^ ( a v b ' ) ) ^
                ( ( a ^ b ' ) v b ) ) $=
    ( wi4 wn wo wa df-i4 oran df-a con2 anor2 2an ax-r4 ax-r2 anor1 ax-r1 ax-r5
    ) ABCZADZBDZEZATEZFZATFZBEZFZRABFZSBFZEZSBEZTFZEZUFDZABGULUIDZUKDZFZDUMUIUK
    HUPUFUNUCUOUEUIUCUIUGDZUHDZFZDUCDUGUHHUSUCUQUAURUBUGUAABIJUHUBABKJLMNJUKUEU
    KUJDZBEZDUEDUJBOVAUEUTUDBUDUTABOPQMNJLMNNJ $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem0c $p |- ( a ->5 b ) ' = ( ( ( a ' v b ' ) ^ ( a v b ' ) ) ^
                ( a v b ) ) $=
    ( wi5 wn wo wa df-i5 oran df-a con2 anor2 2an ax-r4 ax-r2 ax-r1 ) ABCZADZBD
    ZEZAREZFZABEZFZPABFZQBFZEZQRFZEZUCDZABGUHUFDZUGDZFZDUIUFUGHULUCUJUAUKUBUFUA
    UFUDDZUEDZFZDUADUDUEHUOUAUMSUNTUDSABIJUETABKJLMNJUBUKABHOLMNNJ $.
    $( [23-Nov-97] $)

  $( Pavicic binary logic ax-a1 analog. $)
  bina1 $p |- ( a ->3 a ' ' ) = 1 $=
    ( wi3 wn i3id ax-a1 li3 bi1 wwbmp ) AABZAACCZBZADIKAJAAEFGH $.
    $( [5-Nov-97] $)

  $( Pavicic binary logic ax-a2 analog. $)
  bina2 $p |- ( a ' ' ->3 a ) = 1 $=
    ( wi3 wn i3id ax-a1 ri3 bi1 wwbmp ) AABZACCZABZADIKAJAAEFGH $.
    $( [5-Nov-97] $)

  $( Pavicic binary logic ax-a3 analog. $)
  bina3 $p |- ( a ->3 ( a v b ) ) = 1 $=
    ( wo leo lei3 ) AABCABDE $.
    $( [5-Nov-97] $)

  $( Pavicic binary logic ax-a4 analog. $)
  bina4 $p |- ( b ->3 ( a v b ) ) = 1 $=
    ( wo leo ax-a2 lbtr lei3 ) BABCZBBACHBADBAEFG $.
    $( [5-Nov-97] $)

  $( Pavicic binary logic ax-a5 analog. $)
  bina5 $p |- ( b ->3 ( a v a ' ) ) = 1 $=
    ( wn wo wt le1 df-t lbtr lei3 ) BAACDZBEJBFAGHI $.
    $( [5-Nov-97] $)

  ${
    wql1lem.1 $e |- ( a ->1 b ) = 1 $.
    $( Classical implication inferred from Sakaki implication. $)
    wql1lem $p |- ( a ' v b ) = 1 $=
      ( wn wo wt le1 wi1 ax-r1 wa df-i1 lear lelor bltr lebi ) ADZBEZFQGFABHZQR
      FCIRPABJZEQABKSBPABLMNNO $.
      $( [5-Dec-98] $)
  $}

  ${
    wql2lem.1 $e |- ( a ->2 b ) = 1 $.
    $( Classical implication inferred from Dishkant implication. $)
    wql2lem $p |- ( a ' v b ) = 1 $=
      ( wn wo wt le1 wa wi2 df-i2 ax-a2 3tr2 lea leror bltr lebi ) ADZBEZFRGFQB
      DZHZBEZRABIBTEFUAABJCBTKLTQBQSMNOP $.
      $( [6-Dec-98] $)
  $}

  ${
    wql2lem2.1 $e |- ( ( a v c ) ->2 ( b v c ) ) = 1 $.
    $( Lemma for ` ->2 ` WQL axiom. $)
    wql2lem2 $p |- ( ( a v ( b v c ) ) ' v ( b v c ) ) = 1 $=
      ( wo wn wi2 wt df-i2 anor3 ax-a3 ax-r1 orordir ax-r2 ax-r4 lor ax-a2 3tr
      wa ) ABCEZEZFZTEZACEZTGZHUEUCUETUDFTFSZETUBEUCUDTIUFUBTUFUDTEZFZUBUDTJUBU
      HUAUGUAABECEZUGUIUAABCKLABCMNOLNPTUBQRLDN $.
      $( [6-Dec-98] $)
  $}

  ${
    wql2lem3.1 $e |- ( a ->2 b ) = 1 $.
    $( Lemma for ` ->2 ` WQL axiom. $)
    wql2lem3 $p |- ( ( a ^ b ' ) ->2 a ' ) = 1 $=
      ( wn wa wi2 wo wt df-i2 oran2 ax-r1 ran ancom lor wql2lem omlem2 skr0 3tr
      ax-r2 ) ABDEZADZFUATDZUADZEZGUAUCUABGZEZGZHTUAIUDUFUAUDUEUCEUFUBUEUCUEUBA
      BJKLUEUCMSNUEUGABCOUABPQR $.
      $( [6-Dec-98] $)
  $}

  ${
    wql2lem4.1 $e |- ( ( ( a ^ b ' ) v ( a ^ b ) ) ->2
                     ( a ' v ( a ^ b ) ) ) = 1 $.
    wql2lem4.2 $e |- ( ( a ->1 b ) v ( a ^ b ' ) ) = 1 $.
    $( Lemma for ` ->2 ` WQL axiom. $)
    wql2lem4 $p |- ( a ->1 b ) = 1 $=
      ( wi1 wn wa wo wt df-i1 id ax-a2 ax-r5 ax-r1 3tr wql2lem2 skr0 ) ABEZAFZA
      BGZHZUAIABJZUAKABFGZUAHZUAUDUAUCHZRUCHZIUCUALUFUERUAUCUBMNDOUCSTCPQO $.
      $( [6-Dec-98] $)
  $}

  ${
    wql2lem5.1 $e |- ( a ->2 b ) = 1 $.
    $( Lemma for ` ->2 ` WQL axiom. $)
    wql2lem5 $p |- ( ( b ' ^ ( a v b ) ) ->2 a ' ) = 1 $=
      ( wn wo wa wi2 wt anor3 oran3 ud2lem0c ax-r5 ran ancom an1 3tr ax-r4 3tr2
      ax-r2 lor df-i2 df-t 3tr1 ) ADZBDABEFZDUDDZFZEUDUFEUEUDGHUGUFUDUGUEUDEZDU
      FUEUDIUHUDABGZDZUDEUIAFZDUHUDUIAJUJUEUDABKLUKAUKHAFAHFAUIHACMHANAOPQRQSTU
      EUDUAUDUBUC $.
      $( [6-Dec-98] $)
  $}


  ${
    wql1.1 $e |- ( a ->1 b ) = 1 $.
    wql1.2 $e |- ( ( a v c ) ->1 ( b v c ) ) = 1 $.
    wql1.3 $e |- c = b $.
    $( The 2nd hypothesis is the first ` ->1 ` WQL axiom.  We show it implies
       the WOM law. $)
    wql1 $p |- ( a ->2 b ) = 1 $=
      ( wi2 wn wa wo wt df-i2 anor3 lor ax-a2 wi1 oridm ax-r2 ud1lem0a ax-r1
      ud1lem0b 3tr2 wql1lem 3tr ) ABGBAHBHIZJBABJZHZJZKABLUEUGBABMNUHUGBJKBUGOU
      FBACJZBPZUIBCJZPZUFBPKULUJUKBUIUKBBJBCBBFNBQRSTUIUFBCBAFNUAEUBUCRUD $.
      $( [5-Dec-98] $)
  $}

  ${
    oaidlem1.1 $e |- ( a ^ b ) =< c $.
    $( Lemma for OA identity-like law. $)
    oaidlem1 $p |- ( a ' v ( b ->1 c ) ) = 1 $=
      ( wn wi1 wo wa df-i1 lor oran3 ax-r5 ax-a3 lear ler2an sklem 3tr2 ax-r2
      wt ) AEZBCFZGTBEZBCHZGZGZSUAUDTBCIJTUBGZUCGABHZEZUCGUESUFUHUCABKLTUBUCMUG
      UCUGBCABNDOPQR $.
      $( [22-Jan-99] $)
  $}


  ${
    womle2a.1 $e |- ( a ^ ( a ->2 b ) ) =<
                   ( ( a ->2 b ) ' v ( a ->1 b ) ) $.
    $( An equivalent to the WOM law. $)
    womle2a $p |- ( ( a ->2 b ) ' v ( a ->1 b ) ) = 1 $=
      ( wi2 wn wi1 wo wa wt or4 oridm df-i1 ax-r5 or32 3tr1 ax-r2 2or ax-a2 lor
      oran3 3tr2 le1 df-t leror bltr lebi ) ABDZEZABFZGZUJAUGHZEZGZIUHUHGZUIAEZ
      GZGUJUHUOGZGUJUMUHUHUIUOJUNUHUPUIUHKUPUOABHZGZUOGZUIUIUSUOABLZMUOUOGZURGU
      SUTUIVBUOURUOKMUOURUONVAOPQUQULUJUQUOUHGULUHUORAUGTPSUAUMIUMUBIUKULGUMUKU
      CUKUJULCUDUEUFP $.
      $( [24-Jan-99] $)
  $}

  ${
    womle2b.1 $e |- ( ( a ->2 b ) ' v ( a ->1 b ) ) = 1 $.
    $( An equivalent to the WOM law. $)
    womle2b $p |- ( a ^ ( a ->2 b ) ) =<
                   ( ( a ->2 b ) ' v ( a ->1 b ) ) $=
      ( wi2 wa wt wn wi1 wo le1 ax-r1 lbtr ) AABDZEZFMGABHIZNJOFCKL $.
      $( [24-Jan-99] $)
  $}

  ${
    womle3b.1 $e |- ( ( a ->1 b ) ' v ( a ->2 b ) ) = 1 $.
    $( Implied by the WOM law. $)
    womle3b $p |- ( a ^ ( a ->1 b ) ) =<
                   ( ( a ->1 b ) ' v ( a ->2 b ) ) $=
      ( wi1 wa wt wn wi2 wo le1 ax-r1 lbtr ) AABDZEZFMGABHIZNJOFCKL $.
      $( [27-Jan-99] $)
  $}

  ${
    womle.1 $e |- ( a ^ ( a ->1 b ) ) = ( a ^ ( a ->2 b ) ) $.
    $( An equality implying the WOM law. $)
    womle $p |- ( ( a ->2 b ) ' v ( a ->1 b ) ) = 1 $=
      ( wi2 wa wi1 wn wo ax-r1 lear bltr leor letr womle2a ) ABAABDZEZABFZOGZQH
      PAQEZQSPCIAQJKQRLMN $.
      $( [24-Jan-99] $)
  $}

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomb41 $p |- ( a ==4 b ) = ( b ==1 a ) $=
    ( wn wo wa wid4 wid1 ax-a2 ancom lor 2an df-id4 df-id1 3tr1 ) ACZBDZBCZABEZ
    DZEBODZQBAEZDZEABFBAGPTSUBOBHRUAQABIJKABLBAMN $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomb32 $p |- ( a ==3 b ) = ( b ==2 a ) $=
    ( wn wo wa wid3 wid2 ax-a2 ancom lor 2an df-id3 df-id2 3tr1 ) ACZBDZAOBCZEZ
    DZEBODZAQOEZDZEABFBAGPTSUBOBHRUAAOQIJKABLBAMN $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomcon0 $p |- ( a ==0 b ) = ( b ' ==0 a ' ) $=
    ( wn wo wa wid0 ax-a2 ax-a1 ax-r5 ax-r2 2an df-id0 3tr1 ) ACZBDZBCZADZEPCZN
    DZNCZPDZEABFPNFOSQUAOBNDSNBGBRNBHIJQAPDUAPAGATPAHIJKABLPNLM $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomcon1 $p |- ( a ==1 b ) = ( b ' ==2 a ' ) $=
    ( wn wo wa wid1 wid2 ax-a2 ax-a1 lor ax-r2 ancom 2an df-id1 df-id2 3tr1 ) A
    BCZDZACZABEZDZEQSCZDZSQCZUBEZDZEABFQSGRUCUAUFRQADUCAQHAUBQAIZJKTUESTBAEUEAB
    LBUDAUBBIUGMKJMABNQSOP $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomcon2 $p |- ( a ==2 b ) = ( b ' ==1 a ' ) $=
    ( wn wo wa wid2 wid1 ax-a2 ax-a1 lor ax-r2 ancom 2or 2an df-id2 df-id1 3tr1
    ) ABCZDZBACZREZDZERTCZDZRCZRTEZDZEABFRTGSUDUBUGSRADUDARHAUCRAIJKBUEUAUFBITR
    LMNABORTPQ $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomcon3 $p |- ( a ==3 b ) = ( b ' ==4 a ' ) $=
    ( wid2 wn wid1 wid3 wid4 nomcon2 nomb32 nomb41 3tr1 ) BACADZBDZEABFMLGBAHAB
    IMLJK $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomcon4 $p |- ( a ==4 b ) = ( b ' ==3 a ' ) $=
    ( wid1 wn wid2 wid4 wid3 nomcon1 nomb41 nomb32 3tr1 ) BACADZBDZEABFMLGBAHAB
    IMLJK $.
    $( [7-Feb-99] $)

  $( Lemma for "Non-Orthomodular Models..." paper. $)
  nomcon5 $p |- ( a == b ) = ( b ' == a ' ) $=
    ( tb wn bicom conb ax-r2 ) ABCBACBDADCABEBAFG $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom10 $p |- ( a ->0 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wn wa wo wi0 wi1 id df-i0 df-i1 3tr1 ) ACABDZEZMALFABGMHALIABJK $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom11 $p |- ( a ->1 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wn wa wo wi1 anass ax-r1 anidm ran ax-r2 lor df-i1 3tr1 ) ACZAABDZDZEOPEA
    PFABFQPOQAADZBDZPSQAABGHRABAIJKLAPMABMN $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom12 $p |- ( a ->2 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wa wn wo wi2 wi1 oran ax-r1 orabs ax-r2 con3 lor ax-a2 df-i2 df-i1 3tr1 )
    ABCZADZRDCZEZSREZARFABGUARSEUBTSRTATDZAREZAUDUCARHIABJKLMRSNKAROABPQ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom13 $p |- ( a ->3 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wn wa wo wi3 wi1 oran ax-r1 orabs ax-r2 con3 lor df-le2 ax-r5 womaa df-i3
    lea df-i1 3tr1 ) ACZABDZDZUAUBCDZEZAUAUBEZDZEZUFAUBFABGUHUAUGEUFUEUAUGUEUCU
    AEUAUDUAUCUDAUDCZAUBEZAUJUIAUBHIABJKLMUCUAUAUBRNKOABPKAUBQABST $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom14 $p |- ( a ->4 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wa wn wi4 wi1 ax-a2 anass ax-r1 anidm ran ax-r2 lor lear df-le2 3tr ax-r5
    wo leo lea lbtr lel2or lecon ler2an lelor lebi df-i4 df-i1 3tr1 ) AABCZCZAD
    ZUJCZRZULUJRZUJDZCZRZUOAUJEABFURUJUQRZUJULRZUOUNUJUQUNUMUKRUMUJRUJUKUMGUKUJ
    UMUKAACZBCZUJVBUKAABHIVAABAJKLMUMUJULUJNOPQUSUTUJUTUQUJULSUQUOUTUOUPTULUJGU
    AUBULUQUJULUOUPULUJSUJAABTUCUDUEUFUJULGPAUJUGABUHUI $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom15 $p |- ( a ->5 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wa wn wo wi5 wi1 anass ax-r1 anidm ran ax-r2 ax-r5 ax-a2 df-le2 3tr oran3
    lear lan anabs 2or df-i5 df-i1 3tr1 ) AABCZCZADZUECZEZUGUEDZCZEZUGUEEZAUEFA
    BGULUEUGEUMUIUEUKUGUIUEUHEUHUEEUEUFUEUHUFAACZBCZUEUOUFAABHIUNABAJKLMUEUHNUH
    UEUGUEROPUKUGUGBDZEZCZUGURUKUQUJUGABQSIUGUPTLUAUEUGNLAUEUBABUCUD $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom20 $p |- ( a ==0 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wn wa wo wid0 wi1 lea leor letr lelor ax-a3 ax-r1 oran3 ax-r5 lbtr df2le2
    ax-r2 df-id0 df-i1 3tr1 ) ACZABDZEZUCCZAEZDUDAUCFABGUDUFUDUBBCZAEZEZUFUCUHU
    BUCAUHABHAUGIJKUIUBUGEZAEZUFUKUIUBUGALMUJUEAABNORPQAUCSABTUA $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom21 $p |- ( a ==1 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wa wn wo wid1 wi1 ancom oran3 lor ax-r2 anidm ran ax-r1 anass 2an lea leo
    or12 letr lelor df2le2 3tr2 df-id1 df-i1 3tr1 ) AABCZDZEZADZAUGCZEZCZUJUGEZ
    AUGFABGUJABDZEZEZUNCUNUQCUMUNUQUNHUQUIUNULUQAUJUOEZEUIUJAUOSURUHAABIJKUGUKU
    JUGAACZBCZUKUTUGUSABALMNAABOKJPUNUQUGUPUJUGAUPABQAUORTUAUBUCAUGUDABUEUF $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom22 $p |- ( a ==2 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wa wn wid2 wi1 oran3 lor ax-r1 or12 ax-r2 ax-a2 lan anabs ax-r5 2an ancom
    wo lea leo letr lelor df2le2 3tr df-id2 df-i1 3tr1 ) AABCZDZRZUHADZUICZRZCZ
    UKUHRZAUHEABFUNUKABDZRZRZUOCUOURCUOUJURUMUOUJAUKUPRZRZURUTUJUSUIAABGZHIAUKU
    PJKUMULUHRUOUHULLULUKUHULUKUSCZUKVBULUSUIUKVAMIUKUPNKOKPURUOQUOURUHUQUKUHAU
    QABSAUPTUAUBUCUDAUHUEABUFUG $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom23 $p |- ( a ==3 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wn wa wo wid3 wi1 wt le1 df-t anabs ax-r1 oran3 lan ax-r2 lor lbtr df2le2
    df-id3 df-i1 3tr1 ) ACZABDZEZAUBUCCZDZEZDUDAUCFABGUDUGUDHUGUDIHAUBEUGAJUBUF
    AUBUBUBBCZEZDZUFUJUBUBUHKLUIUEUBABMNOPOQRAUCSABTUA $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom24 $p |- ( a ==4 ( a ^ b ) ) = ( a ->1 b ) $=
    ( wn wa wo wid4 wi1 leo leror oran3 anidm ran ax-r1 anass ax-r2 lbtr df2le2
    2or df-id4 df-i1 3tr1 ) ACZABDZEZUCCZAUCDZEZDUDAUCFABGUDUGUDUBBCZEZUCEUGUBU
    IUCUBUHHIUIUEUCUFABJUCAADZBDZUFUKUCUJABAKLMAABNORPQAUCSABTUA $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom25 $p |- ( a == ( a ^ b ) ) = ( a ->1 b ) $=
    ( wa wn wo tb wi1 anass ax-r1 anidm ran ax-r2 oran3 lan anabs 2or ax-a2 dfb
    df-i1 3tr1 ) AABCZCZADZUADZCZEZUCUAEZAUAFABGUFUAUCEUGUBUAUEUCUBAACZBCZUAUIU
    BAABHIUHABAJKLUEUCUCBDZEZCZUCULUEUKUDUCABMNIUCUJOLPUAUCQLAUARABST $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom30 $p |- ( ( a ^ b ) ==0 a ) = ( a ->1 b ) $=
    ( wa wid0 wi1 wn wo ancom df-id0 3tr1 nom20 ax-r2 ) ABCZADZAMDZABEMFAGZAFMG
    ZCQPCNOPQHMAIAMIJABKL $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom31 $p |- ( ( a ^ b ) ==1 a ) = ( a ->1 b ) $=
    ( wa wid1 wid4 wi1 nomb41 ax-r1 nom24 ax-r2 ) ABCZADZAKEZABFMLAKGHABIJ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom32 $p |- ( ( a ^ b ) ==2 a ) = ( a ->1 b ) $=
    ( wa wid2 wid3 wi1 nomb32 ax-r1 nom23 ax-r2 ) ABCZADZAKEZABFMLAKGHABIJ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom33 $p |- ( ( a ^ b ) ==3 a ) = ( a ->1 b ) $=
    ( wa wid3 wid2 wi1 nomb32 nom22 ax-r2 ) ABCZADAJEABFJAGABHI $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom34 $p |- ( ( a ^ b ) ==4 a ) = ( a ->1 b ) $=
    ( wa wid4 wid1 wi1 nomb41 nom21 ax-r2 ) ABCZADAJEABFJAGABHI $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. $)
  nom35 $p |- ( ( a ^ b ) == a ) = ( a ->1 b ) $=
    ( wa tb wi1 bicom nom25 ax-r2 ) ABCZADAIDABEIAFABGH $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom40 $p |- ( ( a v b ) ->0 b ) = ( a ->2 b ) $=
    ( wn wa wi0 wi1 wo wi2 nom10 ax-a2 ax-a1 ancom anor3 ax-r2 ax-r1 df-i0 3tr1
    2or i2i1 ) BCZTACZDZEZTUAFABGZBEZABHTUAIUDCZBGZTCZUBGZUEUCUGBUFGUIUFBJBUHUF
    UBBKUBUFUBUATDUFTUALABMNORNUDBPTUBPQABSQ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom41 $p |- ( ( a v b ) ->1 b ) = ( a ->2 b ) $=
    ( wn wo wi2 wi1 wa ancom anor3 ax-r2 ud2lem0a ax-r1 nom12 i1i2 i2i1 3tr1 )
    BCZABDZCZEZQACZFZRBFABETQQUAGZEZUBUDTUCSQUCUAQGSQUAHABIJKLQUAMJRBNABOP $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom42 $p |- ( ( a v b ) ->2 b ) = ( a ->2 b ) $=
    ( wn wo wi1 wi2 wa ancom anor3 ax-r2 ud1lem0a ax-r1 nom11 i2i1 3tr1 ) BCZAB
    DZCZEZPACZEZQBFABFSPPTGZEZUAUCSUBRPUBTPGRPTHABIJKLPTMJQBNABNO $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom43 $p |- ( ( a v b ) ->3 b ) = ( a ->2 b ) $=
    ( wn wo wi4 wi1 wi3 wi2 wa ancom anor3 ax-r2 ud4lem0a ax-r1 nom14 i3i4 i2i1
    3tr1 ) BCZABDZCZEZSACZFZTBGABHUBSSUCIZEZUDUFUBUEUASUEUCSIUASUCJABKLMNSUCOLT
    BPABQR $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom44 $p |- ( ( a v b ) ->4 b ) = ( a ->2 b ) $=
    ( wn wo wi3 wi1 wi4 wi2 wa ancom anor3 ax-r2 ud3lem0a ax-r1 nom13 i4i3 i2i1
    3tr1 ) BCZABDZCZEZSACZFZTBGABHUBSSUCIZEZUDUFUBUEUASUEUCSIUASUCJABKLMNSUCOLT
    BPABQR $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom45 $p |- ( ( a v b ) ->5 b ) = ( a ->2 b ) $=
    ( wn wo wi5 wi1 wi2 ancom anor3 ax-r2 ud5lem0a ax-r1 nom15 i5con i2i1 3tr1
    wa ) BCZABDZCZEZRACZFZSBEABGUARRUBQZEZUCUEUAUDTRUDUBRQTRUBHABIJKLRUBMJSBNAB
    OP $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom50 $p |- ( ( a v b ) ==0 b ) = ( a ->2 b ) $=
    ( wn wo wid0 wi1 wi2 wa ancom anor3 ax-r2 lor ax-r4 ax-r5 ax-r1 df-id0 3tr1
    2an nom20 nomcon0 i2i1 ) BCZABDZCZEZUBACZFZUCBEABGUEUBUBUFHZEZUGUBCZUDDZUDC
    ZUBDZHZUJUHDZUHCZUBDZHZUEUIURUNUOUKUQUMUHUDUJUHUFUBHUDUBUFIABJKZLUPULUBUHUD
    USMNROUBUDPUBUHPQUBUFSKUCBTABUAQ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom51 $p |- ( ( a v b ) ==1 b ) = ( a ->2 b ) $=
    ( wn wo wid2 wi1 wid1 wi2 wa ancom anor3 ax-r2 ax-r1 lor lan 2or 2an df-id2
    ax-r4 3tr1 nom22 nomcon1 i2i1 ) BCZABDZCZEZUDACZFZUEBGABHUGUDUDUHIZEZUIUDUF
    CZDZUFUDCZULIZDZIUDUJCZDZUJUNUQIZDZIUGUKUMURUPUTULUQUDUFUJUJUFUJUHUDIZUFUDU
    HJABKZLMZSNUFUJUOUSVCULUQUNUFUJUFVAUJVAUFVBMUHUDJLSOPQUDUFRUDUJRTUDUHUALUEB
    UBABUCT $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom52 $p |- ( ( a v b ) ==2 b ) = ( a ->2 b ) $=
    ( wn wo wid1 wi1 wid2 wi2 wa ancom anor3 ax-r2 ax-r1 ax-r4 lor lan 2an 3tr1
    df-id1 nom21 nomcon2 i2i1 ) BCZABDZCZEZUCACZFZUDBGABHUFUCUCUGIZEZUHUCUECZDZ
    UCCZUCUEIZDZIUCUICZDZUMUCUIIZDZIUFUJULUQUOUSUKUPUCUEUIUIUEUIUGUCIUEUCUGJABK
    LMZNOUNURUMUEUIUCUTPOQUCUESUCUISRUCUGTLUDBUAABUBR $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom53 $p |- ( ( a v b ) ==3 b ) = ( a ->2 b ) $=
    ( wn wo wid4 wi1 wid3 wi2 wa ancom anor3 ax-r2 ax-r1 lor lan 2or 2an df-id4
    ax-r4 3tr1 nom24 nomcon3 i2i1 ) BCZABDZCZEZUDACZFZUEBGABHUGUDUDUHIZEZUIUDCZ
    UFDZUFCZUDUFIZDZIULUJDZUJCZUDUJIZDZIUGUKUMUQUPUTUFUJULUJUFUJUHUDIUFUDUHJABK
    LMZNUNURUOUSUFUJVASUFUJUDVAOPQUDUFRUDUJRTUDUHUALUEBUBABUCT $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom54 $p |- ( ( a v b ) ==4 b ) = ( a ->2 b ) $=
    ( wn wo wid3 wi1 wid4 wi2 wa ancom anor3 ax-r2 lor ax-r4 lan 2an 3tr1 ax-r1
    df-id3 nom23 nomcon4 i2i1 ) BCZABDZCZEZUCACZFZUDBGABHUFUCUCUGIZEZUHUJUFUCCZ
    UIDZUCUKUICZIZDZIUKUEDZUCUKUECZIZDZIUJUFULUPUOUSUIUEUKUIUGUCIUEUCUGJABKLZMU
    NURUCUMUQUKUIUEUTNOMPUCUISUCUESQRUCUGTLUDBUAABUBQ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom55 $p |- ( ( a v b ) == b ) = ( a ->2 b ) $=
    ( wn wa tb wi1 wo wi2 nom25 conb bicom ancom anor3 ax-r2 ax-r1 lbi 3tr i2i1
    3tr1 ) BCZTACZDZEZTUAFABGZBEZABHTUAIUEUDCZTETUFEUCUDBJUFTKUFUBTUBUFUBUATDUF
    TUALABMNOPQABRS $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom60 $p |- ( b ==0 ( a v b ) ) = ( a ->2 b ) $=
    ( wo wid0 wi2 wn wa ancom df-id0 3tr1 nom50 ax-r2 ) BABCZDZMBDZABEBFMCZMFBC
    ZGQPGNOPQHBMIMBIJABKL $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom61 $p |- ( b ==1 ( a v b ) ) = ( a ->2 b ) $=
    ( wo wid1 wid4 wi2 nomb41 ax-r1 nom54 ax-r2 ) BABCZDZKBEZABFMLKBGHABIJ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom62 $p |- ( b ==2 ( a v b ) ) = ( a ->2 b ) $=
    ( wo wid2 wid3 wi2 nomb32 ax-r1 nom53 ax-r2 ) BABCZDZKBEZABFMLKBGHABIJ $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom63 $p |- ( b ==3 ( a v b ) ) = ( a ->2 b ) $=
    ( wo wid3 wid2 wi2 nomb32 nom52 ax-r2 ) BABCZDJBEABFBJGABHI $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom64 $p |- ( b ==4 ( a v b ) ) = ( a ->2 b ) $=
    ( wo wid4 wid1 wi2 nomb41 nom51 ax-r2 ) BABCZDJBEABFBJGABHI $.
    $( [7-Feb-99] $)

  $( Part of Lemma 3.3(15) from "Non-Orthomodular Models..." paper. $)
  nom65 $p |- ( b == ( a v b ) ) = ( a ->2 b ) $=
    ( wo tb wi2 bicom nom55 ax-r2 ) BABCZDIBDABEBIFABGH $.
    $( [7-Feb-99] $)

  $( Lemma for proof of Mayet 8-variable "full" equation from 4-variable
     Godowski equation. $)
  go1 $p |- ( ( a ^ b ) ^ ( a ->1 b ' ) ) = 0 $=
    ( wa wn wi1 wo wf df-i1 lan lear lelor lelan oran3 dff ax-r1 ax-r2 lbtr le0
    lebi ) ABCZABDZEZCTADZAUACZFZCZGUBUETAUAHIUFGUFTUCUAFZCZGUEUGTUDUAUCAUAJKLU
    HTTDZCZGUGUITABMIGUJTNOPQUFRSP $.
    $( [19-Nov-99] $)

  $( Lemma for disjunction of ` ->2 ` . $)
  i2or $p |- ( ( a ->2 c ) v ( b ->2 c ) ) =< ( ( a ^ b ) ->2 c ) $=
    ( wi2 wo wa wn df-i2 lea lecon leran lelor bltr lear lel2or ax-r1 lbtr ) AC
    DZBCDZECABFZGZCGZFZEZTCDZRUDSRCAGZUBFZEUDACHUGUCCUFUAUBTAABIJKLMSCBGZUBFZEU
    DBCHUIUCCUHUAUBTBABNJKLMOUEUDTCHPQ $.
    $( [5-Jul-00] $)

  $( Lemma for disjunction of ` ->1 ` . $)
  i1or $p |- ( ( c ->1 a ) v ( c ->1 b ) ) =< ( c ->1 ( a v b ) ) $=
    ( wi1 wo wn wa df-i1 leo lelan lelor bltr leor lel2or ax-r1 lbtr ) CADZCBDZ
    ECFZCABEZGZEZCTDZQUBRQSCAGZEUBCAHUDUASATCABIJKLRSCBGZEUBCBHUEUASBTCBAMJKLNU
    CUBCTHOP $.
    $( [5-Jul-00] $)

  $( "Less than" analogue is equal to ` ->2 ` implication. $)
  lei2 $p |- ( a =<2 b ) = ( a ->2 b ) $=
    ( wo tb wn wa wle2 wi2 mi df-le df-i2 3tr1 ) ABCBDBAEBEFCABGABHABIABJABKL
    $.
    $( [28-Jan-02] $)

  $( Relevance implication is l.e.  Sasaki implication. $)
  i5lei1 $p |- ( a ->5 b ) =< ( a ->1 b ) $=
    ( wa wn wi5 wi1 ax-a3 ax-a2 ax-r2 lea lel2or leror bltr df-i5 df-i1 le3tr1
    wo ) ABCZADZBCZQSBDZCZQZSRQZABEABFUCTUBQZRQZUDUCRUEQUFRTUBGRUEHIUESRTSUBSBJ
    SUAJKLMABNABOP $.
    $( [26-Jun-03] $)

  $( Relevance implication is l.e.  Dishkant implication. $)
  i5lei2 $p |- ( a ->5 b ) =< ( a ->2 b ) $=
    ( wa wn wo wi5 wi2 lear lel2or leror df-i5 df-i2 le3tr1 ) ABCZADZBCZEZOBDCZ
    EBREABFABGQBRNBPABHOBHIJABKABLM $.
    $( [26-Jun-03] $)

  $( Relevance implication is l.e.  Kalmbach implication. $)
  i5lei3 $p |- ( a ->5 b ) =< ( a ->3 b ) $=
    ( wa wn wo wi5 wi3 leor lelan leror df-i5 ax-a3 ax-r2 df-i3 ax-a2 le3tr1 )
    ABCZADZBCZRBDCZEZEZARBEZCZUAEZABFZABGZQUDUABUCABRHIJUFQSETEUBABKQSTLMUGUAUD
    EUEABNUAUDOMP $.
    $( [26-Jun-03] $)

  $( Relevance implication is l.e. non-tollens implication. $)
  i5lei4 $p |- ( a ->5 b ) =< ( a ->4 b ) $=
    ( wa wn wo wi5 wi4 leo leran lelor df-i5 df-i4 le3tr1 ) ABCADZBCEZNBDZCZEON
    BEZPCZEABFABGQSONRPNBHIJABKABLM $.
    $( [26-Jun-03] $)

  $( Quantum identity is less than classical identity. $)
  id5leid0 $p |- ( a == b ) =< ( a ==0 b ) $=
    ( wa wn wo tb wid0 ax-a2 lea lear le2or ler2an bltr dfb df-id0 le3tr1 ) ABC
    ZADZBDZCZEZRBEZSAEZCZABFABGUATQEZUDQTHUEUBUCTRQBRSIABJKTSQARSJABIKLMABNABOP
    $.
    $( [4-Mar-06] $)

  ${
    id5id0.1 $e |- ( a == b ) = 1 $.
    $( Show that classical identity follows from quantum identity in OL. $)
    id5id0 $p |- ( a ==0 b ) = 1 $=
      ( tb wid0 id5leid0 sklem skr0 ) ABDZABEZCIJABFGH $.
      $( [4-Mar-06] $)
  $}

  ${
    k1-6.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $.
    $( Statement (6) in proof of Theorem 1 of Kalmbach, _Orthomodular
       Lattices_, p. 21. $)
    k1-6 $p |- ( x ' ^ c ) = ( ( x ' v c ' ) ^ c ) $=
      ( wn wa wo anor3 cm con4 oran3 oran2 2an 3tr1 ran anass ancom ax-a2 anabs
      lan 3tr ) BDZAEUAADZFZUAAFZEZAEUCUDAEZEUCAEUAUEABAEZBUBEZFZDZUGDZUHDZEZUA
      UEUMUJUGUHGHBUICIUCUKUDULBAJBAKLMNUCUDAOUFAUCUFAUDEAAUAFZEAUDAPUDUNAUAAQS
      AUARTST $.
      $( [26-May-2008] $)
  $}

  ${
    k1-7.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $.
    $( Statement (7) in proof of Theorem 1 of Kalmbach, _Orthomodular
       Lattices_, p. 21. $)
    k1-7 $p |- ( x ' ^ c ' ) = ( ( x ' v c ) ^ c ' ) $=
      ( wn wa wo anor3 cm ax-a1 lan ror orcom 3tr con4 oran3 oran2 2an 3tr1 ran
      lor anass tr ancom ax-a2 anabs ) BDZADZEUFUGDZFZUFUGFZEZUGEZUFAFZUJUGEZEZ
      UMUGEUFUKUGBUGEZBUHEZFZDZUPDZUQDZEZUFUKVBUSUPUQGHBURBBAEZUPFUQUPFURCVCUQU
      PAUHBAIZJKUQUPLMNUIUTUJVABUGOBUGPQRSULUMUJEZUGEZUOVFULVEUKUGUMUIUJAUHUFVD
      TSSHUMUJUGUAUBUNUGUMUNUGUJEUGUGUFFZEUGUJUGUCUJVGUGUFUGUDJUGUFUEMJM $.
      $( [26-May-2008] $)
  $}

  ${
    k1-8a.1 $e |- x ' = ( ( x ' ^ c ) v ( x ' ^ c ' ) ) $.
    k1-8a.2 $e |- x =< c $.
    k1-8a.3 $e |- y =< c ' $.
    $( First part of statement (8) in proof of Theorem 1 of Kalmbach,
       _Orthomodular Lattices_, p. 21. $)
    k1-8a $p |- x = ( ( x v y ) ^ c ) $=
      ( wo wa leo ler2an wn lelor leran ax-a1 ror ran k1-6 tr cm df2le2 lbtr
      3tr lebi ) BBCGZAHZBUDABCIEJUEBAKZGZAHZBUDUGACUFBFLMUHBKZKZUFGZAHZBAHZBUG
      UKABUJUFBNZOPUMULUMUJAHULBUJAUNPAUIDQRSBAETUBUAUC $.
      $( [27-May-2008] $)
  $}

  ${
    k1-8b.1 $e |- y ' = ( ( y ' ^ c ) v ( y ' ^ c ' ) ) $.
    k1-8b.2 $e |- x =< c $.
    k1-8b.3 $e |- y =< c ' $.
    $( Second part of statement (8) in proof of Theorem 1 of Kalmbach,
       _Orthomodular Lattices_, p. 21. $)
    k1-8b $p |- y = ( ( x v y ) ^ c ' ) $=
      ( wo wn wa ax-a1 lan ror orcom 3tr lbtr k1-8a ran tr ) CCBGZAHZIBCGZTITCB
      CHZUBAIZUBTIZGUBTHZIZUDGUDUFGDUCUFUDAUEUBAJZKLUFUDMNFBAUEEUGOPSUATCBMQR
      $.
      $( [27-May-2008] $)
  $}

  ${
    k1-2.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $.
    k1-2.2 $e |- y = ( ( y ^ c ) v ( y ^ c ' ) ) $.
    k1-2.3 $e |- ( ( x ^ c ) v ( y ^ c ) ) ' = ( ( ( ( x ^ c )
         v ( y ^ c ) ) ' ^ c ) v ( ( ( x ^ c ) v ( y ^ c ) ) ' ^ c ' ) ) $.
    $( Statement (2) in proof of Theorem 1 of Kalmbach, _Orthomodular
       Lattices_, p. 21. $)
    k1-2 $p |- ( ( x v y ) ^ c ) = ( ( x ^ c ) v ( y ^ c ) ) $=
      ( wo wa wn 2or or4 ax-r2 ran lear lel2or k1-8a ax-r1 tr ) BCGZAHBAHZCAHZG
      ZBAIZHZCUCHZGZGZAHZUBSUGASTUDGZUAUEGZGUGBUICUJDEJTUDUAUEKLMUBUHAUBUFFTAUA
      BANCANOUDUCUEBUCNCUCNOPQR $.
      $( [27-May-2008] $)
  $}

  ${
    k1-3.1 $e |- x = ( ( x ^ c ) v ( x ^ c ' ) ) $.
    k1-3.2 $e |- y = ( ( y ^ c ) v ( y ^ c ' ) ) $.
    k1-3.3 $e |- ( ( x ^ c ' ) v ( y ^ c ' ) ) ' = ( ( ( ( x ^ c ' )
     v ( y ^ c ' ) ) ' ^ c ) v ( ( ( x ^ c ' ) v ( y ^ c ' ) ) ' ^ c ' ) ) $.
    $( Statement (3) in proof of Theorem 1 of Kalmbach, _Orthomodular
       Lattices_, p. 21. $)
    k1-3 $p |- ( ( x v y ) ^ c ' ) = ( ( x ^ c ' ) v ( y ^ c ' ) ) $=
      ( wo wn wa 2or or4 ax-r2 ran lear lel2or k1-8b ax-r1 tr ) BCGZAHZIBAIZCAI
      ZGZBTIZCTIZGZGZTIZUFSUGTSUAUDGZUBUEGZGUGBUICUJDEJUAUDUBUEKLMUFUHAUCUFFUAA
      UBBANCANOUDTUEBTNCTNOPQR $.
      $( [27-May-2008] $)
  $}

  ${
    k1-4.1 $e |- ( x ' ^ ( x v c ' ) ) =
        ( ( ( x ' ^ ( x v c ' ) ) ^ c ) v ( ( x ' ^ ( x v c ' ) ) ^ c ' ) ) $.
    k1-4.2 $e |- x =< c $.
    $( Statement (4) in proof of Theorem 1 of Kalmbach, _Orthomodular
       Lattices_, p. 21. $)
    k1-4 $p |- ( x v ( x ' ^ c ) ) = c $=
      ( wn wa wo oran1 lan cm anor3 an32 dff 3tr1 leao4 df2le2 df-le2 ax-r4 3tr
      wf tr 2or or0r 3tr2 con1 ) BBEZAFZGZAUFUGEZFZUFBAEZGZFZUHEUKUMUJULUIUFBAH
      ZIJBUGKUMUMAFZUMUKFZGTUKGUKCUOTUPUKUGULFUGUIFUOTULUIUGUNIUFULALUGMNUPUFUK
      FZULFUQUKUFULUKLUQULUKUFBOPUQBAGZEUKBAKURABADQRUASUBUKUCSUDUE $.
      $( [27-May-2008] $)
  $}

  ${
    k1-5.1 $e |- ( x ' ^ ( x v c ) ) =
        ( ( ( x ' ^ ( x v c ) ) ^ c ) v ( ( x ' ^ ( x v c ) ) ^ c ' ) ) $.
    k1-5.2 $e |- x =< c ' $.
    $( Statement (5) in proof of Theorem 1 of Kalmbach, _Orthomodular
       Lattices_, p. 21. $)
    k1-5 $p |- ( x v ( x ' ^ c ' ) ) = c ' $=
      ( wn wo wa ax-a1 lor lan orcom ran 2an 2or tr 3tr2 k1-4 ) AEZBBEZBAFZGZUA
      AGZUARGZFZSBREZFZGZUGRGZUGUEGZFZCTUFSAUEBAHZIJZUDUCUBFUJUBUCKUCUHUBUIUAUG
      RULLUAUGAUEULUKMNOPDQ $.
      $( [27-May-2008] $)
  $}

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
          Weakly orthomodular lattices
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Weak orthomodular law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    ax-wom.1 $e |- ( a ' v ( a ^ b ) ) = 1 $.
    $( 2-variable WOML rule. $)
    ax-wom $a |- ( b v ( a ' ^ b ' ) ) = 1 $.
  $}

  ${
    2vwomr2.1 $e |- ( b v ( a ' ^ b ' ) ) = 1 $.
    $( 2-variable WOML rule. $)
    2vwomr2 $p |- ( a ' v ( a ^ b ) ) = 1 $=
      ( wn wa wo wt ancom ax-a1 2an ax-r2 lor 2or ax-r1 ax-wom ) ADZABEZFPBDZDZ
      PDZEZFGQUAPQBAEUAABHBSATBIZAIJKLRPSRPEZFZBPREZFZGUFUDBSUEUCUBPRHMNCKOK $.
      $( [13-Nov-98] $)
  $}

  ${
    2vwomr1a.1 $e |- ( a ->1 b ) = 1 $.
    $( 2-variable WOML rule. $)
    2vwomr1a $p |- ( a ->2 b ) = 1 $=
      ( wi2 wn wa wo wt df-i2 wi1 df-i1 ax-r1 ax-r2 ax-wom ) ABDBAEZBEFGHABIABO
      ABFGZABJZHQPABKLCMNM $.
      $( [13-Nov-98] $)
  $}

  ${
    2vwomr2a.1 $e |- ( a ->2 b ) = 1 $.
    $( 2-variable WOML rule. $)
    2vwomr2a $p |- ( a ->1 b ) = 1 $=
      ( wi1 wn wa wo wt df-i1 wi2 df-i2 ax-r1 ax-r2 2vwomr2 ) ABDAEZABFGHABIABB
      OBEFGZABJZHQPABKLCMNM $.
      $( [13-Nov-98] $)
  $}

  ${
    2vwomlem.1 $e |- ( a ->2 b ) = 1 $.
    2vwomlem.2 $e |- ( b ->2 a ) = 1 $.
    $( Lemma from 2-variable WOML rule. $)
    2vwomlem $p |- ( a == b ) = 1 $=
      ( tb wa wn wo wt dfb wf df-f ax-r1 wi2 anor3 ax-r2 lor df-i2 3tr 3tr2 ran
      anor2 ancom ax-r4 anabs anass oran 2an lan or0 le1 2vwomr2 lea leo ler2an
      oran3 lelor bltr lebi ax-wom ) ABEABFZAGZBGZFZHZIABJVEKHVEVBVEGZFZHVEIKVG
      VEKIGZVGLAABHZGZHZGZVBVIFZVHVGVMVLAVIUBMVKIVKAVCVBFZHZBANZIVJVNAVJVDVNVDV
      JABOMVBVCUCPQVPVOBARMDSUDVMVBVBVCHZFZVIFVBVQVIFZFVGVBVRVIVRVBVBVCUEMUAVBV
      QVIUFVSVFVBVSVAGZVDGZFVFVQVTVIWAABUPABUGUHVAVDOPUISTPQVEUJAVEVBAVEFZHZIWC
      UKIVBVAHZWCWDIABBVDHZABNZIWFWEABRMCPULMVAWBVBVAAVEABUMVAVDUNUOUQURUSUTTP
      $.
      $( [13-Nov-98] $)
  $}

  ${
    wr5-2v.1 $e |- ( a == b ) = 1 $.
    $( WOML derived from 2-variable axioms. $)
    wr5-2v $p |- ( ( a v c ) == ( b v c ) ) = 1 $=
      ( wo wi2 wn wa wt df-i2 ax-r1 anandir anass ax-r2 3tr2 wi1 df-i1 bltr le1
      lebi anor3 lan 2an lor tb wlem1 skr0 lea leo lelan 2vwomr1a lear 2vwomlem
      lelor ) ACEZBCEZUOUPFUPUOGZUPGZHZEZIUOUPJUPAGZURHZEZAUPFZUTIVDVCAUPJKVBUS
      UPVABGZHCGZHZVAVFHZVEVFHZHVBUSVAVEVFLVGVAVIHVBVAVEVFMVIURVABCUAZUBNVHUQVI
      URACUAZVJUCOUDAUPAUPPVAAUPHZEZIAUPQIVMIVMIVAABHZEZVMIABPZVOIVPIVPBAPZHZVP
      VRIABUEVRDABUFUGKZVPVQUHRVPSTABQNVNVLVABUPABCUIUJUNRVMSTKNUKONUPUOFUOURUQ
      HZEZIUPUOJUOVEUQHZEZBUOFZWAIWDWCBUOJKWBVTUOVEVAHVFHZVIVHHWBVTVEVAVFLWEVEV
      HHWBVEVAVFMVHUQVEVKUBNVIURVHUQVJVKUCOUDBUOBUOPVEBUOHZEZIBUOQIWGIWGIVEBAHZ
      EZWGIVQWIIVQIVRVQVSVPVQULRVQSTBAQNWHWFVEAUOBACUIUJUNRWGSTKNUKONUM $.
      $( [11-Nov-98] $)
  $}

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Weakly orthomodular lattices
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    wom3.1 $e |- ( a == b ) = 1 $.
    $( Weak orthomodular law for study of weakly orthomodular lattices. $)
    wom3 $p |- a =< ( ( a v c ) == ( b v c ) ) $=
      ( wt wo tb le1 wr5-2v ax-r1 bile letr ) AEACFBCFGZAHEMMEABCDIJKL $.
      $( [13-Nov-98] $)
  $}

  ${
    wlor.1 $e |- ( a == b ) = 1 $.
    $( Weak orthomodular law. $)
    wlor $p |- ( ( c v a ) == ( c v b ) ) = 1 $=
      ( wo tb wt ax-a2 2bi wr5-2v ax-r2 ) CAEZCBEZFACEZBCEZFGLNMOCAHCBHIABCDJK
      $.
      $( [24-Sep-97] $)
  $}

  ${
    wran.1 $e |- ( a == b ) = 1 $.
    $( Weak orthomodular law. $)
    wran $p |- ( ( a ^ c ) == ( b ^ c ) ) = 1 $=
      ( wa tb wn wo wt df-a 2bi wr4 wr5-2v ax-r2 ) ACEZBCEZFAGZCGZHZGZBGZRHZGZF
      IOTPUCACJBCJKSUBQUARABDLMLN $.
      $( [24-Sep-97] $)
  $}

  ${
    wlan.1 $e |- ( a == b ) = 1 $.
    $( Weak orthomodular law. $)
    wlan $p |- ( ( c ^ a ) == ( c ^ b ) ) = 1 $=
      ( wa tb wt ancom 2bi wran ax-r2 ) CAEZCBEZFACEZBCEZFGLNMOCAHCBHIABCDJK $.
      $( [24-Sep-97] $)
  $}

  ${
    wr2.1 $e |- ( a == b ) = 1 $.
    wr2.2 $e |- ( b == c ) = 1 $.
    $( Inference rule of AUQL. $)
    wr2 $p |- ( a == c ) = 1 $=
      ( tb wa wn wo wt dfb rbi wr1 wran wr5-2v ax-r2 wwbmp wr4 wlor wwbmpr ) AC
      FZACGZBHZCHZGZIZBCFZUFEUGUFFBCGZUEIZUFFJUGUIUFBCKLUHUBUEBACABDMNOPQUAUFFU
      BAHZUDGZIZUFFJUAULUFACKLUKUEUBUJUCUDABDRNSPT $.
      $( [24-Sep-97] $)
  $}

  ${
    w2or.1 $e |- ( a == b ) = 1 $.
    w2or.2 $e |- ( c == d ) = 1 $.
    $( Join both sides with disjunction. $)
    w2or $p |- ( ( a v c ) == ( b v d ) ) = 1 $=
      ( wo wlor wr5-2v wr2 ) ACGADGBDGCDAFHABDEIJ $.
      $( [13-Oct-97] $)
  $}

  ${
    w2an.1 $e |- ( a == b ) = 1 $.
    w2an.2 $e |- ( c == d ) = 1 $.
    $( Join both sides with conjunction. $)
    w2an $p |- ( ( a ^ c ) == ( b ^ d ) ) = 1 $=
      ( wa wlan wran wr2 ) ACGADGBDGCDAFHABDEIJ $.
      $( [13-Oct-97] $)
  $}

  ${
    w3tr1.1 $e |- ( a == b ) = 1 $.
    w3tr1.2 $e |- ( c == a ) = 1 $.
    w3tr1.3 $e |- ( d == b ) = 1 $.
    $( Transitive inference useful for introducing definitions. $)
    w3tr1 $p |- ( c == d ) = 1 $=
      ( wr1 wr2 ) CADFABDEDBGHII $.
      $( [13-Oct-97] $)
  $}

  ${
    w3tr2.1 $e |- ( a == b ) = 1 $.
    w3tr2.2 $e |- ( a == c ) = 1 $.
    w3tr2.3 $e |- ( b == d ) = 1 $.
    $( Transitive inference useful for eliminating definitions. $)
    w3tr2 $p |- ( c == d ) = 1 $=
      ( wr1 w3tr1 ) ABCDEACFHBDGHI $.
      $( [13-Oct-97] $)
  $}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Relationship analogues (ordering; commutation) in WOML
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    wleoa.1 $e |- ( ( a v c ) == b ) = 1 $.
    $( Relation between two methods of expressing "less than or equal to". $)
    wleoa $p |- ( ( a ^ b ) == a ) = 1 $=
      ( wa wo wr1 wlan wa5c wr2 ) ABEAACFZEABKAKBDGHACIJ $.
      $( [27-Sep-97] $)
  $}

  ${
    wleao.1 $e |- ( ( c ^ b ) == a ) = 1 $.
    $( Relation between two methods of expressing "less than or equal to". $)
    wleao $p |- ( ( a v b ) == b ) = 1 $=
      ( wo wa wa2 wr1 wancom wr2 wlor wa5b ) ABEZBBCFZEZBMBAEOABGANBACBFZNPADHN
      PBCIHJKJBCLJ $.
      $( [27-Sep-97] $)
  $}

  ${
    wdf-le1.1 $e |- ( ( a v b ) == b ) = 1 $.
    $( Define 'less than or equal to' analogue for ` == ` analogue of
       ` = ` . $)
    wdf-le1 $p |- ( a =<2 b ) = 1 $=
      ( wle2 wo tb wt df-le ax-r2 ) ABDABEBFGABHCI $.
      $( [27-Sep-97] $)
  $}

  ${
    wdf-le2.1 $e |- ( a =<2 b ) = 1 $.
    $( Define 'less than or equal to' analogue for ` == ` analogue of
       ` = ` . $)
    wdf-le2 $p |- ( ( a v b ) == b ) = 1 $=
      ( wo tb wle2 wt df-le ax-r1 ax-r2 ) ABDBEZABFZGLKABHICJ $.
      $( [27-Sep-97] $)
  $}

  ${
    wom4.1 $e |- ( a =<2 b ) = 1 $.
    $( Orthomodular law.  Kalmbach 83 p. 22. $)
    wom4 $p |- ( ( a v ( a ' ^ b ) ) == b ) = 1 $=
      ( wn wo wa woml wdf-le2 wlan wlor w3tr2 ) AADZABEZFZEMALBFZEBABGNOAMBLABC
      HZIJPK $.
      $( [13-Oct-97] $)
  $}

  ${
    wom5.1 $e |- ( a =<2 b ) = 1 $.
    wom5.2 $e |- ( ( b ^ a ' ) == 0 ) = 1 $.
    $( Orthomodular law.  Kalmbach 83 p. 22. $)
    wom5 $p |- ( a == b ) = 1 $=
      ( wf wo wn wa wr1 ancom bi1 wr2 wlor or0 wom4 w3tr2 ) AEFZAAGZBHZFABESAEB
      RHZSTEDITSBRJKLMQAANKABCOP $.
      $( [13-Oct-97] $)
  $}

  ${
    wcomlem.1 $e |- ( a == ( ( a ^ b ) v ( a ^ b ' ) ) ) = 1 $.
    $( Analogue of commutation is symmetric.  Similar to Kalmbach 83 p. 22. $)
    wcomlem $p |- ( b == ( ( b ^ a ) v ( b ^ a ' ) ) ) = 1 $=
      ( wa wn ax-a2 bi1 wran ancom wr2 anabs wlan df-a anor1 w2or wr4 wr1 anass
      wo wlor wcon2 w3tr1 orabs wdf-le1 wom4 w3tr2 ) ABDZUGEZBDZSZUGAEZBDZSZBBA
      DZBUKDZSUMUJULUIUGUKBEZSZUKBSZBDZDZUQBDULUIUSBUQUSBBUKSZDZBUSVABDZVBURVAB
      URVAUKBFGHVCVBVABIGJVBBBUKKGJLULUQURDZBDZUTUKVDBUKUQEZUREZSZEZVDAVHAUGAUP
      DZSVHCUGVFVJVGUGVFABMGZVJVGABNGOJPVDVIVDVIUQURMGQJHVEUTUQURBRGJUHUQBUGUQV
      KUAHUBTQUGBUGBUGBSZBUGSZBVLVMUGBFGVMBUNSZBUGUNBUGUNABIGZTVNBBAUCGJJUDUEUG
      UNULUOVOULUOUKBIGOUF $.
      $( [27-Jan-02] $)
  $}

  ${
    wdf-c1.1 $e |- ( a == ( ( a ^ b ) v ( a ^ b ' ) ) ) = 1 $.
    $( Show that commutator is a 'commutes' analogue for ` == ` analogue of
       ` = ` . $)
    wdf-c1 $p |- C ( a , b ) = 1 $=
      ( wcmtr wa wn wo cmtrcom df-cmtr df-t bi1 wcomlem ax-a1 ax-r5 ax-a2 ax-r2
      wt lan wr2 w2or wr3 3tr ) ABDBADBAEBAFZEGZBFZAEUEUCEGZGZQABHBAIUGQBUEGZUG
      QUHBJKBUDUEUFABCLAUEAABEZAUEEZGZUJAUEFZEZGZCUKUNUKUMUJGUNUIUMUJBULABMRNUM
      UJOPKSLTSUAUB $.
      $( [27-Jan-02] $)
  $}

  ${
    wdf-c2.1 $e |- C ( a , b ) = 1 $.
    $( Show that commutator is a 'commutes' analogue for ` == ` analogue of
       ` = ` . $)
    wdf-c2 $p |- ( a == ( ( a ^ b ) v ( a ^ b ' ) ) ) = 1 $=
      ( wa wn wo tb wt le1 lea lel2or lelor wcmtr ax-r1 df-cmtr ax-r2 dfb ancom
      2an anabs df2le2 anandi oran3 oran2 anor3 lan anidm 3tr2 2or le3tr1 lebi
      ) AABDZABEZDZFZGZHUPIUOAEZBDZUQUMDZFZFZUOUQFZHUPUTUQUOURUQUSUQBJUQUMJKLHA
      BMZVAVCHCNABOPUPAUODZUQUOEZDZFVBAUOQVDUOVFUQVDUOADUOAUORUOAULAUNABJAUMJKU
      APUQUQUMFZUQBFZDZDUQVGDZUQVHDZDZVFUQUQVGVHUBVIVEUQVIULEZUNEZDVEVGVMVHVNAB
      UCABUDSULUNUEPUFVLUQUQDUQVJUQVKUQUQUMTUQBTSUQUGPUHUIPUJUK $.
      $( [27-Jan-02] $)
  $}

  ${
    wdf2le1.1 $e |- ( ( a ^ b ) == a ) = 1 $.
    $( Alternate definition of 'less than or equal to'. $)
    wdf2le1 $p |- ( a =<2 b ) = 1 $=
      ( wleao wdf-le1 ) ABABACDE $.
      $( [27-Sep-97] $)
  $}

  ${
    wdf2le2.1 $e |- ( a =<2 b ) = 1 $.
    $( Alternate definition of 'less than or equal to'. $)
    wdf2le2 $p |- ( ( a ^ b ) == a ) = 1 $=
      ( wdf-le2 wleoa ) ABBABCDE $.
      $( [27-Sep-97] $)
  $}

  $( L.e. absorption. $)
  wleo $p |- ( a =<2 ( a v b ) ) = 1 $=
    ( wo wa5c wdf2le1 ) AABCABDE $.
    $( [27-Sep-97] $)

  $( L.e. absorption. $)
  wlea $p |- ( ( a ^ b ) =<2 a ) = 1 $=
    ( wa wo wa2 wa5b wr2 wdf-le1 ) ABCZAIADAIDAIAEABFGH $.
    $( [27-Sep-97] $)

  $( Anything is l.e. 1. $)
  wle1 $p |- ( a =<2 1 ) = 1 $=
    ( wt wo or1 bi1 wdf-le1 ) ABABCBADEF $.
    $( [27-Sep-97] $)

  $( 0 is l.e. anything. $)
  wle0 $p |- ( 0 =<2 a ) = 1 $=
    ( wf wle2 wo tb wt df-le ax-a2 or0 ax-r2 bi1 ) BACBADZAEFBAGLALABDABAHAIJKJ
    $.
    $( [11-Oct-97] $)

  ${
    wle.1 $e |- ( a =<2 b ) = 1 $.
    $( Add disjunct to right of l.e. $)
    wler $p |- ( a =<2 ( b v c ) ) = 1 $=
      ( wo wle2 tb wt df-le ax-a3 ax-r1 rbi ax-r2 wr5-2v ) ABCEZFAOEZOGZHAOIQAB
      EZCEZOGHPSOSPABCJKLRBCRBGZABFZHUATABIKDMNMM $.
      $( [13-Oct-97] $)

    $( Add conjunct to left of l.e. $)
    wlel $p |- ( ( a ^ c ) =<2 b ) = 1 $=
      ( wa an32 bi1 wdf2le2 wran wr2 wdf2le1 ) ACEZBLBEZABEZCEZLMOACBFGNACABDHI
      JK $.
      $( [13-Oct-97] $)

    $( Add disjunct to right of both sides. $)
    wleror $p |- ( ( a v c ) =<2 ( b v c ) ) = 1 $=
      ( wo orordir bi1 wr1 wdf-le2 wr5-2v wr2 wdf-le1 ) ACEZBCEZMNEZABEZCEZNQOQ
      OABCFGHPBCABDIJKL $.
      $( [13-Oct-97] $)

    $( Add conjunct to right of both sides. $)
    wleran $p |- ( ( a ^ c ) =<2 ( b ^ c ) ) = 1 $=
      ( wa anandir bi1 wr1 wdf2le2 wran wr2 wdf2le1 ) ACEZBCEZMNEZABEZCEZMQOQOA
      BCFGHPACABDIJKL $.
      $( [13-Oct-97] $)

    $( Contrapositive for l.e. $)
    wlecon $p |- ( b ' =<2 a ' ) = 1 $=
      ( wn wa wo ax-a2 bi1 oran wdf-le2 w3tr2 wcon3 wdf2le1 ) BDZADZNOEZBBAFZAB
      FZPDZBQRBAGHQSBAIHABCJKLM $.
      $( [13-Oct-97] $)

  $}

  ${
    wletr.1 $e |- ( a =<2 b ) = 1 $.
    wletr.2 $e |- ( b =<2 c ) = 1 $.
    $( Transitive law for l.e. $)
    wletr $p |- ( a =<2 c ) = 1 $=
      ( wa wo wdf-le2 wr5-2v wr1 ax-a3 bi1 w3tr2 wlan anabs wr2 wdf2le1 ) ACACF
      AABCGZGZFZACSARABGZCGZCSUBRUABCABDHIJBCEHUBSABCKLMNTAAROLPQ $.
      $( [13-Oct-97] $)
  $}

  ${
    wbltr.1 $e |- ( a == b ) = 1 $.
    wbltr.2 $e |- ( b =<2 c ) = 1 $.
    $( Transitive inference. $)
    wbltr $p |- ( a =<2 c ) = 1 $=
      ( wo wr5-2v wdf-le2 wr2 wdf-le1 ) ACACFBCFCABCDGBCEHIJ $.
      $( [13-Oct-97] $)
  $}

  ${
    wlbtr.1 $e |- ( a =<2 b ) = 1 $.
    wlbtr.2 $e |- ( b == c ) = 1 $.
    $( Transitive inference. $)
    wlbtr $p |- ( a =<2 c ) = 1 $=
      ( wa wr1 wlan wdf2le2 wr2 wdf2le1 ) ACACFABFACBABCEGHABDIJK $.
      $( [13-Oct-97] $)
  $}

  ${
    wle3tr1.1 $e |- ( a =<2 b ) = 1 $.
    wle3tr1.2 $e |- ( c == a ) = 1 $.
    wle3tr1.3 $e |- ( d == b ) = 1 $.
    $( Transitive inference useful for introducing definitions. $)
    wle3tr1 $p |- ( c =<2 d ) = 1 $=
      ( wbltr wr1 wlbtr ) CBDCABFEHDBGIJ $.
      $( [13-Oct-97] $)
  $}

  ${
    wle3tr2.1 $e |- ( a =<2 b ) = 1 $.
    wle3tr2.2 $e |- ( a == c ) = 1 $.
    wle3tr2.3 $e |- ( b == d ) = 1 $.
    $( Transitive inference useful for eliminating definitions. $)
    wle3tr2 $p |- ( c =<2 d ) = 1 $=
      ( wr1 wle3tr1 ) ABCDEACFHBDGHI $.
      $( [13-Oct-97] $)
  $}

  ${
    wbile.1 $e |- ( a == b ) = 1 $.
    $( Biconditional to l.e. $)
    wbile $p |- ( a =<2 b ) = 1 $=
      ( wo wr5-2v oridm bi1 wr2 wdf-le1 ) ABABDBBDZBABBCEJBBFGHI $.
      $( [13-Oct-97] $)
  $}

  ${
    wlebi.1 $e |- ( a =<2 b ) = 1 $.
    wlebi.2 $e |- ( b =<2 a ) = 1 $.
    $( L.e. to biconditional. $)
    wlebi $p |- ( a == b ) = 1 $=
      ( wo wdf-le2 wr1 ax-a2 bi1 wr2 ) AABEZBABAEZKLABADFGLKBAHIJABCFJ $.
      $( [13-Oct-97] $)
  $}

  ${
    wle2.1 $e |- ( a =<2 b ) = 1 $.
    wle2.2 $e |- ( c =<2 d ) = 1 $.
    $( Disjunction of 2 l.e.'s. $)
    wle2or $p |- ( ( a v c ) =<2 ( b v d ) ) = 1 $=
      ( wo wleror ax-a2 bi1 wle3tr1 wletr ) ACGBCGZBDGZABCEHCBGZDBGZMNCDBFHMOBC
      IJNPBDIJKL $.
      $( [13-Oct-97] $)

    $( Conjunction of 2 l.e.'s. $)
    wle2an $p |- ( ( a ^ c ) =<2 ( b ^ d ) ) = 1 $=
      ( wa wleran ancom bi1 wle3tr1 wletr ) ACGBCGZBDGZABCEHCBGZDBGZMNCDBFHMOBC
      IJNPBDIJKL $.
      $( [13-Oct-97] $)
  $}

  $( Half of distributive law. $)
  wledi $p |- ( ( ( a ^ b ) v ( a ^ c ) ) =<2
        ( a ^ ( b v c ) ) ) = 1 $=
    ( wa wo anidm bi1 wr1 wlea wle2or oridm wlbtr ancom wbltr wle2an ) ABDZACDZ
    EZRRDZABCEZDSRSRRFGHRARTRAAEZAPAQAABIACIJUAAAKGLPBQCPBADZBPUBABMGBAINQCADZC
    QUCACMGCAINJON $.
    $( [13-Oct-97] $)

  $( Half of distributive law. $)
  wledio $p |- ( ( a v ( b ^ c ) ) =<2
       ( ( a v b ) ^ ( a v c ) ) ) = 1 $=
    ( wa wo anidm bi1 wr1 wleo wle2an wbltr ax-a2 wlbtr wle2or oridm ) ABCDZEAB
    EZACEZDZSEZSASPSAAADZSUAAUAAAFGHAQARABIACIJKBQCRBBAEZQBAIUBQBALGMCCAEZRCAIU
    CRCALGMJNTSSOGM $.
    $( [13-Oct-97] $)

  $( Commutation with 0.  Kalmbach 83 p. 20. $)
  wcom0 $p |- C ( a , 0 ) = 1 $=
    ( wf wa wn wo comm0 df-c2 bi1 wdf-c1 ) ABAABCABDCEABAFGHI $.
    $( [13-Oct-97] $)

  $( Commutation with 1.  Kalmbach 83 p. 20. $)
  wcom1 $p |- C ( 1 , a ) = 1 $=
    ( wt wa wn wo comm1 df-c2 bi1 wdf-c1 ) BABBACBADCEBAAFGHI $.
    $( [13-Oct-97] $)

  ${
    wlecom.1 $e |- ( a =<2 b ) = 1 $.
    $( Comparable elements commute.  Beran 84 2.3(iii) p. 40. $)
    wlecom $p |- C ( a , b ) = 1 $=
      ( wn wa wo orabs bi1 wr1 wdf2le2 wr5-2v wr2 wdf-c1 ) ABAAABDZEZFZABEZOFPA
      PAANGHIAQOQAABCJIKLM $.
      $( [13-Oct-97] $)
  $}

  ${
    wbctr.1 $e |- ( a == b ) = 1 $.
    wbctr.2 $e |- C ( b , c ) = 1 $.
    $( Transitive inference. $)
    wbctr $p |- C ( a , c ) = 1 $=
      ( wa wn wo wdf-c2 wran w2or w3tr1 wdf-c1 ) ACBBCFZBCGZFZHAACFZAOFZHBCEIDQ
      NRPABCDJABODJKLM $.
      $( [13-Oct-97] $)
      $( [13-Oct-97] $)
  $}

  ${
    wcbtr.1 $e |- C ( a , b ) = 1 $.
    wcbtr.2 $e |- ( b == c ) = 1 $.
    $( Transitive inference. $)
    wcbtr $p |- C ( a , c ) = 1 $=
      ( wa wn wo wdf-c2 wlan wr4 w2or wr2 wdf-c1 ) ACAABFZABGZFZHACFZACGZFZHABD
      IORQTBCAEJPSABCEKJLMN $.
      $( [13-Oct-97] $)
  $}

  $( Weak commutation law. $)
  wcomorr $p |- C ( a , ( a v b ) ) = 1 $=
    ( wo wleo wlecom ) AABCABDE $.
    $( [13-Oct-97] $)

  $( Weak commutation law. $)
  wcoman1 $p |- C ( ( a ^ b ) , a ) = 1 $=
    ( wa wlea wlecom ) ABCAABDE $.
    $( [13-Oct-97] $)

  ${
    wcomcom.1 $e |- C ( a , b ) = 1 $.
    $( Commutation is symmetric.  Kalmbach 83 p. 22. $)
    wcomcom $p |- C ( b , a ) = 1 $=
      ( wcmtr wt cmtrcom ax-r2 ) BADABDEBAFCG $.
      $( [13-Oct-97] $)

    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    wcomcom2 $p |- C ( a , b ' ) = 1 $=
      ( wn wa wo wdf-c2 ax-a1 bi1 wlan wr5-2v wr2 ax-a2 wdf-c1 ) ABDZAAODZEZAOE
      ZFZRQFZAABEZRFSABCGUAQRBPABPBHIJKLSTQRMILN $.
      $( [13-Oct-97] $)

    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    wcomcom3 $p |- C ( a ' , b ) = 1 $=
      ( wn wcomcom wcomcom2 ) BADBAABCEFE $.
      $( [13-Oct-97] $)

    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    wcomcom4 $p |- C ( a ' , b ' ) = 1 $=
      ( wn wcomcom3 wcomcom2 ) ADBABCEF $.
      $( [13-Oct-97] $)

    $( Commutation dual.  Kalmbach 83 p. 23. $)
    wcomd $p |- ( a == ( ( a v b ) ^ ( a v b ' ) ) ) = 1 $=
      ( wn wa wo wcomcom4 wdf-c2 wcon3 oran bi1 wcon2 w2an wr1 wr2 ) AADZBDZEZP
      QDEZFZDZABFZAQFZEZATPQABCGHIUARDZSDZEZUDTUGTUGDRSJKLUDUGUBUEUCUFUBUEABJKU
      CUFAQJKMNOO $.
      $( [13-Oct-97] $)

    $( Lemma 3(ii) of Kalmbach 83 p. 23. $)
    wcom3ii $p |- ( ( a ^ ( a ' v b ) ) == ( a ^ b ) ) = 1 $=
      ( wa wn wo wcomcom wcomd wlan anass bi1 wr1 ax-a2 anabs wr2 w2an ) ABDZAA
      EZBFZDZQABAFZBRFZDZDZTBUCABAABCGHIUDAUADZUBDZTUFUDUFUDAUAUBJKLUEAUBSUEAAB
      FZDZAUAUGAUAUGBAMKIUHAABNKOUBSBRMKPOOL $.
      $( [13-Oct-97] $)
  $}

  ${
    wcomcom5.1 $e |- C ( a ' , b ' ) = 1 $.
    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    wcomcom5 $p |- C ( a , b ) = 1 $=
      ( wn wa wo wcomcom4 wdf-c2 ax-a1 bi1 w2an w2or w3tr1 wdf-c1 ) ABADZDZPBDZ
      DZEZPRDZEZFAABEZAQEZFPROQCGHAPAIJZUBSUCUAAPBRUDBRBIJKAPQTUDQTQIJKLMN $.
      $( [13-Oct-97] $)
  $}

  ${
    wcomdr.1 $e |- ( a == ( ( a v b ) ^ ( a v b ' ) ) ) = 1 $.
    $( Commutation dual.  Kalmbach 83 p. 23. $)
    wcomdr $p |- C ( a , b ) = 1 $=
      ( wn wa wo df-a bi1 oran wcon2 w2or wr4 wr2 wdf-c1 wcomcom5 ) ABADZBDZAPQ
      EZPQDEZFZAABFZAQFZEZTDZCUCUADZUBDZFZDZUDUCUHUAUBGHUGTUERUFSUARUARDABIHJUB
      SUBSDAQIHJKLMMJNO $.
      $( [13-Oct-97] $)
  $}

  ${
    wcom3i.1 $e |- ( ( a ^ ( a ' v b ) ) == ( a ^ b ) ) = 1 $.
    $( Lemma 3(i) of Kalmbach 83 p. 23. $)
    wcom3i $p |- C ( a , b ) = 1 $=
      ( wn wa anor1 bi1 wcon2 wran ancom wr2 wlor wlea wom4 ax-a2 w3tr2 wdf-c1
      wo ) ABABDZEZTDZAEZRTABEZRZAUCTRZUBUCTUBAADBRZEZUCUBUFAEZUGUAUFATUFTUFDAB
      FGHIUHUGUFAJGKCKLTAASMNUDUETUCOGPQ $.
      $( [13-Oct-97] $)
  $}

  ${
    wfh.1 $e |- C ( a , b ) = 1 $.
    wfh.2 $e |- C ( a , c ) = 1 $.
    $( Weak structural analog of Foulis-Holland Theorem. $)
    wfh1 $p |- ( ( a ^ ( b v c ) ) ==
               ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
      ( wa wo wledi wn bi1 df-a wr1 wcon3 wr2 w2an wcomcom2 wcom3ii anandi wlan
      wf ancom w2or wcon2 anass w3tr1 an12 oran dff an0 wom5 ) ABFZACFZGZABCGZF
      ZUMUOABCHUOUMIZFZAUNBIZCIZFZFZFZTUQUNAFZAIZURGZVDUSGZFZFZVBUOVCUPVGUOVCAU
      NUAJUMVGUMVEIZVFIZGZVGIUKVIULVJUKVIABKJULVJACKJUBVKVGVGVKIZVGVLVEVFKJLMNU
      COVHUNAUTFZFZVBVHUNAVGFZFZVNVHVPUNAVGUDJVOVMUNAVEFZAVFFZFZAURFZAUSFZFZVOV
      MVQVTVRWAAURABDPQAUSACEPQOVOVSAVEVFRJVMWBAURUSRJUESNVNVBUNAUTUFJNNVBATFZT
      VATAVAUNUNIZFZTUTWDUNUTUNUNUTIZUNWFBCUGJLMSTWETWEUNUHJLNSWCTAUIJNNUJL $.
      $( [13-Oct-97] $)

    $( Weak structural analog of Foulis-Holland Theorem. $)
    wfh2 $p |- ( ( b ^ ( a v c ) ) ==
               ( ( b ^ a ) v ( b ^ c ) ) ) = 1 $=
      ( wa wo wledi wn wf oran bi1 wcon2 wran wr2 wlan an4 wcom3ii anass wr1
      df-a wr4 wcomcom wcomcom2 ancom ax-a1 wr5-2v wcomcom3 an12 dff w3tr1 wom5
      an0 ) BAFZBCFZGZBACGZFZUPURBACHURUPIZFZAIZCBUOIZFZFZFZJUTVACFZVCFZVEUTVAU
      QFZVCFZVGUTVABFZUQVBFZFZVIUTURBIVAGZVBFZFZVLUSVNURUPVNUPUNIZVBFZIZVNIUPVR
      UNUOKLVQVNVPVMVBUNVMUNVMIBAUALMNUBOMPVOBVMFZVKFZVLVOVTBUQVMVBQLVSVJVKVSBV
      AFZVJBVABAABDUCUDRWAVJBVAUELONOOVLVIVABUQVBQLOVHVFVCVHVAVAIZCGZFVFUQWCVAA
      WBCAWBAUFLUGPVACACEUHRONOVGVEVACVCSLOVEVAJFZJVDJVABCVBFFZUOVBFZVDJWFWEWFW
      EBCVBSLTVDWECBVBUILJWFUOUJLUKPWDJVAUMLOOULT $.
      $( [13-Oct-97] $)

    $( Weak structural analog of Foulis-Holland Theorem. $)
    wfh3 $p |- ( ( a v ( b ^ c ) ) ==
               ( ( a v b ) ^ ( a v c ) ) ) = 1 $=
      ( wa wo wn wcomcom4 wfh1 anor2 bi1 df-a wr1 wlor wr4 wr2 oran w2an w3tr2
      wcon1 ) ABCFZGZABGZACGZFZAHZBHZCHZGZFZUGUHFZUGUIFZGZUCHZUFHZUGUHUIABDIACE
      IJUKAUJHZGZHZUOUKUSAUJKLURUCUQUBAUBUQUBUQBCMLNOPQUNULHZUMHZFZHZUPUNVCULUM
      RLVBUFUFVBUDUTUEVAUDUTABRLUEVAACRLSNPQTUA $.
      $( [13-Oct-97] $)

    $( Weak structural analog of Foulis-Holland Theorem. $)
    wfh4 $p |- ( ( b v ( a ^ c ) ) ==
               ( ( b v a ) ^ ( b v c ) ) ) = 1 $=
      ( wa wo wn wcomcom4 wfh2 anor2 bi1 df-a wr1 wlor wr4 wr2 oran w2an w3tr2
      wcon1 ) BACFZGZBAGZBCGZFZBHZAHZCHZGZFZUGUHFZUGUIFZGZUCHZUFHZUHUGUIABDIACE
      IJUKBUJHZGZHZUOUKUSBUJKLURUCUQUBBUBUQUBUQACMLNOPQUNULHZUMHZFZHZUPUNVCULUM
      RLVBUFUFVBUDUTUEVAUDUTBARLUEVABCRLSNPQTUA $.
      $( [13-Oct-97] $)

    $( Th. 4.2 Beran p. 49. $)
    wcom2or $p |- C ( a , ( b v c ) ) = 1 $=
      ( wo wa wn wcomcom wdf-c2 ancom 2or bi1 wr2 w2or or4 wfh1 wcomcom3 wdf-c1
      wr1 ) BCFZAUAAUAABGZACGZFZAHZBGZUECGZFZFZUAAGZUAUEGZFZUAUBUFFZUCUGFZFZUIB
      UMCUNBBAGZBUEGZFZUMBAABDIJURUMUPUBUQUFBAKBUEKLMNCCAGZCUEGZFZUNCAACEIJVAUN
      USUCUTUGCAKCUEKLMNOUOUIUBUFUCUGPMNULUIUJUDUKUHUJAUAGZUDUJVBUAAKMABCDEQNUK
      UEUAGZUHUKVCUAUEKMUEBCABDRACERQNOTNSI $.
      $( [10-Nov-98] $)

    $( Th. 4.2 Beran p. 49. $)
    wcom2an $p |- C ( a , ( b ^ c ) ) = 1 $=
      ( wa wn wo wcomcom4 wcom2or df-a con2 ax-r1 bi1 wcbtr wcomcom5 ) ABCFZAGZ
      BGZCGZHZQGZRSTABDIACEIJUAUBUBUAQUABCKLMNOP $.
      $( [10-Nov-98] $)

  $}

  $( Negated biconditional (distributive form) $)
  wnbdi $p |- ( ( a == b ) ' ==
             ( ( ( a v b ) ^ a ' ) v ( ( a v b ) ^ b ' ) ) ) = 1 $=
    ( tb wn wo wa dfnb bi1 wcomorr wcomcom wcomcom2 ax-a2 wcbtr wfh1 wr2 ) ABCD
    ZABEZADZBDZEFZQRFQSFEPTABGHQRSQAAQABIJKQBBQBBAEZQBAIUAQBALHMJKNO $.
    $( [13-Oct-97] $)

  $( Lemma for KA14 soundness. $)
  wlem14 $p |- ( ( ( a ^ b ' ) v a ' ) ' v
            ( ( a ^ b ' ) v ( ( a ' ^ ( ( a v b ' ) ^ ( a v b ) ) )
               v ( a ' ^ ( ( a v b ' ) ^ ( a v b ) ) ' ) ) ) ) = 1 $=
    ( wn wa wo wt df-t ax-r1 ax-a2 bi1 wwbmpr wlan anidm wr1 wleo wle2an wlecom
    wbltr wcomcom3 wlor wcomcom4 wfh1 an1 w3tr2 ) ABCZDZACZEZCZUFUGAUEEZABEZDZD
    UGULCZDEZEZEUIUHEZUPUHUIEZFUQUHGHUPUQUIUHIJKUOUHUIUNUGUFUGULUMEZDUGFDZUNUGU
    RFUGURFFURULGHJLUGULUMAULAULAAADZULUTAUTAAMJNAUJAUKAUEOABOPRQZSAULVAUAUBUSU
    GUGUCJUDTTK $.
    $( [25-Oct-97] $)

  ${
    wr5.1 $e |- ( a == b ) = 1 $.
    $( Proof of weak orthomodular law from weaker-looking equivalent, ~ wom3 ,
       which in turn is derived from ~ ax-wom . $)
    wr5 $p |- ( ( a v c ) == ( b v c ) ) = 1 $=
      ( wr5-2v ) ABCDE $.
      $( [25-Oct-97] $)
  $}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Kalmbach axioms (soundness proofs) that require WOML
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( >>>Remove "id" when bug is fixed. $)
  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA2. $)
  ska2 $p |- ( ( a == b ) ' v ( ( b == c ) ' v ( a == c ) ) ) = 1 $=
    ( wn wo wa wt ax-a3 ax-r1 ax-a2 or12 lor ax-r2 wcomorr bi1 wcomcom wcomcom2
    bltr ancom wr2 tb dfnb dfb 2or id le1 df-t oran3 leor le2or lelor letr lebi
    orordi wcbtr wfh4 or1 ran an1 or32 w2or wlor orordir anor3 wcom2or oran leo
    wwbmpr wr5-2v wcomcom3 wfh1 wwbmp ax-r5 ledi leror ) ABUADZBCUADZACUAZEZEAB
    EZADZBDZEFZBCEZWBCDZEZFZACFZWAWEFZEZEZEZGVPWCVSWKABUBVQWGVRWJBCUBACUCUDUDWL
    WCWGEZWJEZGWNWLWCWGWJHIWNWNGWNUEWNGWNUFGVTWAFZWBVTFZEZWBWDFZWDWEFZEZEZWJEZW
    NGWOWPWREZWSEZEZWJEZXBXFGWOWBVTWDEZFZWSEZEZWJEZXFXKWJXJEZGXJWJJXLWOWJXIEZEZ
    GWJWOXIKXNWOWHWIWBEZWSEZEZEZXRWHWOXPEZEZGWOWHXPKXTWHWIWBWOEZWBWSEZEZEZEZGXS
    YDWHXSXOWOWSEZEZYDWOXOWSKYGWIWBYFEZEYDWIWBYFHYHYCWIWBWOWSUNLMMLYEWHWIWBWAEZ
    WFEZEZEZYLWIWHYJEZEZGWHWIYJKYNGYNUFGYMYNGWHWAWEEZEZYMGWHWHDZEZYPWHUGYPYRYOY
    QWHACUHLIMYOYJWHWAYIWEWFWAWBUIWEWBUIUJUKRYMWIUIULUMMYDYKWHYCYJWIYAYIYBWFYAW
    BVTEZYIFZYIVTWBWAVTBBVTBBAEZVTBANUUAVTBAJOUOZPQVTAAVTABNPQUPYTYIYTGYIFZYIYS
    GYIYSAWBBEZEZGWBABKUUEAGEGUUDGAUUDBWBEZGWBBJGUUFBUGIZMLAUQMMURUUCYIGFYIGYIS
    YIUSMMOTYBWBWDEZWFFZWFWDWBWEWDBBWDBCNZPQWDCCWDCCBEZWDCBNUUKWDCBJZOUOPQUPUUI
    WFUUIGWFFZWFUUHGWFUUHWDWBEZGWBWDJUUNUUFCEZGBCWBUTUUOCUUFEZGUUFCJUUPCGEGUUFG
    CUUGLCUQMMMMURUUMWFGFWFGWFSWFUSMMOTVAVBVBVHMMXMXQWOXMWHWIXIEZEZXQXMUURWHWIX
    IHOUUQXPWHUUQWIXHEZWSEZXPUUQUUTUUTUUQWIXHWSHIOUUSXOWSUUSWIXGWBFZEZXOUUSUVBX
    HUVAWIWBXGSLOUVBWIXGEZXOFZXOXGWIWBXGACEZDZWIXGUVEUVEXGUVEUVEBEZXGUVEBNUVGXG
    UVGVTUUKEXGACBVCUUKWDVTUULLMOUOPQUVFWIWIUVFACVDIOUOXGBBXGBVTWDUUBUUJVEPQUPU
    VDXOUVDGXOFZXOUVCGXOUVCGUVCUFGWIUVEEZUVCGWIWIDZEUVIWIUGUVJUVEWIUVEUVJACVFIL
    MUVEXGWIAVTCWDABVGCBUIUJUKRUMURUVHXOGFXOGXOSXOUSMMOTTVITVBTVBVHMMXJXEWJXIXD
    WOXHXCWSWBVTWDBVTUUBVJBWDUUJVJVKVIVBVIVLIXEXAWJXEWQWREZWSEZXAXEWOXCEZWSEZUV
    LUVNXEWOXCWSHIUVMUVKWSUVKUVMWOWPWRHIVMMWQWRWSHMVMMXAWMWJWQWCWTWGWQWOVTWBFZE
    WCWPUVOWOWBVTSLVTWAWBVNRWTWDWBFZWSEWGWRUVPWSWBWDSVMWDWBWEVNRUJVORUMMMM $.
    $( [10-Nov-98] $)

  $( Soundness theorem for Kalmbach's quantum propositional logic axiom KA4. $)
  ska4 $p |- ( ( a == b ) ' v ( ( a ^ c ) == ( b ^ c ) ) ) = 1 $=
    ( tb wn wa wo wt 2or ax-a2 le1 df-t lor ax-r1 ax-r2 lea lecon leror wcomcom
    wcomcom2 dfnb dfb ax-a3 oran le2an bltr lebi ran ancom an1 3tr anandir lear
    oran3 ax-r5 ler2an lelor wlea wleo wletr wlecom wlbtr wcom2an wcomorr wcbtr
    bi1 wcom2or wfh4 wlor wwbmpr ) ABDEZACFZBCFZDZGABGZAEZBEZGZFZVLVMFZVLEZVMEZ
    FZGZGWDVSGZHVKVSVNWDABUAVLVMUBIVSWDJWEVTWCVSGZGZHVTWCVSUCWGVTWCVOGZWCVRGZFZ
    GZWKVTWIGZHWJWIVTWJHWIFWIHFWIWHHWIWHHWHKHVPVQFZVOGZWHHWMWMEZGZWNWMLWNWPVOWO
    WMABUDMNOWMWCVOVPWAVQWBVLAACPQVMBBCPQUERUFUGUHHWIUIWIUJUKMWLHWLKHVTCEZVRGZG
    ZWLHABFZCFZXAEZGWSXALXAVTXBWRABCULXBVRWQGZWRXCXBXCWTEZWQGXBVRXDWQABUNUOWTCU
    NONVRWQJOIOWRWIVTWQWCVRWQWAWBVLCACUMQVMCBCUMQUPRUQUFUGOWFWJVTVOWCVRVOWAWBVO
    VLVLVOVLVOVLAVOACURABUSUTVASTVOVMVMVOVMVOVMBVOBCURBBAGZVOBAUSXEVOBAJVFZVBUT
    VASTVCVOVPVQVOAAVOABVDSTVOBBVOBXEVOBAVDXFVESTVGVHVIVJOUK $.
    $( [9-Nov-98] $)

  $( Weak orthomodular law for study of weakly orthomodular lattices. $)
  wom2 $p |- a =< ( ( a == b ) ' v ( ( a v c ) == ( b v c ) ) ) $=
    ( wt tb wn wo le1 wa conb ax-r4 oran 2bi ax-r1 ax-r2 2or ska4 lbtr ) ADABEZ
    FZACGZBCGZEZGZAHUDDUDAFZBFZEZFZUECFZIZUFUIIZEZGDTUHUCULSUGABJKUCUJFZUKFZEZU
    LUAUMUBUNACLBCLMULUOUJUKJNOPUEUFUIQONR $.
    $( [13-Nov-98] $)

  $( 3-variable version of weakly orthomodular law.  It is proved from a
     weaker-looking equivalent, ~ wom2 , which in turn is proved from
     ~ ax-wom . $)
  ka4ot $p |- ( ( a == b ) ' v ( ( a v c ) == ( b v c ) ) ) = 1 $=
    ( tb wn wo wt le1 wom2 bicom ax-r4 2or lbtr le2or oridm leror ka4lemo ax-a3
    lor ax-r2 le3tr2 lebi ) ABDZEZACFZBCFZDZFZGUHHABFZUGFUHUGFZGUHUIUHUGUIUHUHF
    UHAUHBUHABCIBBADZEZUFUEDZFUHBACIULUDUMUGUKUCBAJKUFUEJLMNUHOMPABCQUJUDUGUGFZ
    FUHUDUGUGRUNUGUDUGOSTUAUB $.
    $( [25-Oct-97] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Weak orthomodular law variants
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Variant of weakly orthomodular law. $)
  woml6 $p |- ( ( a ->1 b ) ' v ( a ->2 b ) ) = 1 $=
    ( wn wo wa wt df-a lor ax-r2 ax-r1 2or ax-a2 ancom wcomorr wcomcom wcomcom3
    bi1 wcomcom5 df-t 3tr wi1 wi2 df-i1 ax-r4 df-i2 ax-r5 ax-a3 tb wcbtr wr5-2v
    1b wfh4 or12 or1 ran an1 anor3 wr2 wr1 3tr2 ) ABUAZCZABUBZDAACZBCZDZEZBVDVE
    EZDZDZFVBVGVCVIVBVDVFCZDZCZVGVAVLVAVDABEZDVLABUCVNVKVDABGHIUDVGVMAVFGJIABUE
    KVGBDZVHDBVFAEZDZVHDZVJFVOVQVHVOBVGDVQVGBLVGVPBAVFMHIUFVGBVHUGVRFVRUHZFVSVR
    VRUKJVRFVRBVFDZBADZEZVHDZFVQWBVHVFBAVFBVFVEVEVFVEVEVDDZVFVEVDNWDVFVEVDLQUIO
    PRVFAVFVDVDVFVDVENOPRULUJWCFWCABDZWECZDZFWBWEVHWFWBWAFEZWAWEWBFWAEWHVTFWAVT
    VDBVEDZDZVDFDZFBVDVEUMWKWJFWIVDBSHJVDUNTUOFWAMIWAUPBALTABUQKFWGWESJIQURUSIU
    TI $.
    $( [14-Nov-98] $)

  $( Variant of weakly orthomodular law. $)
  woml7 $p |- ( ( ( a ->2 b ) ^ ( b ->2 a ) ) ' v ( a == b ) ) = 1 $=
    ( wi2 wa wn tb wo wt df-i2 ax-a2 ax-r2 ancom ax-r5 3tr 2an wcoman1 wcomcom3
    bi1 wcomcom5 wr2 ax-r4 id dfb 2or 1b ax-r1 df-t wa2 wbctr wfh3 wr4 wr5-2v )
    ABCZBACZDZEZABFZGAEZBEZDZAGZUTBGZDZEZABDZUTGZGZHVGFZHUPVDUQVFUPVDVDUOVCUOVB
    VADVCUMVBUNVAUMBUTGVBABIBUTJKUNAUSURDZGVIAGVABAIAVIJVIUTAUSURLMNOVBVALKUAVD
    UBKABUCUDVHVGVGUEUFHVFEZVFGZVGHVKHVFVJGVKVFUGVFVJJKRVJVDVFVFVCVFUTVEGVCVEUT
    UHUTABUTAUTURURUSPQSUTBUTUSUTVIUSUTVIURUSLRUSURPUIQSUJTUKULTN $.
    $( [14-Nov-98] $)

  ${
    ortha.1 $e |- a =< b ' $.
    $( Property of orthogonality. $)
    ortha $p |- ( a ^ b ) = 0 $=
      ( wa wf wn lecon3 lelan dff ax-r1 lbtr le0 lebi ) ABDZENAAFZDZEBOAABCGHEP
      AIJKNLM $.
      $( [10-Mar-02] $)
  $}


$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        Orthomodular lattices
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Orthomodular law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    r3.1 $e |- ( c v c ' ) = ( ( a ' v b ' ) ' v ( a v b ) ' ) $.
    $( Orthomodular law - when added to an ortholattice, it makes the
       ortholattice an orthomodular lattice.  See ~ r3a for a more compact
       version. $)
    ax-r3 $a |- a = b $.
  $}

  ${
    r3a.1 $e |- 1 = ( a == b ) $.
    $( Orthomodular law restated. $)
    r3a $p |- a = b $=
      ( wt tb wn wo df-t df-b 3tr2 ax-r3 ) ABADABEAAFZGLBFGFABGFGCAHABIJK $.
      $( [12-Aug-97] $)
  $}

  ${
    wed.1 $e |- a = b $.
    wed.2 $e |- ( a == b ) = ( c == d ) $.
    $( Weak equivalential detachment (WBMP). $)
    wed $p |- c = d $=
      ( wt tb 1bi ax-r2 r3a ) CDGABHCDHABEIFJK $.
      $( [10-Aug-97] $)
  $}

  ${
    r3b.1 $e |- ( c v c ' ) = ( a == b ) $.
    $( Orthomodular law from weak equivalential detachment (WBMP). $)
    r3b $p |- a = b $=
      ( wt tb wn wo df-t ax-r2 1b wed ) EABFZABECCGHMCIDJMKL $.
      $( [10-Aug-97] $)
  $}

  ${
    lem3.1.1 $e |- ( a v b ) = b $.
    lem3.1.2 $e |- ( b ' v a ) = 1 $.
    $( Lemma used in proof of Th. 3.1 of Pavicic 1993. $)
    lem3.1 $p |- a = b $=
      ( tb wt wlem3.1 ax-r1 r3a ) ABABEFABCDGHI $.
      $( [12-Aug-97] $)

    $( Lemma used in proof of Th. 3.1 of Pavicic 1993. $)
    lem3a.1 $p |- ( a v b ) = a $=
      ( wo lem3.1 ax-r1 lor oridm ax-r2 ) ABEAAEABAAABABCDFGHAIJ $.
      $( [12-Aug-97] $)
  $}

  $( Orthomodular law.  Compare Th. 1 of Pavicic 1987. $)
  oml $p |- ( a v ( a ' ^ ( a v b ) ) ) = ( a v b ) $=
    ( wn wo wa omlem1 omlem2 lem3.1 ) AACABDZEDIABFABGH $.
    $( [12-Aug-97] $)

  $( Orthomodular law. $)
  omln $p |- ( a ' v ( a ^ ( a ' v b ) ) ) = ( a ' v b ) $=
    ( wn wo wa ax-a1 ran lor oml ax-r2 ) ACZAKBDZEZDKKCZLEZDLMOKANLAFGHKBIJ $.
    $( [2-Nov-97] $)

  $( Orthomodular law. $)
  omla $p |- ( a ^ ( a ' v ( a ^ b ) ) ) = ( a ^ b ) $=
    ( wn wa wo df-a ax-r1 lor ax-r4 ax-r2 omln con2 3tr1 con1 ) AACZABDZEZDZPOQ
    CZEZOBCZEZRCPCTOAUBDZEUBSUCOUCSUCOUBCZEZCSAUBFUEQUDPOPUDABFZGHIJGHAUAKJRTAQ
    FLPUBUFLMN $.
    $( [7-Nov-97] $)

  $( Orthomodular law. $)
  omlan $p |- ( a ' ^ ( a v ( a ' ^ b ) ) ) = ( a ' ^ b ) $=
    ( wn wa wo ax-a1 ax-r5 lan omla ax-r2 ) ACZAKBDZEZDKKCZLEZDLMOKANLAFGHKBIJ
    $.
    $( [7-Nov-97] $)

  $( Orthomodular law. $)
  oml5 $p |- ( ( a ^ b ) v ( ( a ^ b ) ' ^ ( b v c ) ) )
             = ( b v c ) $=
    ( wa wn wo oml ax-a3 ancom lor orabs ax-r2 ax-r5 or12 3tr2 lan 3tr1 ) ABDZR
    EZBCFZDZFZBRFZCFZTRSRTFZDZFUEUBUDRTGUAUFRTUESUDBRCFFZTUEBRCHZUCBCUCBBADZFBR
    UIBABIJBAKLMZBRCNZOPJUDUGUEUHUKLQUJL $.
    $( [16-Nov-97] $)

  $( Orthomodular law. $)
  oml5a $p |- ( ( a v b ) ^ ( ( a v b ) ' v ( b ^ c ) ) )
              = ( b ^ c ) $=
    ( wo wn wa omla anass ax-a2 lan anabs ax-r2 ran an12 3tr2 lor 3tr1 ) ABDZRE
    ZBCFZDZFZBRFZCFZTRSRTFZDZFUEUBUDRTGUAUFRTUESUDBRCFFZTUEBRCHZUCBCUCBBADZFBRU
    IBABIJBAKLMZBRCNZOPJUDUGUEUHUKLQUJL $.
    $( [16-Nov-97] $)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Relationship analogues using OML (ordering; commutation)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    oml2.1 $e |- a =< b $.
    $( Orthomodular law.  Kalmbach 83 p. 22. $)
    oml2 $p |- ( a v ( a ' ^ b ) ) = b $=
      ( wn wo wa oml df-le2 lan lor 3tr2 ) AADZABEZFZEMALBFZEBABGNOAMBLABCHZIJP
      K $.
      $( [27-Aug-97] $)
  $}

  ${
    oml3.1 $e |- a =< b $.
    oml3.2 $e |- ( b ^ a ' ) = 0 $.
    $( Orthomodular law.  Kalmbach 83 p. 22. $)
    oml3 $p |- a = b $=
      ( wf wo wn wa ax-r1 ancom ax-r2 lor or0 oml2 3tr2 ) AEFAAGZBHZFABEQAEBPHZ
      QREDIBPJKLAMABCNO $.
      $( [27-Aug-97] $)
  $}

  ${
    comcom.1 $e |- a C b $.
    $( Commutation is symmetric.  Kalmbach 83 p. 22. $)
    comcom $p |- b C a $=
      ( wa wn wo ax-a2 ran ancom ax-r2 anabs df-c2 df-a anor1 ax-r4 ax-r1 anass
      lan 2or lor con2 3tr1 orabs df-le1 oml2 3tr2 df-c1 ) BAABDZUHEZBDZFZUHAEZ
      BDZFZBBADZBULDZFUNUKUMUJUHULBEZFZULBFZBDZDZURBDUMUJUTBURUTBBULFZDZBUTVBBD
      VCUSVBBULBGHVBBIJBULKJRUMURUSDZBDVAULVDBULUREZUSEZFZEZVDAVGAUHAUQDZFVGABC
      LUHVEVIVFABMZABNSJOVDVHURUSMPJHURUSBQJUIURBUHURVJUAHUBTPUHBUHBUHBFBUHFZBU
      HBGVKBUOFBUHUOBABIZTBAUCJJUDUEUHUOUMUPVLULBISUFUG $.
      $( [27-Aug-97] $)

    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    comcom3 $p |- a ' C b $=
      ( wn comcom comcom2 ) BADBAABCEFE $.
      $( [27-Aug-97] $)

    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    comcom4 $p |- a ' C b ' $=
      ( wn comcom3 comcom2 ) ADBABCEF $.
      $( [27-Aug-97] $)

    $( Commutation dual.  Kalmbach 83 p. 23. $)
    comd $p |- a = ( ( a v b ) ^ ( a v b ' ) ) $=
      ( wn wa wo comcom4 df-c2 con3 oran con2 2an ax-r1 ax-r2 ) AADZBDZEZOPDEZF
      ZDZABFZAPFZEZASOPABCGHITQDZRDZEZUCSUFQRJKUCUFUAUDUBUEABJAPJLMNN $.
      $( [27-Aug-97] $)

    $( Lemma 3(ii) of Kalmbach 83 p. 23. $)
    com3ii $p |- ( a ^ ( a ' v b ) ) = ( a ^ b ) $=
      ( wa wn wo comcom comd lan anass ax-r1 ax-a2 anabs ax-r2 2an ) ABDZAAEZBF
      ZDZPABAFZBQFZDZDZSBUBABAABCGHIUCATDZUADZSUEUCATUAJKUDAUARUDAABFZDATUFABAL
      IABMNBQLONNK $.
      $( [27-Aug-97] $)
  $}

  ${
    comcom5.1 $e |- a ' C b ' $.
    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    comcom5 $p |- a C b $=
      ( wn wa wo comcom4 df-c2 ax-a1 2an 2or 3tr1 df-c1 ) ABADZDZOBDZDZEZOQDZEZ
      FAABEZAPEZFOQNPCGHAIZUARUBTAOBQUCBIJAOPSUCPIJKLM $.
      $( [27-Aug-97] $)
  $}

  ${
    comcom6.1 $e |- a ' C b $.
    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    comcom6 $p |- a C b $=
      ( wn comcom2 comcom5 ) ABADBCEF $.
      $( [26-Nov-97] $)
  $}

  ${
    comcom7.1 $e |- a C b ' $.
    $( Commutation equivalence.  Kalmbach 83 p. 23. $)
    comcom7 $p |- a C b $=
      ( wn comcom3 comcom5 ) ABABDCEF $.
      $( [26-Nov-97] $)
  $}

  $( Commutation law. $)
  comor1 $p |- ( a v b ) C a $=
    ( wo comorr comcom ) AABCABDE $.
    $( [9-Nov-97] $)

  $( Commutation law. $)
  comor2 $p |- ( a v b ) C b $=
    ( wo ax-a2 comor1 bctr ) ABCBACBABDBAEF $.
    $( [9-Nov-97] $)

  $( Commutation law. $)
  comorr2 $p |- b C ( a v b ) $=
    ( wo comor2 comcom ) ABCBABDE $.
    $( [26-Nov-97] $)

  $( Commutation law. $)
  comanr1 $p |- a C ( a ^ b ) $=
    ( wa coman1 comcom ) ABCAABDE $.
    $( [26-Nov-97] $)

  $( Commutation law. $)
  comanr2 $p |- b C ( a ^ b ) $=
    ( wa coman2 comcom ) ABCBABDE $.
    $( [26-Nov-97] $)

  ${
    comdr.1 $e |- a = ( ( a v b ) ^ ( a v b ' ) ) $.
    $( Commutation dual.  Kalmbach 83 p. 23. $)
    comdr $p |- a C b $=
      ( wn wa wo df-a oran con2 2or ax-r4 ax-r2 df-c1 comcom5 ) ABADZBDZAOPEZOP
      DEZFZAABFZAPFZEZSDZCUBTDZUADZFZDUCTUAGUFSUDQUERTQABHIUARAPHIJKLLIMN $.
      $( [27-Aug-97] $)
  $}

  ${
    com3i.1 $e |- ( a ^ ( a ' v b ) ) = ( a ^ b ) $.
    $( Lemma 3(i) of Kalmbach 83 p. 23. $)
    com3i $p |- a C b $=
      ( wn wa wo anor1 con2 ran ancom ax-r2 lor lea oml2 ax-a2 3tr2 df-c1 ) ABA
      BDZEZSDZAEZFSABEZFAUBSFUAUBSUAAADBFZEZUBUAUCAEUDTUCASUCABGHIUCAJKCKLSAARM
      NSUBOPQ $.
      $( [28-Aug-97] $)
  $}

  ${
    df2c1.1 $e |- a = ( ( a v b ) ^ ( a v b ' ) ) $.
    $( Dual 'commutes' analogue for ` == ` analogue of ` = ` . $)
    df2c1 $p |- a C b $=
      ( wn wa wo df-a anor3 2or ax-r1 ax-r4 ax-r2 con2 df-c1 comcom5 ) ABADZBDZ
      APQEZPQDEZFZAABFZAQFZEZTDZCUCUADZUBDZFZDUDUAUBGUGTTUGRUESUFABHAQHIJKLLMNO
      $.
      $( [20-Sep-98] $)
  $}

  ${
    fh.1 $e |- a C b $.
    fh.2 $e |- a C c $.
    $( Foulis-Holland Theorem. $)
    fh1 $p |- ( a ^ ( b v c ) ) = ( ( a ^ b ) v ( a ^ c ) ) $=
      ( wa wo ledi wn ancom df-a ax-r1 con3 ax-r2 2an comcom2 com3ii anandi lan
      wf 2or con2 anass 3tr1 an12 oran dff an0 oml3 ) ABFZACFZGZABCGZFZULUNABCH
      UNULIZFZAUMBIZCIZFZFZFZTUPUMAFZAIZUQGZVCURGZFZFZVAUNVBUOVFAUMJULVFULVDIZV
      EIZGZVFIUJVHUKVIABKACKUAVJVFVFVJIVDVEKLMNUBOVGUMAUSFZFZVAVGUMAVFFZFVLUMAV
      FUCVMVKUMAVDFZAVEFZFAUQFZAURFZFVMVKVNVPVOVQAUQABDPQAURACEPQOAVDVERAUQURRU
      DSNUMAUSUENNVAATFTUTTAUTUMUMIZFZTUSVRUMUSUMUMUSIBCUFLMSTVSUMUGLNSAUHNNUIL
      $.
      $( [29-Aug-97] $)

    $( Foulis-Holland Theorem. $)
    fh2 $p |- ( b ^ ( a v c ) ) = ( ( b ^ a ) v ( b ^ c ) ) $=
      ( wa wo ledi wn wf oran df-a con2 ran ax-r2 lan an4 com3ii anass ax-r1
      ax-r4 comcom comcom2 ancom ax-a1 ax-r5 comcom3 an12 dff 3tr1 an0 oml3 ) B
      AFZBCFZGZBACGZFZUOUQBACHUQUOIZFZAIZCBUNIZFZFZFZJUSUTCFZVBFZVDUSUTUPFZVBFZ
      VFUSUTBFZUPVAFZFZVHUSUQBIUTGZVAFZFZVKURVMUQUOVMUOUMIZVAFZIVMIUMUNKVPVMVOV
      LVAUMVLBALMNUAOMPVNBVLFZVJFVKBUPVLVAQVQVIVJVQBUTFVIBUTBAABDUBUCRBUTUDONOO
      UTBUPVAQOVGVEVBVGUTUTIZCGZFVEUPVSUTAVRCAUEUFPUTCACEUGRONOUTCVBSOVDUTJFJVC
      JUTBCVAFFZUNVAFZVCJWAVTBCVASTCBVAUHUNUIUJPUTUKOOULT $.
      $( [29-Aug-97] $)

    $( Foulis-Holland Theorem. $)
    fh3 $p |- ( a v ( b ^ c ) ) = ( ( a v b ) ^ ( a v c ) ) $=
      ( wa wo comcom4 fh1 anor2 df-a ax-r1 lor ax-r4 ax-r2 oran 2an 3tr2 con1
      wn ) ABCFZGZABGZACGZFZATZBTZCTZGZFZUFUGFZUFUHFZGZUBTZUETZUFUGUHABDHACEHIU
      JAUITZGZTUNAUIJUQUBUPUAAUAUPBCKLMNOUMUKTZULTZFZTUOUKULPUTUEUEUTUCURUDUSAB
      PACPQLNORS $.
      $( [29-Aug-97] $)

    $( Foulis-Holland Theorem. $)
    fh4 $p |- ( b v ( a ^ c ) ) = ( ( b v a ) ^ ( b v c ) ) $=
      ( wa wo comcom4 fh2 anor2 df-a ax-r1 lor ax-r4 ax-r2 oran 2an 3tr2 con1
      wn ) BACFZGZBAGZBCGZFZBTZATZCTZGZFZUFUGFZUFUHFZGZUBTZUETZUGUFUHABDHACEHIU
      JBUITZGZTUNBUIJUQUBUPUABUAUPACKLMNOUMUKTZULTZFZTUOUKULPUTUEUEUTUCURUDUSBA
      PBCPQLNORS $.
      $( [29-Aug-97] $)

    $( Foulis-Holland Theorem. $)
    fh1r $p |- ( ( b v c ) ^ a ) = ( ( b ^ a ) v ( c ^ a ) ) $=
      ( wo wa fh1 ancom 2or 3tr1 ) ABCFZGABGZACGZFLAGBAGZCAGZFABCDEHLAIOMPNBAIC
      AIJK $.
      $( [23-Nov-97] $)

    $( Foulis-Holland Theorem. $)
    fh2r $p |- ( ( a v c ) ^ b ) = ( ( a ^ b ) v ( c ^ b ) ) $=
      ( wo wa fh2 ancom 2or 3tr1 ) BACFZGBAGZBCGZFLBGABGZCBGZFABCDEHLBIOMPNABIC
      BIJK $.
      $( [23-Nov-97] $)

    $( Foulis-Holland Theorem. $)
    fh3r $p |- ( ( b ^ c ) v a ) = ( ( b v a ) ^ ( c v a ) ) $=
      ( wa wo fh3 ax-a2 2an 3tr1 ) ABCFZGABGZACGZFLAGBAGZCAGZFABCDEHLAIOMPNBAIC
      AIJK $.
      $( [23-Nov-97] $)

    $( Foulis-Holland Theorem. $)
    fh4r $p |- ( ( a ^ c ) v b ) = ( ( a v b ) ^ ( c v b ) ) $=
      ( wa wo fh4 ax-a2 2an 3tr1 ) BACFZGBAGZBCGZFLBGABGZCBGZFABCDEHLBIOMPNABIC
      BIJK $.
      $( [23-Nov-97] $)

    $( Foulis-Holland Theorem. $)
    fh2c $p |- ( b ^ ( c v a ) ) = ( ( b ^ c ) v ( b ^ a ) ) $=
      ( wo wa fh2 ax-a2 lan 3tr1 ) BACFZGBAGZBCGZFBCAFZGNMFABCDEHOLBCAIJNMIK $.
      $( [20-Sep-98] $)

    $( Foulis-Holland Theorem. $)
    fh4c $p |- ( b v ( c ^ a ) ) = ( ( b v c ) ^ ( b v a ) ) $=
      ( wa wo fh4 ancom lor 3tr1 ) BACFZGBAGZBCGZFBCAFZGNMFABCDEHOLBCAIJNMIK $.
      $( [20-Sep-98] $)

    $( Foulis-Holland Theorem. $)
    fh1rc $p |- ( ( c v b ) ^ a ) = ( ( c ^ a ) v ( b ^ a ) ) $=
      ( wo wa fh1r ax-a2 ran 3tr1 ) BCFZAGBAGZCAGZFCBFZAGNMFABCDEHOLACBIJNMIK
      $.
      $( [10-Mar-02] $)

    $( Foulis-Holland Theorem. $)
    fh2rc $p |- ( ( c v a ) ^ b ) = ( ( c ^ b ) v ( a ^ b ) ) $=
      ( wo wa fh2r ax-a2 ran 3tr1 ) ACFZBGABGZCBGZFCAFZBGNMFABCDEHOLBCAIJNMIK
      $.
      $( [20-Sep-98] $)

    $( Foulis-Holland Theorem. $)
    fh3rc $p |- ( ( c ^ b ) v a ) = ( ( c v a ) ^ ( b v a ) ) $=
      ( wa wo fh3r ancom ax-r5 3tr1 ) BCFZAGBAGZCAGZFCBFZAGNMFABCDEHOLACBIJNMIK
      $.
      $( [6-Aug-01] $)

    $( Foulis-Holland Theorem. $)
    fh4rc $p |- ( ( c ^ a ) v b ) = ( ( c v b ) ^ ( a v b ) ) $=
      ( wa wo fh4r ancom ax-r5 3tr1 ) ACFZBGABGZCBGZFCAFZBGNMFABCDEHOLBCAIJNMIK
      $.
      $( [20-Sep-98] $)

    $( Th. 4.2 Beran p. 49. $)
    com2or $p |- a C ( b v c ) $=
      ( wo wa wn comcom df-c2 ancom 2or ax-r2 or4 fh1 comcom3 ax-r1 df-c1 ) BCF
      ZASASABGZACGZFZAHZBGZUCCGZFZFZSAGZSUCGZFZSTUDFZUAUEFZFUGBUKCULBBAGZBUCGZF
      UKBAABDIJUMTUNUDBAKBUCKLMCCAGZCUCGZFULCAACEIJUOUAUPUECAKCUCKLMLTUDUAUENMU
      JUGUHUBUIUFUHASGUBSAKABCDEOMUIUCSGUFSUCKUCBCABDPACEPOMLQMRI $.
      $( [7-Nov-97] $)

    $( Th. 4.2 Beran p. 49. $)
    com2an $p |- a C ( b ^ c ) $=
      ( wa wn wo comcom4 com2or df-a con2 ax-r1 cbtr comcom5 ) ABCFZAGZBGZCGZHZ
      PGZQRSABDIACEIJUATPTBCKLMNO $.
      $( [7-Nov-97] $)

  $}

  $( Commutation theorem for Sasaki implication. $)
  combi $p |- a C ( a == b ) $=
    ( wa wn wo tb comanr1 comcom6 com2or dfb ax-r1 cbtr ) AABCZADZBDZCZEZABFZAM
    PABGAPNOGHIRQABJKL $.
    $( [25-Oct-98] $)

  $( Negated biconditional (distributive form) $)
  nbdi $p |- ( a == b ) ' =
             ( ( ( a v b ) ^ a ' ) v ( ( a v b ) ^ b ' ) ) $=
    ( tb wn wo wa dfnb comorr comcom comcom2 ax-a2 cbtr fh1 ax-r2 ) ABCDABEZADZ
    BDZEFOPFOQFEABGOPQOAAOABHIJOBBOBBAEOBAHBAKLIJMN $.
    $( [30-Aug-97] $)

  $( Orthomodular law. $)
  oml4 $p |- ( ( a == b ) ^ a ) =< b $=
    ( tb wa ancom wn wo dfb lan coman1 comcom comcom2 comcom5 fh1 or0 ran anass
    wf ax-r2 3tr2 anidm ax-r1 an0 dff 2or lea bltr ) ABCZADZBADZBUIAUHDZUJUHAEU
    KAABDZAFZBFZDZGZDZUJUHUPAABHIUQAULDZAUODZGZUJAULUOULAABJKAUOUMUOUOUMUMUNJKL
    MNULRGULUTUJULOULURRUSULAADZBDZURVBULVAABAUAPUBAABQSRAUMDZUNDZUSUNRDRUNDRVD
    UNREUNUCRVCUNAUDPTAUMUNQSUEABETSSSBAUFUG $.
    $( [25-Oct-97] $)

  $( Orthomodular law. $)
  oml6 $p |- ( a v ( b ^ ( a ' v b ' ) ) ) = ( a v b ) $=
    ( wn wo wa comor1 comcom7 comor2 fh4c df-t ax-r5 ax-a2 or1 ax-r2 ax-a3 3tr2
    wt ax-r1 lan an1 3tr ) ABACZBCZDZEDABDZAUDDZEUEQEUEUDABUDAUBUCFGUDBUBUCHGIU
    FQUEQUFQUCDZAUBDZUCDQUFQUHUCAJKUGUCQDQQUCLUCMNAUBUCOPRSUETUA $.
    $( [3-Jan-99] $)

  ${
    gsth.1 $e |- a C b $.
    gsth.2 $e |- b C c $.
    gsth.3 $e |- a C ( b ^ c ) $.
    $( Gudder-Schelp's Theorem.  Beran, p. 262, Th. 4.1. $)
    gsth $p |- ( a ^ b ) C c $=
      ( wa wo wn comcom fh4rc comcom2 lan fh1r ran lea ancom wf ax-r1 3tr lecom
      2an an4 an32 comd leo letr coman2 com2or df2le2 fh1 anass dff an0 lor or0
      cbtr ax-r2 2or ax-a2 lelan bltr df-le2 3tr2 df2c1 ) ABGZCVFCHZVFCIZHZGZVF
      VJACHZBCHZGZAVHHZBVHHZGZGVKVNGZVLVOGZGZVFVGVMVIVPBCAEABDJZKBVHABCELVTKUBV
      KVLVNVOUCVQBGVKBGZVNGZVSVFVKVNBUDBVRVQBCEUEMWBVFCBGZHZVNGVFVNGZWCVNGZHZVF
      WAWDVNBACVTENOVNVFWCVFVNVFVNVFAVNABPAVHUFUGZUAJVNBCGZWCWIVNWIAVHAWIFJZWIC
      BCUHLZUIJBCQUQNWGVFWIAGZHWLVFHVFWEVFWFWLVFVNWHUJWFWIVNGWLWIVHGZHZWLWCWIVN
      CBQOWIAVHWJWKUKWNWLRHWLWMRWLWMBCVHGZGBRGRBCVHULWORBRWOCUMSMBUNTUOWLUPURTU
      SVFWLUTWLVFWLAWIGVFWIAQWIBABCPVAVBVCTTVDTSVE $.
      $( [20-Sep-98] $)
  $}

  ${
    gsth2.1 $e |- b C c $.
    gsth2.2 $e |- a C ( b ^ c ) $.
    $( Stronger version of Gudder-Schelp's Theorem.  Beran, p. 263, Th. 4.2. $)
    gsth2 $p |- ( a ^ b ) C c $=
      ( wa wn comcom ancom ax-a2 ran ax-r2 comor2 comcom7 comcom2 coman1 com2or
      wo df-a cbtr gsth bctr lor ax-r4 ax-r1 com2an omla ) CABFZCBBGZBAFZRZFZUH
      CBUKBCDHCUKCBUIAGZRZFZUKGZUOCUOUMUIRZBFZCUOUNBFURBUNIUNUQBUIUMJKLUQBCUQBU
      MUIMNDBCFZUQUSUMUIUSAAUSEHOUSBBCPOQHUAUBHUOUIUNGZRZGZUPBUNSUPVBUKVAUJUTUI
      BASUCUDUELTNUFULUJUHBAUGBAILTH $.
      $( [20-Sep-98] $)
  $}

  ${
    gstho.1 $e |- b C c $.
    gstho.2 $e |- a C ( b v c ) $.
    $( "OR" version of Gudder-Schelp's Theorem. $)
    gstho $p |- ( a v b ) C c $=
      ( wo wn wa anor3 ax-r1 comcom4 cbtr gsth2 bctr comcom5 ) ABFZCPGZAGZBGZHZ
      CGZTQABIJRSUABCDKRBCFZGZSUAHZAUBEKUDUCBCIJLMNO $.
      $( [19-Oct-98] $)
  $}

  ${
    gt1.1 $e |- a = ( b v c ) $.
    gt1.2 $e |- b =< d $.
    gt1.3 $e |- c =< d ' $.
    $( Part of Lemma 1 from Gaisi Takeuti, "Quantum Set Theory". $)
    gt1 $p |- a C d $=
      ( wo lecom comcom wn comcom7 com2or bctr ) ABCHZDEDODBCBDBDFIJCDCDCDKGILJ
      MJN $.
      $( [2-Dec-98] $)
  $}

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Commutator (orthomodular lattice theorems)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    cmtr1com.1 $e |- C ( a , b ) = 1 $.
    $( Commutator equal to 1 commutes.  Theorem 2.11 of Beran, p. 86. $)
    cmtr1com $p |- a C b $=
      ( wa wn wo lea lel2or df-le2 le1 wcmtr df-cmtr ax-a2 3tr2 leror bltr lebi
      wt lem3.1 ax-r1 df-c1 ) ABABDZABEZDZFZAUEAUEAUBAUDABGAUCGHIAEZUEFZRUGJRUF
      BDZUFUCDZFZUEFZUGABKUEUJFRUKABLCUEUJMNUJUFUEUHUFUIUFBGUFUCGHOPQSTUA $.
      $( [24-Jan-99] $)
  $}

  ${
    comcmtr1.1 $e |- a C b $.
    $( Commutation implies commutator equal to 1.  Theorem 2.11 of Beran,
       p. 86. $)
    comcmtr1 $p |- C ( a , b ) = 1 $=
      ( wa wn wo wcmtr wt df-c2 comcom3 2or ax-r1 df-cmtr df-t 3tr1 ) ABDABEZDF
      ZAEZBDRPDFZFZARFZABGHUATAQRSABCIRBABCJIKLABMANO $.
      $( [24-Jan-99] $)
  $}

  ${
    i0cmtrcom.1 $e |- ( a ->0 C ( a , b ) ) = 1 $.
    $( Commutator element ` ->0 ` commutator implies commutation. $)
    i0cmtrcom $p |- a C b $=
      ( wa wn wo lea lel2or df-le2 wcmtr wi0 df-cmtr lor ax-r1 ax-a2 ax-r2 or12
      wt 3tr df-i0 3tr1 lem3.1 df-c1 ) ABABDZABEZDZFZAUGAUGAUDAUFABGAUEGHIAEZUG
      FZAABJZKZRUHUGUHBDZUHUEDZFZFZFZUHUJFZUIUKUQUPUJUOUHABLMNUIUGUHFZUGUHUNFZF
      ZUPUHUGOUTURUSUHUGUSUNUHFUHUHUNOUNUHULUHUMUHBGUHUEGHIPMNUGUHUNQSAUJTUACPU
      BNUC $.
      $( [24-Jan-99] $)
  $}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Kalmbach conditional
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Kalmbach implication and biconditional. $)
  i3bi $p |- ( ( a ->3 b ) ^ ( b ->3 a ) ) = ( a == b ) $=
    ( wn wa wo lea leo ax-a2 letr ancom lecom comcom2 comcom bctr wf ax-r2 bltr
    ax-r1 lan 2or wi3 tb anor2 lbtr le3tr1 le2or oridm fh2 cbtr fh1 ran an4 dff
    anor1 2an anidm an12 con2 an0 anandi coman1 an32 or0 lor oran con3 fh3 3tr2
    anass df-i3 or32 dfb 3tr1 ) ACZBCZDZVNBDZAVNBEZDZEZEZVPVOADZBVOAEZDZEZEZDZA
    BDZVPEZABUAZBAUAZDABUBVPVTWEDZEVPWHEWGWIWLWHVPWLVTWBDZVTWDDZEZWHWBVTWDWBBVN
    EZCZVTBAUCZVTWQVTWPVTWPVTWPWPEWPVQWPVSWPVQVNWPVNBFVNVRWPVNBGVNBHUDIVRADZVRV
    SWPVRAFZAVRJZBVNHZUEUFWPUGUDKLMNWBWQWDWRWDWQWDWPWDWPWDBWPBWCFZBVNGIKLMNUHWO
    OWHEZWHWMOWNWHWMWBVTDZOVTWBJXEWBVQDZWBVSDZEZOWBVQVSWBWCCZVQWBWCWBWCWBVOWCVO
    AFVOAGIKLVQXIVQBVNDZXIVNBJZBAUNPZRZUIWBVRCZVSWBAVODZXNVOAJZABUNPVSXNVSVRVSV
    RVSWSVRXAWTQKLMNUJXHOOEOXFOXGOXFXOVQDZOWBXOVQXPUKXQAVNDZVOBDZDZOAVOVNBULXTO
    ODZOYAXTOXROXSAUMZOBVODZXSBUMZBVOJPUOROUPPPPXGAWBVRDZDZOWBAVRUQYFAODZOYGYFO
    YEAOWBWBCZDYEWBUMYHVRWBYHWPVRWBWPWRURXBPSPSRAUSZPPTOUGPPPWNWDVTDZWHVTWDJYJW
    DVQDZWDVSDZEZWHVQWDVSVQXIWDXLWDXIWDWCWDWCWDWCBDWCBWCJWCBFQKLMNVQAVOEZCZVSAB
    UCVSYOVSYNVSYNVSAYNAVRFZAVOGIKLMNUHYMYLYKEZWHYKYLHYQWHOEZWHYLWHYKOYLBADZWCV
    RDDZWHBWCAVRULYTYSWCDZYSVRDZDZWHYSWCVRUTUUCYSYSDZWHUUAYSUUBYSUUAYSVODZYSADZ
    EZYSYSVOAYSBBAVAZLYSWHABAJZABVANZUJUUGYSOEZYSUUGOYSEZUUKUUEOUUFYSUUEYCADZOB
    AVOVBUUMAYCDZOYCAJUUNYGOYGUUNOYCAYDSRYIPPPUUFBAADZDYSBAAVIUUOABAUPSPTOYSHZP
    YSVCZPPUUBYSVNDZYSBDZEZYSYSVNBYSAUUJLUUHUJUUTUUKYSUUTUULUUKUUROUUSYSUURBXRD
    ZOBAVNVIUVABODZOUVBUVAOXRBYBSRBUSZPPUUSBBDZADYSBABVBUVDBABUPUKPTUUPPUUQPPUO
    UUDYSWHYSUPUUIPPPPYKUVBOYKBWCVQDZDZUVBBWCVQVIUVBUVFOUVEBOWCXIDUVEWCUMXIVQWC
    XMSPSRPUVCPTWHVCZPPPPTXDYRWHOWHHUVGPPPVDVPVTWEVPBAEZCZVTVPVOVNDZUVIVNVOJUVJ
    UVHUVHUVJCBAVERVFPVTUVIVTUVHVTUVHVQBVSAVQXJBXKBVNFQYPUFKLMNVPABEZCZWEVPUVKU
    VKVPCABVERVFWEUVLWEUVKWEUVKWBAWDBWBXOAXPAVOFQXCUFKLMNVGVPWHHVHWJWAWKWFWJVQV
    PEVSEZWAABVJUVMVTVPEWAVQVPVSVKVTVPHPPWKWBUVJEWDEZWFBAVJUVNWEUVJEZWFWBUVJWDV
    KUVOWEVPEWFUVJVPWEVOVNJVDWEVPHPPPUOABVLVM $.
    $( [5-Nov-97] $)

  $( Kalmbach implication OR builder. $)
  i3or $p |- ( ( a == b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) = 1 $=
    ( tb wn wo wi3 wt le1 ka4ot ax-r1 wa i3bi lea bltr lelor lebi ) ABDEZACFZBC
    FZGZFZHUBIHRSTDZFZUBUDHABCJKUCUARUCUATSGZLZUAUFUCSTMKUAUENOPOQ $.
    $( [26-Dec-97] $)

  $( Alternate definition for Kalmbach implication. $)
  df2i3 $p |- ( a ->3 b ) = ( ( a ' ^ b ' ) v ( ( a ' v b ) ^
                ( a v ( a ' ^ b ) ) ) ) $=
    ( wi3 wn wa wo df-i3 ax-a3 coman1 comcom comcom2 comcom5 comorr fh4 lea leo
    or12 letr lan ax-r2 df-le2 ancom ax-a2 lor ) ABCADZBEZUEBDEZFAUEBFZEZFZUGUH
    AUFFZEZFZABGUJUFUGUIFFZUMUFUGUIHUNUGUFUIFZFUMUFUGUIQUOULUGUOUFAFZUFUHFZEZUL
    AUFUHAUFUEUFUFUEUEBIJKLAUHUEUHUEBMKLNURUPUHEZULUQUHUPUFUHUFUEUHUEBOUEBPRUAS
    USUHUPEULUPUHUBUPUKUHUFAUCSTTTUDTTT $.
    $( [7-Nov-97] $)

  $( Alternate Kalmbach conditional. $)
  dfi3b $p |- ( a ->3 b ) =
            ( ( a ' v b ) ^ ( ( a v ( a ' ^ b ' ) ) v ( a ' ^ b ) ) ) $=
    ( wn wa wo wi3 ax-a2 ax-a3 oridm ax-r1 anidm ran anass ax-r2 lan 2or com2an
    ancom fh1 3tr1 an12 lea leo letr df2le2 comor1 comcom7 comor2 coman1 coman2
    comcom2 fh1r df-i3 com2or ) ACZBDZUOBCZDZEAUOBEZDZEZUSAUREZDZUSUPDZEZABFUSV
    BUPEDUOUPDZBUPDZEZUSADZUSURDZEZEZVKVHEVAVEVHVKGVAUPURUTEZEVLUPURUTHUPVHVMVK
    UPUPUPEZVHVNUPUPIJUPVFUPVGUPUOUODZBDVFUOVOBVOUOUOKJLUOUOBMNUPUOBBDZDVGBVPUO
    VPBBKJOUOBBUANPNVMVJVIEVKURVJUTVIURURUSDZVJVQURURUSURUOUSUOUQUBUOBUCUDUEJUR
    USRNAUSRPVJVIGNPNVCVKVDVHUSAURUSAUOBUFZUGZUSUOUQVRUSBUOBUHZUKQZSUPUOBUOBUIU
    OBUJULPTABUMUSVBUPUSAURVSWAUNUSUOBVRVTQST $.
    $( [6-Aug-01] $)

  $( Alternate non-tollens conditional. $)
  dfi4b $p |- ( a ->4 b ) =
            ( ( a ' v b ) ^ ( ( b ' v ( b ^ a ' ) ) v ( b ^ a ) ) ) $=
    ( wi4 wn wi3 wo wa i4i3 dfi3b ax-a2 ax-a1 ax-r5 ax-r2 ran lor 2an 2or ax-r1
    or32 ) ABCBDZADZEZUABFZTBUAGZFZBAGZFZGZABHUBTDZUAFZTUIUADZGZFUIUAGZFZGZUHTU
    AIUHUOUCUJUGUNUCBUAFUJUABJBUIUABKZLMUGTUMFZULFUNUEUQUFULUDUMTBUIUAUPNOBUIAU
    KUPAKPQTUMULSMPRMM $.
    $( [6-Aug-01] $)

  $( Equivalence for Kalmbach implication. $)
  i3n2 $p |- ( a ' ->3 b ' ) = ( ( a ^ b ) v ( ( a v b ' ) ^
                ( a ' v ( a ^ b ' ) ) ) ) $=
    ( wn wi3 wa wo df2i3 ax-a1 2an ax-r5 ran lor 2or ax-r1 ax-r2 ) ACZBCZDPCZQC
    ZEZRQFZPRQEZFZEZFZABEZAQFZPAQEZFZEZFZPQGUKUEUFTUJUDARBSAHZBHIUGUAUIUCARQULJ
    UHUBPARQULKLIMNO $.
    $( [9-Nov-97] $)

  $( Equivalence for Kalmbach implication. $)
  ni32 $p |- ( a ->3 b ) ' = ( ( a v b ) ^ ( ( a ^ b ' ) v
                ( a ' ^ ( a v b ' ) ) ) ) $=
    ( wi3 wo wn wa df2i3 oran anor1 con2 ax-r1 anor2 lan ax-r4 ax-r2 2an ) ABCZ
    ABDZABEZFZAEZASDZFZDZFZQUASFZUABDZAUABFZDZFZDZUEEZABGUKUFEZUJEZFZEULUFUJHUO
    UEUEUORUMUDUNABHUDTEZUCEZFZEUNTUCHURUJUJURUGUPUIUQUPUGTUGABIJKUIUAUHEZFZEUQ
    AUHHUTUCUSUBUAUHUBABLJMNOPKNOPKNOOJ $.
    $( [9-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  oi3ai3 $p |- ( ( a ^ b ) v ( a ->3 b ) ' ) =
                 ( ( a v b ) ^ ( a ' ->3 b ' ) ) $=
    ( wa wo wn wi3 lea leo letr lecom coman1 ancom comcom2 com2an com2or df-le2
    bctr fh3 ax-a3 ax-r2 ax-r1 ax-a2 ax-r5 2an ni32 lor i3n1 lan 3tr1 ) ABCZABD
    ZABEZCZAEZAULDZCZDZCZDZUKUMUJDZUPDZCZUJABFEZDUKUNULFZCUSUJUKDZUJUQDZCVBUJUK
    UQUJUKUJAUKABGABHIZJUJUMUPUJAULABKZUJBUJBACBABLBAKQMZNUJUNUOUJAVHMUJAULVHVI
    ONORVEUKVFVAUJUKVGPVFUJUMDZUPDZVAVKVFUJUMUPSUAVJUTUPUJUMUBUCTUDTVCURUJABUEU
    FVDVAUKABUGUHUI $.
    $( [9-Nov-97] $)

  ${
    i3lem.1 $e |- ( a ->3 b ) = 1 $.
    $( Lemma for Kalmbach implication. $)
    i3lem1 $p |- ( ( a ' ^ b ) v ( a ' ^ b ' ) ) = a ' $=
      ( wn wa wo wt coman1 comcom comorr comcom3 com2an anass ax-r1 anidm ax-r2
      fh1 ran anabs omlan 2or ax-a2 wi3 df2i3 lan an1 ) ADZBEZUGBDZEZFZUGGEZUGU
      KUGUJUGBFZAUHFZEZFZEZULUQUKUQUGUJEZUGUOEZFZUKUGUJUOUJUGUGUIHIUGUMUNUGBJAU
      NAUHJKLQUTUJUHFUKURUJUSUHURUGUGEZUIEZUJVBURUGUGUIMNVAUGUIUGORPUSUGUMEZUNE
      ZUHVDUSUGUMUNMNVDUGUNEUHVCUGUNUGBSRABTPPUAUJUHUBPPNUPGUGUPABUCZGVEUPABUDN
      CPUEPUGUFP $.
      $( [7-Nov-97] $)

    $( Lemma for Kalmbach implication. $)
    i3lem2 $p |- a C b $=
      ( wn wa wo i3lem1 ax-r1 df-c1 comcom2 comcom5 ) ABADZBLBLBELBDEFLABCGHIJK
      $.
      $( [7-Nov-97] $)

    $( Lemma for Kalmbach implication. $)
    i3lem3 $p |- ( ( a ' v b ) ^ b ' ) = ( a ' ^ b ' ) $=
      ( wn wa omlan ancom ax-a2 ax-a3 ax-r1 i3lem1 lor orabs ax-r2 2or 3tr2 lan
      wo 3tr1 ) BDZBTADZEZRZEZUBUABRZTEZUATEZBUAFUFTUEEUDUETGUEUCTUEBUARZUCUABH
      BUABEZUGRZRZBUIRZUGRZUHUCUMUKBUIUGIJUJUABABCKLULBUGUBULBBUAEZRBUIUNBUABGL
      BUAMNUATGZOPNQNUOS $.
      $( [7-Nov-97] $)

    $( Lemma for Kalmbach implication. $)
    i3lem4 $p |- ( a ' v b ) = 1 $=
      ( wn wo wa wt i3lem1 ax-r5 ax-r1 omln wi3 df-i3 ax-r2 3tr2 ) ADZAPBEZFZEZ
      PBFPBDFEZREZQGUASTPRABCHIJABKUAABLZGUBUAABMJCNO $.
      $( [7-Nov-97] $)
  $}

  $( Commutation theorem. $)
  comi31 $p |- a C ( a ->3 b ) $=
    ( wn wa wo wi3 coman1 comcom comcom2 comcom5 com2or df-i3 ax-r1 cbtr ) AACZ
    BDZOBCZDZEZAOBEZDZEZABFZASUAAPRAPOPPOOBGHIJARORROOQGHIJKUAAATGHKUCUBABLMN
    $.
    $( [9-Nov-97] $)

  ${
    com2i3.1 $e |- a C b $.
    com2i3.2 $e |- a C c $.
    $( Commutation theorem. $)
    com2i3 $p |- a C ( b ->3 c ) $=
      ( wn wa wo wi3 comcom2 com2an com2or df-i3 ax-r1 cbtr ) ABFZCGZPCFZGZHZBP
      CHZGZHZBCIZATUBAQSAPCABDJZEKAPRUEACEJKLABUADAPCUEELKLUDUCBCMNO $.
      $( [9-Nov-97] $)
  $}

  ${
    comi32.1 $e |- a C b $.
    $( Commutation theorem. $)
    comi32 $p |- a C ( b ->3 a ) $=
      ( comid com2i3 ) ABACADE $.
      $( [9-Nov-97] $)
  $}

  $( Lemma 4 of Kalmbach p. 240. $)
  lem4 $p |- ( a ->3 ( a ->3 b ) ) = ( a ' v b ) $=
    ( wi3 wn wa wo df-i3 lan oridm lecom comcom wf ancom ax-r2 ax-r1 3tr2 orabs
    lea lor 2or le2or lbtr comcom3 fh1 anass dff df2le2 orordi or32 ax-r5 ax-r4
    an0 or0 oran con2 oml2 ax-a3 omln ) AABCZCADZUSEZUTUSDEZFZAUTUSFZEZFZUTBFZA
    USGVFUTAVGEZFZVGVCUTVEVHVCUTBEZUTBDZEZFZVMDZUTEZFUTVAVMVBVOVAUTVMVHFZEZVMUS
    VPUTABGZHVQUTVMEZUTVHEZFZVMUTVMVHVMUTVMUTVMUTUTFZUTVJUTVLUTUTBRUTVKRUAUTIZU
    BZJKAVHVHAVHAAVGRJKUCUDWAVSLFZVMVTLVSUTAEZVGEVGWFEZVTLWFVGMUTAVGUEWGVGLEZLW
    HWGLWFVGLAUTEWFAUFAUTMNHOVGULNPSWEVSVMVSUMVSVMUTEVMUTVMMVMUTWDUGNNNNNAUSFZD
    AVMFZDZVBVOWIWJWIAVPFZWJUSVPAVRSWLWJAVHFZFZWJAVMVHUHWNWJAFZWJWMAWJAVGQSWOAA
    FZVMFWJAVMAUIWPAVMAIUJNNNNUKWIVBAUSUNUOWKUTVNEZVOWJWQAVMUNUOUTVNMNPTVMUTWDU
    PNVDVGAVDVIVGVDUTVPFZVIUSVPUTVRSWRUTVMFZVHFZVIWTWRUTVMVHUQOWSUTVHWSUTVJFZUT
    VLFZFZUTUTVJVLUHXCWBUTXAUTXBUTUTBQUTVKQTWCNNUJNNABURZNHTXDNN $.
    $( [5-Nov-97] $)

  ${
    i0i3.1 $e |- ( a ' v b ) = 1 $.
    $( Translation to Kalmbach implication. $)
    i0i3 $p |- ( a ->3 ( a ->3 b ) ) = 1 $=
      ( wi3 wn wo wt lem4 ax-r2 ) AABDDAEBFGABHCI $.
      $( [9-Nov-97] $)
  $}

  ${
    i3i0.1 $e |- ( a ->3 ( a ->3 b ) ) = 1 $.
    $( Translation from Kalmbach implication. $)
    i3i0 $p |- ( a ' v b ) = 1 $=
      ( wn wo wi3 wt lem4 ax-r1 ax-r2 ) ADBEZAABFFZGLKABHICJ $.
      $( [9-Nov-97] $)
  $}

  $( Soundness proof for KA14. $)
  ska14 $p |- ( ( a ' v b ) ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $=
    ( wn wo wi3 wt lem4 ax-r1 ri3 i3id ax-r2 ) ACBDZAABEEZEMMEFLMMMLABGHIMJK $.
    $( [3-Nov-97] $)

  ${
    i3le.1 $e |- ( a ->3 b ) = 1 $.
    $( L.e. to Kalmbach implication. $)
    i3le $p |- a =< b $=
      ( wn wt wa ancom wo i3lem3 i3lem4 ran 3tr2 an1 df2le1 lecon1 ) BABDZADZEP
      FZPEFPQFZPEPGQBHZPFQPFRSABCITEPABCJKQPGLPMLNO $.
      $( [7-Nov-97] $)
  $}

  $( Biconditional implies Kalmbach implication. $)
  bii3 $p |- ( ( a == b ) ->3 ( a ->3 b ) ) = 1 $=
    ( tb wi3 wa i3bi ax-r1 lea bltr lei3 ) ABCZABDZKLBADZEZLNKABFGLMHIJ $.
    $( [9-Nov-97] $)

  ${
    binr1.1 $e |- ( a ->3 b ) = 1 $.
    $( Pavicic binary logic ax-r1 analog. $)
    binr1 $p |- ( b ' ->3 a ' ) = 1 $=
      ( wn i3le lecon lei3 ) BDADABABCEFG $.
      $( [7-Nov-97] $)
  $}

  ${
    binr2.1 $e |- ( a ->3 b ) = 1 $.
    binr2.2 $e |- ( b ->3 c ) = 1 $.
    $( Pavicic binary logic ax-r2 analog. $)
    binr2 $p |- ( a ->3 c ) = 1 $=
      ( i3le letr lei3 ) ACABCABDFBCEFGH $.
      $( [7-Nov-97] $)
  $}

  ${
    binr3.1 $e |- ( a ->3 c ) = 1 $.
    binr3.2 $e |- ( b ->3 c ) = 1 $.
    $( Pavicic binary logic axr3 analog. $)
    binr3 $p |- ( ( a v b ) ->3 c ) = 1 $=
      ( wo i3le le2or oridm lbtr lei3 ) ABFZCLCCFCACBCACDGBCEGHCIJK $.
      $( [7-Nov-97] $)
  $}

  $( Theorem for Kalmbach implication. $)
  i31 $p |- ( a ->3 1 ) = 1 $=
    ( wt wi3 wn wo df-t li3 bina3 ax-r2 ) ABCAAADZEZCBBKAAFGAJHI $.
    $( [7-Nov-97] $)

  ${
    i3aa.1 $e |- a = 1 $.
    $( Add antecedent. $)
    i3aa $p |- ( b ->3 a ) = 1 $=
      ( wi3 wt i31 li3 bi1 wwbmpr ) BADZBEDZBFJKAEBCGHI $.
      $( [7-Nov-97] $)
  $}

  $( Antecedent absorption. $)
  i3abs1 $p |- ( a ->3 ( a ->3 ( a ->3 b ) ) ) = ( a ->3 ( a ->3 b ) ) $=
    ( wn wa wo wi3 orordi orabs 2or oridm ax-r2 ax-r5 ax-a3 omln 3tr2 df-i3 lor
    lem4 3tr1 ) ACZTBDZTBCZDZEZATBEZDZEZEZUEAAABFZFZFZUJTUDEZUFETUFEUHUEULTUFUL
    TUAEZTUCEZEZTTUAUCGUOTTETUMTUNTTBHTUBHITJKKLTUDUFMABNOUKTUIEUHAUIRUIUGTABPQ
    KABRS $.
    $( [16-Nov-97] $)

  ${
    i3abs2.1 $e |- ( a ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $.
    $( Antecedent absorption. $)
    i3abs2 $p |- ( a ->3 ( a ->3 b ) ) = 1 $=
      ( wi3 i3abs1 bi1 wwbmp ) AAABDDZDZHCIHABEFG $.
      $( [9-Nov-97] $)
  $}

  $( Antecedent absorption. $)
  i3abs3 $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 a ) ) =
              ( ( a ->3 b ) ->3 a ) $=
    ( wi3 wn wo wa wt df-t lan an1 comi31 comcom comcom3 comcom4 fh1 3tr2 ax-r1
    wf ax-a2 ax-r2 comid comcom2 dff ax-r5 or0 2or fh4 ancom lem4 df-i3 3tr1
    ran ) ABCZDZAEZUNAFUNADZFEZUMUOFZEZUMUMACZCUTUSUOUSUNUMAFZEZUOUQUNURVAUNUQU
    NGFUNAUPEZFUNUQGVCUNAHIUNJUNAUPUMAAUMABKLZMUMAVDNOPQURUMUNFZVAEZVAUMUNAUMUM
    UMUAUBZVDORVAEVAREVFVARVASRVEVAUMUCUDVAUEPTUFVBUNUMEZUOFZUOUMUNAVGVDUGVIUOG
    FZUOVIGUOFVJVHGUOVHUMUNEZGUNUMSGVKUMHQTULGUOUHTUOJTTTQUMAUIUMAUJUK $.
    $( [19-Nov-97] $)

  $( Commutative law for conjunction with Kalmbach implication. $)
  i3orcom $p |- ( ( a v b ) ->3 ( b v a ) ) = 1 $=
    ( wo wi3 i3id ax-a2 ri3 bi1 wwbmp ) BACZJDZABCZJDZJEKMJLJBAFGHI $.
    $( [7-Nov-97] $)

  $( Commutative law for disjunction with Kalmbach implication. $)
  i3ancom $p |- ( ( a ^ b ) ->3 ( b ^ a ) ) = 1 $=
    ( wa wi3 i3id ancom ri3 bi1 wwbmp ) BACZJDZABCZJDZJEKMJLJBAFGHI $.
    $( [7-Nov-97] $)

  ${
    bi3tr.1 $e |- a = b $.
    bi3tr.2 $e |- ( b ->3 c ) = 1 $.
    $( Transitive inference. $)
    bi3tr $p |- ( a ->3 c ) = 1 $=
      ( wi3 ri3 bi1 wwbmpr ) ACFZBCFZEJKABCDGHI $.
      $( [7-Nov-97] $)
  $}

  ${
    i3btr.1 $e |- ( a ->3 b ) = 1 $.
    i3btr.2 $e |- b = c $.
    $( Transitive inference. $)
    i3btr $p |- ( a ->3 c ) = 1 $=
      ( wi3 li3 bi1 wwbmp ) ABFZACFZDJKBCAEGHI $.
      $( [7-Nov-97] $)
  $}

  ${
    i33tr1.1 $e |- ( a ->3 b ) = 1 $.
    i33tr1.2 $e |- c = a $.
    i33tr1.3 $e |- d = b $.
    $( Transitive inference useful for introducing definitions. $)
    i33tr1 $p |- ( c ->3 d ) = 1 $=
      ( bi3tr ax-r1 i3btr ) CBDCABFEHDBGIJ $.
      $( [7-Nov-97] $)
  $}

  ${
    i33tr2.1 $e |- ( a ->3 b ) = 1 $.
    i33tr2.2 $e |- a = c $.
    i33tr2.3 $e |- b = d $.
    $( Transitive inference useful for eliminating definitions. $)
    i33tr2 $p |- ( c ->3 d ) = 1 $=
      ( ax-r1 i33tr1 ) ABCDEACFHBDGHI $.
      $( [7-Nov-97] $)
  $}

  ${
    i3con1.1 $e |- ( a ' ->3 b ' ) = 1 $.
    $( Contrapositive. $)
    i3con1 $p |- ( b ->3 a ) = 1 $=
      ( wn binr1 ax-a1 i33tr1 ) BDZDADZDBAIHCEBFAFG $.
      $( [7-Nov-97] $)
  $}

  ${
    i3ror.1 $e |- ( a ->3 b ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i3ror $p |- ( ( a v c ) ->3 ( b v c ) ) = 1 $=
      ( wo bina3 binr2 bina4 binr3 ) ACBCEZABJDBCFGBCHI $.
      $( [7-Nov-97] $)
  $}

  ${
    i3lor.1 $e |- ( a ->3 b ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i3lor $p |- ( ( c v a ) ->3 ( c v b ) ) = 1 $=
      ( wo i3orcom i3ror binr2 ) CAEACEZCBEZCAFIBCEJABCDGBCFHH $.
      $( [7-Nov-97] $)
  $}

  ${
    i32or.1 $e |- ( a ->3 b ) = 1 $.
    i32or.2 $e |- ( c ->3 d ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i32or $p |- ( ( a v c ) ->3 ( b v d ) ) = 1 $=
      ( wo i3ror i3lor binr2 ) ACGBCGBDGABCEHCDBFIJ $.
      $( [7-Nov-97] $)
  $}

  ${
    i3ran.1 $e |- ( a ->3 b ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i3ran $p |- ( ( a ^ c ) ->3 ( b ^ c ) ) = 1 $=
      ( wn wo wa binr1 i3ror df-a i33tr1 ) AEZCEZFZEBEZMFZEACGBCGPNOLMABDHIHACJ
      BCJK $.
      $( [7-Nov-97] $)
  $}

  ${
    i3lan.1 $e |- ( a ->3 b ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i3lan $p |- ( ( c ^ a ) ->3 ( c ^ b ) ) = 1 $=
      ( wa i3ran ancom i33tr1 ) ACEBCECAECBEABCDFCAGCBGH $.
      $( [7-Nov-97] $)
  $}

  ${
    i32an.1 $e |- ( a ->3 b ) = 1 $.
    i32an.2 $e |- ( c ->3 d ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i32an $p |- ( ( a ^ c ) ->3 ( b ^ d ) ) = 1 $=
      ( wa i3ran i3lan binr2 ) ACGBCGBDGABCEHCDBFIJ $.
      $( [7-Nov-97] $)
  $}

  ${
    i3ri3.1 $e |- ( a ->3 b ) = 1 $.
    i3ri3.2 $e |- ( b ->3 a ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i3ri3 $p |- ( ( a ->3 c ) ->3 ( b ->3 c ) ) = 1 $=
      ( wi3 i3le lebi ri3 bile lei3 ) ACFZBCFZLMABCABABDGBAEGHIJK $.
      $( [7-Nov-97] $)
  $}

  ${
    i3li3.1 $e |- ( a ->3 b ) = 1 $.
    i3li3.2 $e |- ( b ->3 a ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i3li3 $p |- ( ( c ->3 a ) ->3 ( c ->3 b ) ) = 1 $=
      ( wi3 i3le lebi li3 bile lei3 ) CAFZCBFZLMABCABABDGBAEGHIJK $.
      $( [7-Nov-97] $)
  $}

  ${
    i32i3.1 $e |- ( a ->3 b ) = 1 $.
    i32i3.2 $e |- ( b ->3 a ) = 1 $.
    i32i3.3 $e |- ( c ->3 d ) = 1 $.
    i32i3.4 $e |- ( d ->3 c ) = 1 $.
    $( WQL (Weak Quantum Logic) rule. $)
    i32i3 $p |- ( ( a ->3 c ) ->3 ( b ->3 d ) ) = 1 $=
      ( wi3 i3le lebi 2i3 bile lei3 ) ACIZBDIZOPABCDABABEJBAFJKCDCDGJDCHJKLMN
      $.
      $( [7-Nov-97] $)
  $}

  ${
    i0i3tr.1 $e |- ( a ->3 ( a ->3 b ) ) = 1 $.
    i0i3tr.2 $e |- ( b ->3 c ) = 1 $.
    $( Transitive inference. $)
    i0i3tr $p |- ( a ->3 ( a ->3 c ) ) = 1 $=
      ( wn wo i3i0 i3lor skmp3 i0i3 ) ACAFZBGLCGABDHBCLEIJK $.
      $( [9-Nov-97] $)
  $}

  ${
    i3i0tr.1 $e |- ( a ->3 b ) = 1 $.
    i3i0tr.2 $e |- ( b ->3 ( b ->3 c ) ) = 1 $.
    $( Transitive inference. $)
    i3i0tr $p |- ( a ->3 ( a ->3 c ) ) = 1 $=
      ( wn wo i3i0 binr1 i3ror skmp3 i0i3 ) ACBFZCGAFZCGBCEHMNCABDIJKL $.
      $( [9-Nov-97] $)
  $}

  $( Theorem for Kalmbach implication. $)
  i3th1 $p |- ( a ->3 ( a ->3 ( b ->3 a ) ) ) = 1 $=
    ( wn wi3 wo wa wt df2i3 lor ax-a3 anor1 ax-a2 anor2 ax-r1 ax-r2 ancom orabs
    lem4 ax-r5 3tr1 con2 2an oml5 3tr2 df-t ) ACZBADZEUFBCZUFFZUHAEZBUHAFZEZFZE
    ZEZAAUGDDGUGUNUFBAHIAUGRGUFUIEZUMEZUOUFBEZURCZEZUFUMEZGUQURAUHFZEUFBVBEZEZU
    TVAUFBVBJVBUSURABKIVDUFUFBFZEZUMEZVAVGVDVGUFVEUMEZEVDUFVEUMJVHVCUFVHVEVECZV
    CFZEVCUMVJVEUJVIULVCUJAUHEZVIUHALVIVKVEVKABMUANOUKVBBUHAPIUBIUFBVBUCOIONVFU
    FUMUFBQSOUDURUEUPUFUMUPUFUFUHFZEUFUIVLUFUHUFPIUFUHQOSTUFUIUMJOT $.
    $( [16-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th2 $p |- ( a ->3 ( b ->3 ( b ->3 a ) ) ) = 1 $=
    ( wi3 wn wo wt lem4 li3 bina4 ax-r2 ) ABBACCZCABDZAEZCFKMABAGHLAIJ $.
    $( [7-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th3 $p |- ( a ' ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $=
    ( wn wi3 wo wt lem4 li3 bina3 ax-r2 ) ACZAABDDZDKKBEZDFLMKABGHKBIJ $.
    $( [7-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th4 $p |- ( a ->3 ( b ->3 b ) ) = 1 $=
    ( wt wi3 i31 i3id ax-r1 li3 rbi wed ) ACDZCABBDZDZCAEKMCCLALCBFGHIJ $.
    $( [7-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th5 $p |- ( ( a ->3 b ) ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $=
    ( wi3 wn wa wo ax-a2 lea lear le2or bltr oridm lbtr df-i3 lem4 le3tr1 lei3
    ) ABCZARCZADZBEZTBDZEZFZATBFZEZFZUERSUGUEUEFUEUDUEUFUEUDUCUAFUEUAUCGUCTUABT
    UBHTBIJKAUEIJUELMABNABOPQ $.
    $( [16-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th6 $p |- ( ( a ->3 ( a ->3 ( a ->3 b ) ) ) ->3 ( a ->3 ( a ->3 b ) ) )
             = 1 $=
    ( wi3 tb i3abs1 bi1 bii3 skmp3 ) AAABCCZCZIDJICJIABEFJIGH $.
    $( [16-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th7 $p |- ( a ->3 ( ( a ->3 b ) ->3 a ) ) = 1 $=
    ( wi3 wn wo leor lem4 ax-r1 i3abs3 ax-r2 lbtr lei3 ) AABCZACZAMDZAEZNAOFPMN
    CZNQPMAGHABIJKL $.
    $( [19-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3th8 $p |- ( ( a ->3 b ) ' ->3 ( ( a ->3 b ) ->3 a ) ) = 1 $=
    ( wi3 wn wo leo lem4 ax-r1 i3abs3 ax-r2 lbtr lei3 ) ABCZDZMACZNNAEZONAFPMOC
    ZOQPMAGHABIJKL $.
    $( [19-Nov-97] $)

  $( Theorem for Kalmbach implication. $)
  i3con $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 ( b ' ->3 a ' ) ) )
              = 1 $=
    ( wn wo wt ax-a2 com2an com2or fh4 ax-a3 ancom lor orabs ax-r2 comcom3 df-t
    wa comcom ax-r1 2an wi3 ni32 i3n1 2or comor2 comcom2 or12 lea bltr leo letr
    comor1 df-le2 comorr or1 ax-r5 or4 coman2 anor1 con2 coman1 anor2 df-a 3tr1
    an1 i0i3 ) ABUAZBCZACZUAZVGCZVJDZEEQZEVLABDZAVHQZVIAVHDZQZDZQZBVIQZBAQZDZVH
    BVIDZQZDZDZVMVKVSVJWEABUBBAUCUDWFWEVSDZVMVSWEFWGWEVNDZWEVRDZQVMVNWEVRVNWBWD
    VNVTWAVNBVIABUEZVNAABULZUFZGVNBAWJWKGHVNVHWCVNBWJUFZVNBVIWJWLHGHVNVOVQVNAVH
    WKWMGVNVIVPWLVNAVHWKWMHGHIWHEWIEWHWBWDVNDZDZEWBWDVNJWOWDWBVNDZDZEWBWDVNUGWQ
    WNEWPVNWDWPVTWAVNDZDZVNVTWAVNJWSVTVNDZVNWRVNVTWAVNWAAVNWAABQABAKABUHUIABUJU
    KUMLWTVNVTDZVNVTVNFXAABVTDZDVNABVTJXBBABVIMLNNNNLWNVNWDDZEWDVNFXCVNVHDZVNWC
    DZQZEVHVNWCBVNVNBWJROBWCBVIUNOZIXFVMEXDEXEEXDABVHDZDZEABVHJXIAEDEXHEAEXHBPS
    LAUONNXEBADZWCDZEVNXJWCABFUPXKBBDZAVIDZDZEBABVIUQXNXLEDEXMEXLEXMAPSLXLUONNN
    TEVEZNNNNNNWIWBWDVRDZDZEWBWDVRJXQWAVIBQZDZVHVQDZDZEWBXSXPXTWBWAVTDXSVTWAFVT
    XRWABVIKLNXPWDVODZVQDZXTYCXPWDVOVQJSYBVHVQYBVOWDDZVHWDVOFYDVOVHDZVOWCDZQZVH
    VHVOWCVOVHAVHURRXGIYGVHEQVHYEVHYFEYEVHVODZVHVOVHFYHVHVHAQZDVHVOYIVHAVHKLVHA
    MNNYFVOVOCZDZEWCYJVOWCVIBDZYJBVIFYJYLVOYLABUSUTSNLEYKVOPSNTVHVENNNUPNUDYAWA
    VHDZXRVQDZDZEWAXRVHVQUQYOYMVIDZEYNVIYMYNXRVIDZXRVPDZQZVIVIXRVPXRVIVIBVARAVP
    AVHUNOIYSVIEQVIYQVIYREYQVIXRDVIXRVIFVIBMNYRXRXRCZDZEVPYTXRYTVPXRVPABVBUTSLE
    UUAXRPSNTVIVENNLWAVHVIDZDWAWACZDYPEUUBUUCWAUUCUUBWAUUBBAVCUTSLWAVHVIJWAPVDN
    NNNTNNNXONVF $.
    $( [9-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem1 $p |- ( ( a v c ) ^ ( ( a v c ) ' v ( b v c ) ) ) =<
                 ( ( a v c ) ->3 ( b v c ) ) $=
    ( wo wn wa wi3 leor df-i3 ax-r1 lbtr ) ACDZLEZBCDZDFZMNFMNEFDZODZLNGZOPHRQL
    NIJK $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem2 $p |- ( a ^ b ) =< ( ( a v c ) ->3 ( b v c ) ) $=
    ( wa wo wi3 leo le2an wn leor ledi letr i3orlem1 ) ABDACEZBCEZDZNOFZANBOACG
    BCGHPNNIZOEDZQPNRDZPESPTJNROKLABCMLL $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem3 $p |- c =< ( ( a v c ) ->3 ( b v c ) ) $=
    ( wo wn wi3 ax-a2 lan anabs ax-r2 ax-r1 leor lelor le2an bltr i3orlem1 letr
    wa ) CACDZSEZBCDZDZRZSUAFCCTCDZRZUCUECUECCTDZRCUDUFCTCGHCTIJKCSUDUBCALCUATC
    BLMNOABCPQ $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem4 $p |- ( ( a v c ) ' ^ ( b v c ) ) =<
                 ( ( a v c ) ->3 ( b v c ) ) $=
    ( wo wn wa wi3 leo ler df-i3 ax-r1 lbtr ) ACDZEZBCDZFZPNOEFZDZMNODFZDZMOGZP
    RSPQHIUATMOJKL $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem5 $p |- ( ( a ' ^ b ' ) ^ c ' ) =<
                 ( ( a v c ) ->3 ( b v c ) ) $=
    ( wo wn wa wi3 leo anandir oran con2 ax-r1 2an ax-r2 df2i3 le3tr1 ) ACDZEZB
    CDZEZFZUARSDQRSFDFZDAEZBEZFCEZFZQSGUAUBHUFUCUEFZUDUEFZFUAUCUDUEIUGRUHTRUGQU
    GACJKLTUHSUHBCJKLMNQSOP $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem6 $p |- ( ( a ->3 b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) =
   ( ( ( a v b ) ^ ( a ' ->3 b ' ) ) v ( ( a v c ) ->3 ( b v c ) ) ) $=
    ( wa wi3 wn wo ax-a3 ax-r1 i3orlem2 lerr df-le2 oi3ai3 ax-r5 3tr2 ) ABDZABE
    FZACGBCGEZGZGZPQGZRGZSABGAFBFEDZRGUBTPQRHIPSPRQABCJKLUAUCRABMNO $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem7 $p |- ( a ^ b ' ) =<
         ( ( a ->3 b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) $=
    ( wn wa wo wi3 lea leo letr ler2an ler i3n1 lan comor1 comcom2 com2an ax-r1
    com2or lbtr comor2 fh1 ax-r2 i3orlem6 ) ABDZEZABFZADZUEGZEZACFBCFGZFZABGDUK
    FZUFUJUKUFUGUFABEZFZEZUGUHAUEFZEZEZFZUJUFUPUSUFUGUOUFAUGAUEHABIJUFUNIKLUJUT
    UJUGUOURFZEUTUIVAUGABMNUGUOURUGUFUNUGAUEABOZUGBABUAZPZQUGABVBVCQSUGUHUQUGAV
    BPUGAUEVBVDSQUBUCRTLUMULABCUDRT $.
    $( [11-Nov-97] $)

  $( Lemma for Kalmbach implication OR builder. $)
  i3orlem8 $p |- ( ( ( a v b ) ^ ( a v b ' ) ) ^ a ' ) =<
         ( ( a ->3 b ) ' v ( ( a v c ) ->3 ( b v c ) ) ) $=
    ( wo wn wa wi3 anass ancom lan ax-r2 leor bltr comor1 comcom2 com2an com2or
    i3n1 ax-r1 lbtr comor2 fh1 ler i3orlem6 ) ABDZABEZDZFAEZFZUEUHUFGZFZACDBCDG
    ZDZABGEULDZUIUKULUIUEAUFFZABFZDZFZUEUHUGFZFZDZUKUIUTVAUIUEUGUHFZFUTUEUGUHHV
    BUSUEUGUHIJKUTURLMUKVAUKUEUQUSDZFVAUJVCUEABRJUEUQUSUEUOUPUEAUFABNZUEBABUAZO
    ZPUEABVDVEPQUEUHUGUEAVDOUEAUFVDVFQPUBKSTUCUNUMABCUDST $.
    $( [11-Nov-97] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Unified disjunction
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Lemma for unified disjunction. $)
  ud1lem1 $p |- ( ( a ->1 b ) ->1 ( b ->1 a ) ) =
              ( a v ( a ' ^ b ' ) ) $=
    ( wi1 wn wa df-i1 ud1lem0c 2an 2or ancom lor lan coman1 comcom2 coman2 fh3r
    wo ax-r1 ax-r2 wt or12 comcom comorr comcom5 fh4r orabs df-a df-t an1 ax-a2
    ) ABCZBACZCUKDZUKULEZQZAADZBDZEZQZUKULFUOAUPUQQZEZUPABEZQZUQBAEZQZEZQZUSUMV
    AUNVFABGUKVCULVEABFBAFHIVGVAURVBQZQZUSVFVHVAVFVCUQVBQZEZVHVEVJVCVDVBUQBAJKL
    VHVKVBUPUQVBAABMZNVBBABONPRSKVIURVAVBQZQZUSVAURVBUAVNURAVBQZUTVBQZEZQZUSVMV
    QURAVBUTVBAVLUBAUTUPUTUPUQUCNUDUEKVRURAQUSVQAURVQATEAVOAVPTABUFVPUTUTDZQZTV
    BVSUTABUGKTVTUTUHRSHAUISKURAUJSSSSSS $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud1lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->1 a ) = ( a v b ) $=
    ( wn wa wo wi1 df-i1 comid comcom3 comor1 fh3 wt ancom ax-a2 df-t ax-r1 lan
    ax-r2 oran 3tr an1 ax-r4 con2 ax-r5 oml ) AACZBCDZEZAFUHCZUHADEUIUHEZUIAEZD
    ZABEZUHAGUIUHAUHUHUHHIUHAAUGJIKULUKUJDUKLDZUMUJUKMUJLUKUJUHUIEZLUIUHNLUOUHO
    PRQUNUKUFUMDZAEZUMUKUAUIUPAUHUPUHUFUGCZDZCUPCAUGSUSUPURUMUFUMURABSPQUBRUCUD
    UQAUPEUMUPANABUERTTT $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud1lem3 $p |- ( ( a ->1 b ) ->1 ( a v b ) ) = ( a v b ) $=
    ( wi1 wo wn wa df-i1 ud1lem0c con3 ran 2or comid comcom2 df-t ax-r1 lan an1
    wt comorr ax-r2 comor1 comor2 com2or com2an comcom ancom comcom5 fh4r ax-a2
    fh3 or4 lor or1 ax-a3 oridm ax-r5 ) ABCZABDZCUQEZUQURFZDZURUQURGVAAAEZBEZDZ
    FZVEEZURFZDZURUSVEUTVGABHZUQVFURUQVEVIIJKVHVEVFDZVEURDZFZURVEVFURVEVEVELMUR
    VEURAVDABUAZURVBVCURAVMMURBABUBMUCUDUEUJVLVKVJFZURVJVKUFVNVKRFZURVJRVKRVJVE
    NOPVOVKURVKQVKAURDZVDURDZFZURAURVDABSAVDVBVDVBVCSMUGUHVRVPRFZURVQRVPVQURVDD
    ZRVDURUIVTAVBDZBVCDZDZRABVBVCUKWCWARDRWBRWARWBBNOULWAUMTTTPVSVPURVPQVPAADZB
    DZURWEVPAABUNOWDABAUOUPTTTTTTTTTT $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud2lem1 $p |- ( ( a ->2 b ) ->2 ( b ->2 a ) ) =
              ( a v ( a ' ^ b ' ) ) $=
    ( wi2 wn wa wo df-i2 ud2lem0c 2an 2or wf ancom lor dff oran ax-r1 lan ax-r2
    anandir ax-a2 ran or0 ) ABCZBACZCUDUCDZUDDZEZFZAADZBDZEZFZUCUDGUHAUJUIEZFZU
    JABFZEZUIBAFZEZEZFZULUDUNUGUSBAGUEUPUFURABHBAHIJUTULKFULUNULUSKUMUKAUJUILMK
    USKUMUQEZUSKUMUMDZEVAUMNVBUQUMUQVBBAOPQRVAUJUQEZUREUSUJUIUQSVCUPURUQUOUJBAT
    QUARRPJULUBRRR $.
    $( [22-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud2lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->2 a ) = ( a v b ) $=
    ( wn wa wi2 df-i2 oran con2 ax-r1 lor anor2 con3 ax-r2 ran an32 anidm oml
    wo ) AACZBCDZRZAEAUACZSDZRZABRZUAAFUDASUEDZRUEUCUFAUCUAARZCZUFUHUCUGUCUAAGH
    ZIUHUCUFUIUCUFSDZUFUBUFSUAUFUAAUECZRZUFCTUKAUKTUETABGHIJULUFUFULCAUEKILMHNU
    JSSDZUEDUFSUESOUMSUESPNMMMMJABQMM $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud2lem3 $p |- ( ( a ->2 b ) ->2 ( a v b ) ) = ( a v b ) $=
    ( wi2 wo wn wa df-i2 ud2lem0c ran lor coman2 comcom comid comcom2 fh3 ancom
    wt df-t ax-r1 ax-r2 2an an1 orabs ) ABCZABDZCUEUDEZUEEZFZDZUEUDUEGUIUEBEZUE
    FZUGFZDZUEUHULUEUFUKUGABHIJUMUEUKDZUEUGDZFZUEUEUKUGUKUEUJUEKLUEUEUEMNOUPUEU
    EUJFZDZQFZUEUNURUOQUKUQUEUJUEPJQUOUERSUAUSURUEURUBUEUJUCTTTTT $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem1a $p |- ( ( a ->3 b ) ' ^ ( b ->3 a ) ) = ( a ^ b ' ) $=
    ( wn wa wo 2an comor2 comor1 com2an comcom2 com2or comcom anass ancom ax-r2
    wf lan ax-r1 dff an0 ud3lem0c comanr2 comcom3 coman2 coman1 comanr1 comcom6
    wi3 df-i3 fh2 comcom7 ax-a2 anabs lea leo ler2an letr df2le2 an32 oran con3
    ran an0r 2or or0 fh2r or0r anor1 ) ABUHCZBAUHZDABCZEZABEZDZACZAVKDZEZDZVKAD
    ZVKVODZEZBVKAEZDZEZDZVPVIVRVJWDABUABAUIFWEVRWADZVRWCDZEZVPWAVRWCWAVNVQWAVLV
    MVLWAVLVSVTVLVKAAVKGZAVKHZIVLVKVOWIVLAWJJIKLVMWAVMVSVTVMVKAVMBABGJZABHZIVMV
    KVOWKVMAWLJIKLIWAVOVPVOWAVOVSVTAVSVKAUBUCVKVOUBKLVPWAVPVSVTVPVKAAVKUDZAVKUE
    ZIVPVKVOWMVPAWNJZIKLKIWABWBBWABVSVTBVSVKAUFUGBVTVKVOUFUGKLWBWAWBVSVTWBVKAVK
    AHZVKAGZIWBVKVOWPWBAWQJIKLIUJWHVPPEZVPWFVPWGPWFVRVSDZVRVTDZEZVPVSVRVTVSVNVQ
    VSVLVMVSAVKVKAUDZVKAUEZKVSABXBVSBXCUKKIVSVOVPVSAXBJZVSAVKXBXCIKIVSVKVOXCXDI
    UJXAWRVPWSVPWTPWSVNVQVSDZDZVPVNVQVSMXFVNVPDZVPXEVPVNXEVSVQDZVPVQVSNXHVPVPVO
    EZDVPVSVPVQXIVKANVOVPULZFVPVOUMOOQXGVPVNDVPVNVPNVPVNVPAVNAVKUNAVLVMAVKUOABU
    OUPUQUROOOWTVNVTDZVQDZPVNVQVTUSXLPVQDPXKPVQXKVLVMVTDZDZPVLVMVTMXNVLPDPXMPVL
    XMBAEZXOCZDZPVMXOVTXPABULVTXOXOVTCBAUTRVAFPXQXOSROQVLTOOVBVQVCOOVDVPVEZOOWG
    VNVQWCDZDZPVNVQWCMXTVNPDPXSPVNXSVQBDZWBDZPYBXSVQBWBMRYBBVODZWBDZPYAYCWBYAXI
    BDZYCVQXIBXJVBYEVPBDZVOBDZEZYCVPBVOVPBWMUKWOVFYHPYCEYCYFPYGYCYFAVKBDZDZPAVK
    BMYJAPDPYIPAYIBVKDZPVKBNPYKBSROQATOOVOBNVDYCVGOOOVBYDYCYCCZDZPWBYLYCWBYCYCW
    BCBAVHRVAQPYMYCSROOOQVNTOOVDXROOO $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem1b $p |- ( ( a ->3 b ) ' ^ ( b ->3 a ) ' ) = 0 $=
    ( wi3 wn wa wo ud3lem0c 2an an32 comor2 comcom7 ancom ax-a2 lan ax-r2 ax-r1
    wf dff anass ran an12 comor1 comcom2 com2an fh1 anabs anor1 anidm fh1r oran
    2or or0 ) ABCDZBACDZEABDZFZABFZEZADZAUOEZFZEZBUSFZBAFZEZUOBUSEZFZEZEZQUMVBU
    NVHABGBAGHVIURVHEZVAEZQURVAVHIVKUOVDEZVCEZVAEZQVJVMVAVJUPVHEZUQEZVMUPUQVHIV
    PUOVCEZVDEZUQEZVMVOVRUQVOVEUPVGEZEZVRUPVEVGUAWAVEUOEZVRVTUOVEVTUPUOEZUPVFEZ
    FZUOUPUOVFAUOJZUPBUSUPBWFKUPAAUOUBUCUDUEWEUOQFUOWCUOWDQWCUOUOAFZEZUOWCUOUPE
    WHUPUOLUPWGUOAUOMZNOUOAUFOWDWGWGDZEZQUPWGVFWJWIBAUGHQWKWGRPOUKUOULOONWBUOVE
    EZVRVEUOLVRWLUOVCVDSPOOOTVSVRVDEZVMUQVDVRABMNWMVQVDVDEZEZVMVQVDVDSWOVRVMWNV
    DVQVDUHNUOVCVDIOOOOOTVNVLVCVAEZEZQVLVCVASWQVLUSEZQWPUSVLWPUSBFZVAEZUSVCWSVA
    BUSMTWTVAWSEZUSWSVALXAUSWSEZUTWSEZFZUSWSUSUTUSBUBZWSAUOWSAXEKWSBUSBJUCUDUIX
    DUSQFUSXBUSXCQUSBUFXCWSUTEZQUTWSLXFWSWSDZEZQUTXGWSABUGNQXHWSRPOOUKUSULOOOON
    WRUOUSEZVDEZQUOVDUSIXJXIXIDZEZQVDXKXIBAUJNQXLXIRPOOOOOOO $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem1c $p |- ( ( a ->3 b ) ' v ( b ->3 a ) ) = ( a v b ' ) $=
    ( wn wo wa 2or coman2 coman1 com2or comcom7 com2an comcom ax-a2 ax-r2 ax-a3
    wt ax-r1 df-t lor or1 ud3lem0c comorr2 comcom6 comor2 comor1 comorr comcom3
    wi3 df-i3 fh4r comcom2 lea lel2or leor letr lear lbtr or12 ancom oran ax-r5
    df-le2 or1r 2an an1 fh4 ran an1r anor1 ) ABUHCZBAUHZDABCZDZABDZEZACZAVLEZDZ
    EZVLAEZVLVPEZDZBVLADZEZDZDZVMVJVSVKWEABUABAUIFWFVOWEDZVRWEDZEZVMVOWEVRVOWBW
    DVOVTWAVTVOVTVMVNVTAVLVLAGZVLAHZIVTABWJVTBWKJIKLWAVOWAVMVNWAAVLWAAVLVPGJZVL
    VPHZIWAABWLWABWMJIKLIVOBWCBVOBVMVNBVMAVLUBUCABUBKLWCVOWCVMVNWCAVLVLAUDZVLAU
    EZIWCABWNWCBWOJZIKLKIVOVPVQVPVOVPVMVNAVMAVLUFUGAVNABUFUGKLVQVOVQVMVNVQAVLAV
    LHZAVLGZIVQABWQVQBWRJIKLIUJWIVMPEZVMWGVMWHPWGVMWEDZVNWEDZEZVMVMWEVNVMWBWDVM
    VTWAVMVLAAVLUDZAVLUEZKVMVLVPXCVMAXDUKKIVMBWCVMBXCJZVMVLAXCXDIKIVMABXDXEIUJX
    BWSVMWTVMXAPWTWEVMDVMVMWEMWEVMWBVMWDWBVLVMVTVLWAVLAULVLVPULUMVLAUNUOWDWCVMB
    WCUPVLAMUQUMVBNXAWBVNWDDDZPVNWBWDURXFWBVNDZWDDZPXHXFWBVNWDOQXHPWDDPXGPWDXGV
    TWAVNDZDZPVTWAVNOXJVTPDPXIPVTXIVPVLEZXKCZDZPWAXKVNXLVLVPUSABUTFPXMXKRQNSVTT
    NNVAWDVCNNNVDVMVEZNNWHWBVRWDDZDZPVRWBWDURXPWBPDPXOPWBXOVQVPDZWCBEZDZPVRXQWD
    XRVPVQMBWCUSFXSVQVPXRDZDZPVQVPXROYAVQVPBDZDZPXTYBVQXTVPWCDZYBEZYBWCVPBWCAWN
    UKWPVFYEPYBEYBYDPYBYDWCVPDZPVPWCMYFVLAVPDZDZPVLAVPOYHVLPDPYGPVLPYGARQSVLTNN
    NVGYBVHNNSYCYBVQDZPVQYBMYIYBYBCZDZPVQYJYBABVISPYKYBRQNNNNNSWBTNNVDXNNNN $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem1d $p |- ( ( a ->3 b ) ^ ( ( a ->3 b ) ' v ( b ->3 a ) ) ) =
              ( ( a ' ^ b ' ) v ( a ^ ( a ' v b ) ) ) $=
    ( wi3 wn wo wa df-i3 ud3lem1c 2an comor1 comcom2 comor2 comcom7 com2an fh1r
    com2or an32 ax-r2 2or wf anabs ran ancom anor2 lan dff ax-r1 lear leor letr
    df2le2 or0r ax-r5 ) ABCZUNDBACEZFADZBFZUPBDZFZEZAUPBEZFZEZAUREZFZUSVBEZUNVC
    UOVDABGABHIVEUTVDFZVBVDFZEZVFVDUTVBVDUQUSVDUPBVDAAURJZKZVDBAURLZMZNZVDUPURV
    KVLNZPVDAVAVJVDUPBVKVMPNOVIUQVDFZUSVDFZEZVBEVFVGVRVHVBVDUQUSVNVOOVHAVDFZVAF
    VBAVAVDQVSAVAAURUAUBRSVRUSVBVRTUSEUSVPTVQUSVPVDUQFZTUQVDUCVTVDVDDZFZTUQWAVD
    ABUDUETWBVDUFUGRRUSVDUSURVDUPURUHURAUIUJUKSUSULRUMRRR $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem1 $p |- ( ( a ->3 b ) ->3 ( b ->3 a ) ) =
              ( a v ( a ' ^ b ' ) ) $=
    ( wi3 wn wa wo df-i3 wf ud3lem1a ud3lem1b 2or ax-r2 ud3lem1d coman1 comcom2
    or0 coman2 wt ax-a2 lor comcom7 com2or fh3 orabs anor1 df-t ax-r1 or12 3tr1
    2an an1 ) ABCZBACZCULDZUMEZUNUMDEZFZULUNUMFEZFZAADZBDZEZFZULUMGUSAVAEZVBAUT
    BFZEZFZFZVCUQVDURVGUQVDHFVDUOVDUPHABIABJKVDPLABMKVBVDVFFZFVBAFVHVCVIAVBVIVD
    AFZVDVEFZEZAVDAVEAVANZVDUTBVDAVMOVDBAVAQUAUBUCVLAREAVJAVKRVJAVDFAVDASAVAUDL
    VKVEVDFZRVDVESVNVEVEDZFZRVDVOVEABUETRVPVEUFUGLLUJAUKLLTVDVBVFUHAVBSUILL $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->3 a ) = ( a v b ) $=
    ( wn wa wo wi3 oran ax-r1 con3 lor anor2 ax-r2 ax-a2 wf ran lan dff 2or or0
    ancom ud3lem0b df-i3 ax-a3 ax-a1 an32 anidm ax-r5 2an oml comorr fh2r anabs
    comcom2 anass an0 ) AACZBCDZEZAFUPABEZDZCZAFZUSURVAAURAUSCZEZVAUQVCAUQUSUSU
    QCABGHIJVDUTUTVDCAUSKHIZLUAVBVACZADZVFUPDZEVAVFAEZDZEZUSVAAUBVKVGVHVJEZEZUS
    VGVHVJUCVMVLVGEZUSVGVLMVNUSNEUSVLUSVGNVLAUTEZUSVLUTAEZVOVHUTVJAVHUTUPDZUTVQ
    VHUTVFUPUTUDZOHVQUPUPDZUSDUTUPUSUPUEVSUPUSUPUFOLLVJVDVPDZAVTVJVDVAVPVIVEUTV
    FAVRUGUHHVTVDUSDZAVPUSVDVPVOUSUTAMZABUIZLPWAAUSDZVCUSDZEZAAUSVCABUJZAUSWGUM
    UKWFANEAWDAWENABULWEUSVCDZNVCUSTNWHUSQHLRASLLLLRWBLWCLVGAVFDZNVFATWIAUTDZNW
    JWIUTVFAVRPHWJAUPDZUSDZNWLWJAUPUSUNHWLUSWKDZNWKUSTWMUSNDZNWNWMNWKUSAQPHUSUO
    LLLLLRUSSLLLLL $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem3a $p |- ( ( a ->3 b ) ' ^ ( a v b ) ) = ( a ->3 b ) ' $=
    ( wi3 wn wo wa ud3lem0c lea lear letr bltr df2le2 ) ABCDZABEZMABDZEZNFZADAO
    FEZFZNABGSQNQRHPNIJKL $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem3b $p |- ( ( a ->3 b ) ' ^ ( a v b ) ' ) = 0 $=
    ( wi3 wn wo wa wf ud3lem0c ran an32 anass dff ax-r1 lan an0 ax-r2 an0r ) AB
    CDZABEZDZFABDZEZSFZADAUAFEZFZTFZGRUETABHIUFUCTFZUDFZGUCUDTJUHGUDFGUGGUDUGUB
    STFZFZGUBSTKUJUBGFGUIGUBGUISLMNUBOPPIUDQPPP $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem3c $p |- ( ( a ->3 b ) ' v ( a v b ) ) = ( a v b ) $=
    ( wi3 wn wo wa ud3lem0c an32 ancom ax-r2 ax-r5 ax-a2 orabs ) ABCDZABEZEOABD
    ZEZADAPFEZFZFZOEZONTONQOFRFZTABGUBSOFTQORHSOIJJKUAOTEOTOLOSMJJ $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem3d $p |- ( ( a ->3 b ) ^ ( ( a ->3 b ) ' v ( a v b ) ) ) =
              ( ( a ' ^ b ) v ( a ^ ( a ' v b ) ) ) $=
    ( wi3 wn wo wa ud3lem3c 2an comor1 comcom2 comor2 com2an com2or fh1r coman1
    df-i3 wf letr df2le2 ax-r2 comcom7 coman2 fh2r lear leor oran lan dff ax-r1
    2or or0 ax-r5 lea leo lor ) ABCZUPDABEZEZFADZBFZUSBDZFZEZAUSBEZFZEZUQFZUTVE
    EZUPVFURUQABPABGHVGVCUQFZVEUQFZEZVHUQVCVEUQUTVBUQUSBUQAABIZJZABKZLUQUSVAVMU
    QBVNJLMUQAVDVLUQUSBVMVNMLNVKUTVJEVHVIUTVJVIUTUQFZVBUQFZEZUTUTUQVBUTABUTAUSB
    OZUAUSBUBZMUTUSVAVRUTBVSJLUCVQUTQEUTVOUTVPQUTUQUTBUQUSBUDBAUERSVPVBVBDZFZQU
    QVTVBABUFUGQWAVBUHUITUJUTUKTTULVJVEUTVEUQVEAUQAVDUMABUNRSUOTTT $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud3lem3 $p |- ( ( a ->3 b ) ->3 ( a v b ) ) = ( a v b ) $=
    ( wi3 wo wn wa ax-r2 2or coman1 comcom7 coman2 comcom2 com2or com2an comcom
    wf comorr wt ax-r1 lor df-i3 ud3lem3a ud3lem0c ud3lem3b or0 ud3lem3d comor1
    comor2 comcom3 fh4r ax-a3 anor2 df-t ax-r5 or1r ax-a2 lear leor letr lel2or
    lea leo df-le2 2an an1r or12 df-a anor1 ax-r4 or1 an1 ) ABCZABDZCVLEZVMFZVN
    VMEFZDZVLVNVMDFZDZVMVLVMUAVSABEZDZVMFZAEZAVTFZDZFZWCBFZAWCBDZFZDZDZVMVQWFVR
    WJVQWFPDWFVOWFVPPVOVNWFABUBABUCGABUDHWFUEGABUFHWKWBWJDZWEWJDZFZVMWBWJWEWBWG
    WIWGWBWGWAVMWGAVTWGAWCBIJZWGBWCBKZLMWGABWOWPMNOWBAWHAWBAWAVMAVTQZABQZNOWHWB
    WHWAVMWHAVTWHAWCBUGJZWHBWCBUHZLMWHABWSWTMNONMWBWCWDWCWBWCWAVMAWAWQUIAVMWRUI
    NOWDWBWDWAVMWDAVTAVTIZAVTKZMWDABXAWDBXBJMNOMUJWNVMRFVMWLVMWMRWLWAWJDZVMWJDZ
    FZVMWAWJVMWAWGWIWAWCBWAAAVTUGZLZWABAVTUHJZNWAAWHXFWAWCBXGXHMNMWAABXFXHMUJXE
    RVMFVMXCRXDVMXCWAWGDZWIDZRXJXCWAWGWIUKSXJRWIDRXIRWIXIWAWAEZDZRWGXKWAABULTRX
    LWAUMSGUNWIUOGGXDWJVMDVMVMWJUPWJVMWGVMWIWGBVMWCBUQBAURUSWIAVMAWHVAABVBUSUTV
    CGVDVMVEGGWMWGWEWIDZDZRWEWGWIVFXNWGRDRXMRWGXMWEWEEZDZRWIXOWEWIWCWHEZDZEXOAW
    HVGXRWEXQWDWCWDXQABVHSTVIGTRXPWEUMSGTWGVJGGVDVMVKGGGG $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem1a $p |- ( ( a ->4 b ) ^ ( b ->4 a ) ) =
              ( ( a ^ b ) v ( a ' ^ b ' ) ) $=
    ( wa wn wo coman2 comcom com2or coman1 comcom2 com2an comcom3 ancom 2or lan
    wf dff ax-r1 an0 ax-r2 wi4 df-i4 2an comcom5 fh2r ax-a2 ran fh1 an4 lor fh3
    or0 3tr2 an12 an32 anass anor2 con3 fh2 lecon lelan oran anor1 ax-r4 le3tr1
    lea con2 le0 lebi leo le2an df2le2 ) ABUAZBAUAZCABCZADZBCZEZVPBEZBDZCZEZBAC
    ZVTACZEZVTAEZVPCZEZCZVOVPVTCZEZVMWBVNWHABUBBAUBUCWIVRWHCZWAWHCZEWKVRWHWAVRW
    EWGVRWCWDVRBABVRBVOVQVOBABFZGZVQBVPBFGZHGZAVRAVOVQVOAABIZGZAVQVPVQVQVPVPBIG
    ZJUDHGZKVRVTAVTVRVTVOVQBVOWOLBVQWPLHGZXAKHVRWFVPVRVTAXBXAHVPVRVPVOVQAVOWSLW
    THGZKHVRVSVTVRVPBXCWQHVRBWQJZKUEWLVOWMWJWLVOPEZVOWLVRVOAVTCZEZAVTEZVPCZEZCZ
    XEWHXJVRWEXGWGXIWCVOWDXFBAMVTAMZNWFXHVPVTAUFUGNOXKVRXGCZVRXICZEXEVRXGXIVRVO
    XFVRABXAWQKVRAVTXAXBKHVRXHVPVRAVTXAXDHXCKUHXMVOXNPVOVQXFCZEXEXMVOXOPVOXOVPA
    CZBVTCZCZPVPBAVTUIXRXPPCPXQPXPPXQBQROXPSTTUJVOVQXFVOVPBVOAWRJZWNKZVOAVTWRVO
    BWNJZKUKVOULZUMXNVOXICZVQXICZEZPVOXIVQVOXHVPVOAVTWRYAHXSKXTUEYEPPEPYCPYDPYC
    XHVOVPCZCZPVOXHVPUNYGXHPCPYFPXHYFAVPCZBCZPABVPUOYIBYHCZPYHBMYJBPCPYHPBPYHAQ
    ROBSTTTOXHSTTVQXHCZVPCVPYKCZYDPYKVPMVQXHVPUPYLVPPCPYKPVPYKVQVQDZCZPXHYMVQXH
    VQVQXHDABUQRUROPYNVQQRTOVPSTUMNPULTTNTTYBTWMWAWECZWAWGCZEZWJWEWAWGWEVSVTWEV
    PBVPWEAWEAWCWDWCABAFGZWDAVTAFGZHZLGBWEBWCWDWCBBAIGZBWDVTWDWDVTVTAIGZJUDHGHV
    TWEVTWCWDBWCUUALUUBHGZKWEWFVPWEVTAUUCAWEYTGHVPWEVPWCWDAWCYRLAWDYSLHGKUSYQPW
    JEZWJYOPYPWJYOPWAVSWCDZCZDZCWAWADZCYOPUUGUUHWAWAUUFVTUUEVSWCBBAVFUTVAUTVAWE
    UUGWAWEWDWCEZUUGWCWDUFUUIWDDZUUECZDUUGWDWCVBUUKUUFUUJVSUUEWDVSWDXFVSDXLABVC
    TVGUGVDTTOWAQVEYOVHVIYPVSWFCZVTVPCZCZWJVSVTWFVPUIUUNUUMWJUUNUUMUULCZUUMUULU
    UMMUUOUUMWFVSCZCUUMUULUUPUUMVSWFMOUUMUUPVTWFVPVSVTAVJVPBVJVKVLTTVTVPMTTNUUD
    WJPEWJPWJUFWJULTTTNTT $.
    $( [24-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem1b $p |- ( ( a ->4 b ) ' ^ ( b ->4 a ) ) =
              ( a ^ b ' ) $=
    ( wn wa wo coman2 comcom2 coman1 com2or comcom com2an comcom5 wf an32 ax-r2
    dff ancom an0 2or lan wi4 ud4lem0c df-i4 2an comor2 comor1 comcom3 fh2 df-a
    ax-a2 ax-r1 ran lea leor letr lear leo ler2an bltr 3tr1 or0 anass fh2r an12
    df2le2 anor1 ) ABUACZBAUAZDACZBCZEZAVJEZDZAVJDZBEZDZBADZVJADZEZVJAEZVIDZEZD
    ZVNVGVPVHWBABUBBAUCUDWCVPVSDZVPWADZEZVNVSVPWAVSVMVOVSVKVLVKVSVKVQVRVQVKVQVI
    VJVQABAFZGVQBBAHZGZIZJVRVKVRVIVJVRAVJAFZGVJAHZIJIJVLVSVLVQVRVQVLVQAVJWGWIIZ
    JVLVJAAVJUEAVJUFKIJKVSVNBVNVSVNVQVRVNBAVNBVNVJAVJFZUGLZAVJHZKVNVJAWNWPKIJBV
    SBVQVRVQBWHJBVRVJVRVRVJWLJGLIJIKVSVTVIVTVSVTVQVRVTBAVTBVTVJVJAUFZUGLVJAUEZK
    VTVJAWQWRKIJVSAAVSAVQVRVQAWGJVRAWKJIJGKUHWFVNMEZVNWDVNWEMWDVPVQDZVPVRDZEZVN
    VQVPVRVQVMVOVQVKVLWJWMKVQVNBVQAVJWGWIKWHIKVQVJAWIWGKUHXBWSVNXBMVNEWSWTMXAVN
    WTVMVQDZVODZMVMVOVQNXDMVODZMXCMVOXCVKVQDZVLDZMVKVLVQNXGMVLDZMXFMVLXFVJVIEZX
    ICZDZMVKXIVQXJVIVJUJBAUIUDMXKXIPUKOULXHVLMDMMVLQVLROOOULXEVOMDMMVOQVOROOOVR
    VPDVRXAVNVRVPVRVMVOVRVKVLVRVJVKVJAUMVJVIUNUOVRAVLVJAUPAVJUQUOURVRVNVOVJAQVN
    BUQUSURVEVPVRQAVJQUTSMVNUJOVNVAZOOWEVMVOWADZDZMVMVOWAVBXNVMMDMXMMVMXMVNWADZ
    BWADZEZMVNWABVNVTVIVNVJAWNWPIVNAWPGKWOVCXQMMEMXOMXPMXOVTVNVIDZDZMVNVTVIVDXS
    VTMDMXRMVTXRAVIDZVJDZMAVJVINYAVJXTDZMXTVJQYBVJMDMXTMVJMXTAPUKTVJROOOTVTROOV
    TBVIDZDVTVTCZDXPMYCYDVTBAVFTBVTVIVDVTPUTSMVAOOTVMROOSXLOOO $.
    $( [25-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem1c $p |- ( ( a ->4 b ) ' v ( b ->4 a ) ) =
              ( a v b ' ) $=
    ( wn wo wa comor2 comcom3 comcom5 comor1 com2an com2or comcom coman1 coman2
    comcom2 wt ax-a2 ax-a3 ax-r2 or1 ud4lem0c df-i4 comorr fh4r df-a df-t ax-r1
    wi4 2or lor 3tr2 ax-r5 lear lel2or leo letr lea lbtr 2an ancom an1 or32 or4
    df-le2 fh4 anor2 con2 3tr1 ) ABUHCZBAUHZDACZBCZDZAVLDZEZAVLEZBDZEZBAEZVLAEZ
    DZVLADZVKEZDZDZVNVIVRVJWDABUABAUBUIWEVOWDDZVQWDDZEZVNVOWDVQVOWAWCWAVOWAVMVN
    VMWAVMVSVTVMBAVMBVMVLVKVLFZGHVMAVMVKVKVLIZGHZJVMVLAWIWKJKLVNWAVNVSVTVNBAVNB
    VNVLAVLFZGHAVLIZJVNVLAWLWMJKLJLVOWBVKWBVOWBVMVNWBVKVLWBAVLAFOZVLAIZKZWBAVLW
    BAWBVKWNGHWOKJLVKVOVKVMVNVKVLUCAVNAVLUCGJLJKVOVPBVPVOVPVMVNVPVKVLVPAAVLMZOA
    VLNZKVPAVLWQWRKJLVOBVOVLVLVOVLVMVNVMVLWILVNVLWLLJLGHKUDWHVNPEZVNWFVNWGPWFVM
    WDDZVNWDDZEZVNVMWDVNVMWAWCVMVSVTVSVMVSVKVLVSABANOVSBBAMOKLVTVMVTVKVLVTAVLAN
    OVLAMKLKVMWBVKWBVMWPLWJJKVNVMVNVKVLVNAWMOWLKLUDXBPVNEZVNWTPXAVNVMWADZWCDPWC
    DZWTPXDPWCVMVSDZVTDVTXFDZXDPXFVTQVMVSVTRXGVTPDPXFPVTXFVLVKDZXHCZDZPVMXHVSXI
    VKVLQBAUEUIPXJXHUFUGSUJVTTSUKULVMWAWCRXEWCPDPPWCQWCTSUKXAWDVNDVNVNWDQWDVNWA
    VNWCWAAVNVSAVTBAUMVLAUMUNAVLUOUPWCWBVNWBVKUQVLAQURUNVDSUSXCWSVNPVNUTVNVAZSS
    SWGWDVQDZPVQWDQXLVSVPDZPDZPXLWAVQDZWCDZXNWAWCVQVBXPXMVTBDZDZWCDZXNXOXRWCVSV
    TVPBVCULXSXMXQWCDZDXNXMXQWCRXTPXMVTBWCDZDVTVTCZDXTPYAYBVTYABWBDZBVKDZEZYBWB
    BVKWBBWBVLWOGHWNVEYEPYBEZYBYCPYDYBBVLDZADPADZYCPYGPAPYGBUFUGULBVLARYHAPDPPA
    QATSUKYBYDVTYDBAVFVGUGUSYFYBPEYBPYBUTYBVASSSUJVTBWCRVTUFVHUJSSSXMTSSUSXKSSS
    $.
    $( [25-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem1d $p |- ( ( ( a ->4 b ) ' v ( b ->4 a ) ) ^ ( b ->4 a ) ' ) =
              ( ( ( a ' v b ' ) ^ ( a ' v b ) ) ^ a ) $=
    ( wi4 wn wo ud4lem1c ud4lem0c 2an an12 ax-a2 comor2 comcom3 comcom5 comcom2
    wa comor1 com2an fh1 wf ax-r2 anor1 dff ax-r1 ancom anabs 2or or0 ) ABCDBAC
    ZEZUHDZOABDZEZUKADZEZBUMEZOZBUMOZAEZOZOZUMUKEZUMBEZOZAOZUIULUJUSABFBAGHUTUP
    ULUROZOVDULUPURIUPVCVEAUNVAUOVBUKUMJBUMJHVEULUQOZULAOZEZAULUQAULBUMULBULUKA
    UKKLMULAAUKPZNQVIRVHSAEZAVFSVGAVFUKAEZVKDZOZSULVKUQVLAUKJBAUAHSVMVKUBUCTVGA
    ULOAULAUDAUKUETUFVJASEASAJAUGTTTHTT $.
    $( [25-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem1 $p |- ( ( a ->4 b ) ->4 ( b ->4 a ) ) =
              ( a v ( a ' ^ b ' ) ) $=
    ( wi4 wa 2or lor coman1 comcom comcom3 com2or comcom2 comcom5 comorr com2an
    wn wo ax-r2 wt ax-a2 or1 df-i4 ud4lem1a ud4lem1b ud4lem1d ancom fh4 or4 lea
    ax-a3 lel2or leor letr df-le2 coman2 comor1 or32 df-a con2 ax-r1 df-t ax-r5
    comor2 anor1 3tr1 2an an1 ) ABCZBACZCVGVHDZVGOZVHDZPZVJVHPVHODZPZAAOZBOZDZP
    ZVGVHUAVNABDZVQPZAVPDZPZVOVPPZVOBPZDZADZPZVRVLWBVMWFVIVTVKWAABUBABUCEABUDEW
    GWBAPZWBWEPZDZVRWGWBAWEDZPWJWFWKWBWEAUEFAWBWEAWBVOWBVOVTWAVOVSVQAVSVSAABGZH
    IVQVOVOVPGHJAWAWAAAVPGHIJKLAWEVOWEVOWCWDVOVPMVOBMNKLUFQWJVRRDVRWHVRWIRWHVQA
    PZVRWHVTWAAPPZWMVTWAAUIWNVSWAPZWMPWMVSVQWAAUGWOWMWOAWMVSAWAABUHAVPUHUJAVQUK
    ULUMQQVQASQWIRRDZRWIWBWCPZWBWDPZDWPWCWBWDWCVTWAWCVSVQVSWCVSVOVPVSAWLKVSBABU
    NKJHWCVOVPVOVPUOZVOVPVBZNJWCAVPWCAWCVOWSILWTNJWCVOBWSWCBWCVPWTILJUFWQRWRRWQ
    VTWCPZWAPZRVTWAWCUPXBRWAPZRXARWAXAVSWCPZVQPZRVSVQWCUPXERVQPZRXDRVQXDVSVSOZP
    ZRWCXGVSXGWCVSWCABUQURUSFRXHVSUTUSQVAXFVQRPRRVQSVQTQQQVAXCWARPRRWASWATQQQWR
    VTWAWDPZPZRVTWAWDUIXJVTRPRXIRVTWDWAPWDWDOZPXIRWAXKWDABVCFWAWDSWDUTVDFVTTQQV
    EQRVFQVEVRVFQQQQ $.
    $( [25-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem2 $p |- ( ( a v ( a ' ^ b ' ) ) ->4 a ) = ( a v b ) $=
    ( wn wa wo wi4 df-i4 wf ancom anabs ax-r2 oran con2 ran ax-r1 lan 2or ax-r5
    con3 wt anass dff an0 or0 lor anor2 comid comorr fh3r or32 oridm df-t ax-a2
    comcom2 2an an1 oml ) AACZBCDZEZAFUTADZUTCZADZEZVBAEZURDZEZABEZUTAGVGAURVHD
    ZEVHVDAVFVIVDAHEAVAAVCHVAAUTDAUTAIAUSJKVCURUSCZDZADZHVBVKAUTVKAUSLMNVLAVKDZ
    HVKAIVMAURDZVJDZHVOVMAURVJUAOVOVJVNDZHVNVJIVPVJHDZHVQVPHVNVJAUBPOVJUCKKKKKQ
    AUDKVFURVEDVIVEURIVEVHURVEVIAEZVHVBVIAUTVIUTAVHCZEZVICUSVSAUSVHVHVJABLOSUEV
    TVIVIVTCAVHUFOSKMRVRURAEZVHAEZDZVHAURVHAAAUGUNABUHUIWCVHTDZVHWCWBWADWDWAWBI
    WBVHWATWBAAEZBEVHABAUJWEABAUKRKTWATAUREWAAULAURUMKOUOKVHUPKKKPKQABUQKK $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem3a $p |- ( ( a ->4 b ) ' ^ ( a v b ) ) = ( a ->4 b ) ' $=
    ( wn wo wa wi4 anass lea leror df2le2 lan ax-r2 ud4lem0c ran 3tr1 ) ACBCZDA
    PDEZAPEZBDZEZABDZEZTABFCZUAEUCUBQSUAEZETQSUAGUDSQSUARABAPHIJKLUCTUAABMZNUEO
    $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem3b $p |- ( ( a ->4 b ) ' v ( a v b ) ) = ( a v b ) $=
    ( wi4 wn wo wa ud4lem0c comcom2 com2or com2an fh3r wt ax-a2 or4 ax-r1 ax-r2
    lor or1 2an an1 ax-r5 comor1 comor2 df-t lea leror df-le2 ancom ) ABCDZABEZ
    EADZBDZEZAULEZFZAULFZBEZFZUJEZUJUIURUJABGUAUSUOUJEZUQUJEZFZUJUJUOUQUJUMUNUJ
    UKULUJAABUBZHUJBABUCZHZIZUJAULVCVEIZJUJUPBUJAULVCVEJVDIKVBLUJFZUJUTLVAUJUTL
    LFZLUTUMUJEZUNUJEZFVIUJUMUNVFVGKVJLVKLVJUJUMEZLUMUJMVLAUKEZBULEZEZLABUKULNV
    OVMLEZLVPVOLVNVMBUDZQOVMRPPPVKUJUNEZLUNUJMVRAAEZVNEZLABAULNVTVSLEZLWAVTLVNV
    SVQQOVSRPPPSPLTPUQUJUPABAULUEUFUGSVHUJLFUJLUJUHUJTPPPP $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud4lem3 $p |- ( ( a ->4 b ) ->4 ( a v b ) ) = ( a v b ) $=
    ( wi4 wo wa wn df-i4 ud4lem3a lor comid comcom2 comor1 comor2 com2an com2or
    wf comcom wt ax-r2 ax-r1 bctr fh4r ancom ax-a2 ud4lem3b 2an an1 ran dff 2or
    df-t or0 ) ABCZABDZCUMUNEZUMFZUNEZDZUPUNDZUNFZEZDZUNUMUNGVBUNPDUNURUNVAPURU
    OUPDZUNUQUPUOABHIVCUMUPDZUNUPDZEZUNUMUPUNUMUMUMJKUMABEZAFZBEZDZVHBDZBFZEZDZ
    UNABGUNVNUNVJVMUNVGVIUNABABLZABMZNUNVHBUNAVOKZVPNOUNVKVLUNVHBVQVPOUNBVPKNOQ
    UAUBVFVEVDEZUNVDVEUCVRUNREUNVEUNVDRVEUSUNUNUPUDABUEZSRVDUMUKTUFUNUGSSSSVAUN
    UTEZPUSUNUTVSUHPVTUNUITSUJUNULSS $.
    $( [23-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem1a $p |- ( ( a ->5 b ) ^ ( b ->5 a ) ) =
                 ( ( a ^ b ) v ( a ' ^ b ' ) ) $=
    ( wa wo lan coman2 comcom2 coman1 com2an comcom com2or wf anass ax-r1 ancom
    fh1r an0 ax-r2 2or or0 wi5 wn df-i5 2an ax-a2 fh2 comcom3 comcom5 dff anidm
    an12 lor ran ) ABUAZBAUAZCABCZAUBZBCZDZUQBUBZCZDZBACZUTACZDZUTUQCZDZCZUPVAD
    ZUNVBUOVGABUCBAUCUDVHVBVFVEDZCZVIVGVJVBVEVFUEEVKVBVFCZVBVECZDZVIVFVBVEVFUSV
    AVFUPURUPVFUPUTUQUPBABFGZUPAABHZGIJZURVFURUTUQURBUQBFGUQBHIJZKVFUQUTUTUQFZU
    TUQHZIZKVFVCVDVCVFVCUTUQVCBBAHZGZVCABAFZGZIJVDVFVDUTUQUTAHZVDAUTAFZGZIJKUFV
    NVAUPDVIVLVAVMUPVLUSVFCZVAVFCZDZVAVFUSVAVFUPURVFABVFAVFUQVSUGUHVFBVFUTVTUGU
    HZIVFUQBVSWLIKWAPWKLVADZVAWILWJVAWIUPVFCZURVFCZDZLVFUPURVQVRPWPLLDZLWNLWOLW
    NABVFCZCZLABVFMWSABUTCZUQCZCZLWRXAAXAWRBUTUQMNZEXBALCZLXALAXAUQWTCZLWTUQOXE
    UQLCZLWTLUQLWTBUINZEUQQZRRZEAQZRRRWOUQWRCZLUQBVFMXKUQXACZLWRXAUQXCEXLXFLXAL
    UQXIEXHRRRSLTZRRWJVAVACVAVFVAVAUTUQOEVAUJRSWMVALDVALVAUEVATRRRVMVBVCCZVBVDC
    ZDZUPVCVBVDVCUSVAVCUPURVCABWDWBIZVCUQBWEWBIZKZVCUQUTWEWCIZKVCUTAWCWDIUFXPUS
    VCCZUSVDCZDZUPXNYAXOYBXNYAVAVCCZDZYAVCUSVAXSXTPYEYALDZYAYDLYAYDUQUTVCCZCZLU
    QUTVCMYHXFLYGLUQYGBVDCZLYIYGBUTAUKNYIWTACZLYJYIBUTAMNYJAWTCZLWTAOYKXDLWTLAX
    GEXJRRRZREXHRRULYATZRRXOYBVAVDCZDZYBVDUSVAVDUPURVDABWGVDBVDUTWFUGUHZIVDUQBW
    HYPIZKVDUQUTWHWFIPYOYBLDYBYNLYBYNVDVACZLVAVDOYRUTAVACZCZLUTAVAMYTUTLCZLYSLU
    TYSAUQCZUTCZLUUCYSAUQUTMNUUCUTUUBCZLUUBUTOUUDUUALUUBLUTLUUBAUINZEUTQZRRREUU
    FRRRULYBTRRSYCYFUPYBLYAYBUPVDCZURVDCZDZLVDUPURUPVDUPUTAVOVPIJYQPUUIWQLUUGLU
    UHLUUGAYICZLABVDMUUJXDLYILAYLEXJRRUUHUQYICZLUQBVDMUUKXFLYILUQYLEXHRRSXMRRUL
    YFYAUPYMYAUPVCCZURVCCZDZUPVCUPURXQXRPUUNUPLDUPUULUPUUMLUULUPUPCUPVCUPUPBAOE
    UPUJRUUMVCURCZLURVCOUUOBAURCZCZLBAURMUUQBLCZLUUPLBUUPUURLUUPUUBBCZUURUUSUUP
    AUQBMNUUSLBCUURUUBLBUUEUMLBORRBQZREUUTRRRSUPTRRRRRRSVAUPUERRRR $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem1b $p |- ( ( a ->5 b ) ' ^ ( b ->5 a ) ) = ( a ^ b ' ) $=
    ( wi5 wn wa wo ax-a2 ax-r2 2an coman2 coman1 com2or comcom7 com2an wf ax-r1
    fh2 dff comcom2 an32 ud5lem0c df-i5 anass oran con3 lan an0 df-a ran ler2an
    an0r lea leor letr lear leo df2le2 ancom 3tr1 2or or0r ) ABCDZBACZEADZBDZFZ
    AVEFZEZABFZEZVEVDEZBAEZVEAEZFZFZEZAVEEZVBVJVCVOABUAVCVNVKFVOBAUBVNVKGHIVPVJ
    VKEZVJVNEZFZVQVKVJVNVKVHVIVKVFVGVKVDVEVEVDJZVEVDKZLVKAVEVKAWAMZWBLNVKABWCVK
    BWBMZLNVKVLVMVKBAWDWCNVKVEAWBWCNLQVTOVQFZVQVROVSVQVRVHVIVKEZEZOVHVIVKUCWGVH
    OEOWFOVHWFBAFZWHDZEZOVIWHVKWIABGVKWHWHVKDBAUDPUEIOWJWHRPHUFVHUGHHVSVJVLEZVJ
    VMEZFZVQVLVJVMVLVHVIVLVFVGVLVDVEVLABAJZSVLBBAKZSZLVLAVEWNWPLNVLABWNWOLNVLVE
    AWPWNNQWMWEVQWKOWLVQWKVHVLEZVIEZOVHVIVLTWROVIEOWQOVIWQVFVLEZVGEZOVFVGVLTWTO
    VGEOWSOVGWSVEVDFZXADZEZOVFXAVLXBVDVEGBAUHIOXCXARPHUIVGUKHHUIVIUKHHVMVJEVMWL
    VQVMVJVMVHVIVMVEVHVEAULVEVFVGVEVDUMVEAUMUJUNVMAVIVEAUOABUPUNUJUQVJVMURAVEUR
    USUTVQVAZHHUTXDHHH $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem1c $p |- ( ( a ->5 b ) ' ^ ( b ->5 a ) ' ) =
                 ( ( ( a v b ) ^ ( a v b ' ) ) ^
                 ( ( a ' v b ) ^ ( a ' v b ' ) ) ) $=
    ( wi5 wn wa wo ud5lem0c ax-a2 2an ax-r2 an4 ancom anidm ran anass ax-r1 ) A
    BCDZBACDZEADZBDZFZATFZEZABFZEZUASBFZEZUDEZEZUDUBEUFUAEZEZQUERUHABGRTSFZBSFZ
    EZBAFZEUHBAGUNUGUOUDULUAUMUFTSHBSHIBAHIJIUIUCUGEZUDUDEZEZUKUCUDUGUDKURUQUPE
    ZUKUPUQLUSUDUBUJEZEZUKUQUDUPUTUDMUPUAUAEZUBUFEZEZUTUAUBUAUFKVDVCUAEZUTVDUAV
    CEVEVBUAVCUAMNUAVCLJUBUFUAOJJIUKVAUDUBUJOPJJJJ $.
    $( [26-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem1 $p |- ( ( a ->5 b ) ->5 ( b ->5 a ) ) =
              ( a v b ' ) $=
    ( wa wn wo coman1 coman2 com2or comcom2 com2an comcom comcom7 comor1 comor2
    wi5 fh4 wt lor ax-r1 ax-r2 df-i5 ud5lem1a ud5lem1b ud5lem1c or32 ax-a3 oran
    2or df-t or1 ax-r5 or1r lea leo letr lear leor lel2or df-le2 2an an1r anor1
    con3 df-a an1 ) ABOZBAOZOVFVGCZVFDZVGCZEZVIVGDCZEZABDZEZVFVGUAVMABCZADZVNCZ
    EZAVNCZEZABEZVOCZVQBEZVQVNEZCZCZEZVOVKWAVLWGVHVSVJVTABUBABUCUHABUDUHWHWAWCE
    ZWAWFEZCZVOWCWAWFWCVSVTWCVPVRVPWCVPWBVOVPABABFZABGZHVPAVNWLVPBWMIHJKVRWCVRW
    BVOVRABVRAVQVNFLZVRBVQVNGZLHVRAVNWNWOHJKHVTWCVTWBVOVTABAVNFZVTBAVNGZLHVTAVN
    WPWQHJKHWCWDWEWDWCWDWBVOWDABWDAVQBMZLZVQBNZHWDAVNWSWDBWTIZHJKWEWCWEWBVOWEAB
    WEAVQVNMLZWEBVQVNNZLHWEAVNXBXCHJKJPWKVOQCVOWIVOWJQWIWAWBEZWAVOEZCZVOWBWAVOW
    BVSVTWBVPVRWBABABMZABNZJWBVQVNWBAXGIWBBXHIZJHWBAVNXGXIJHWBAVNXGXIHPXFQVOCVO
    XDQXEVOXDVSWBEZVTEZQVSVTWBUEXKQVTEZQXJQVTXJVPVRWBEZEZQVPVRWBUFXNVPQEQXMQVPX
    MVRVRDZEZQWBXOVRABUGRQXPVRUISTRVPUJTTUKVTULZTTWAVOVSVOVTVPVOVRVPAVOABUMAVNU
    NZUOVRVNVOVQVNUPVNAUQUOURVTAVOAVNUMXRUOURUSUTVOVATTWJWAWDEZWAWEEZCZQWDWAWEW
    DVSVTWDVPVRWDABWSWTJWDVQVNWRXAJHWDAVNWSXAJHWDVQVNWRXAHPYAQQCQXSQXTQXSVSVTWD
    EZEZQVSVTWDUFYCVSQEQYBQVSYBVTVTDZEZQWDYDVTWDVTVTWDDABVBSVCRQYEVTUISTRVSUJTT
    XTVSWEEZVTEZQVSVTWEUEYGXLQYFQVTYFVPWEEZVREZQVPVRWEUEYIQVREQYHQVRYHVPVPDZEZQ
    WEYJVPWEVPVPWEDABVDSVCRQYKVPUISTUKVRULTTUKXQTTUTQVETTUTVOVETTTT $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem2 $p |- ( ( a v b ' ) ->5 a ) = ( a v ( a ' ^ b ) ) $=
    ( wn wo wi5 wa df-i5 ax-a3 ancom anabs ax-r2 ax-a2 wf anor2 ax-r1 ran anidm
    an32 dff 2or lan an0 or0 ) ABCZDZAEUEAFZUECZAFZDUGACZFZDZAUIBFZDZUEAGUKUFUH
    UJDZDUMUFUHUJHUFAUNULUFAUEFAUEAIAUDJKUNUJUHDZULUHUJLUOULMDULUJULUHMUJULUIFZ
    ULUGULUIULUGABNOZPUPUIUIFZBFULUIBUIRURUIBUIQPKKUHULAFZMUGULAUQPUSUIAFZBFZMU
    IBARVABUTFZMUTBIVBBMFMUTMBUTAUIFZMUIAIMVCASOKUABUBKKKKTULUCKKTKK $.
    $( [10-Apr-2012] $)

  $( Lemma for unified disjunction. $)
  ud5lem3a $p |- ( ( a ->5 b ) ^ ( a v ( a ' ^ b ) ) ) =
                 ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( wn wa wo ran comanr1 comcom6 com2or fh1r ax-r2 ancom anass ax-r1 dff an0r
    wf 2or or0 com2an wi5 df-i5 fh2 an32 anidm coman1 comcom7 comcom2 ax-a2 lan
    coman2 anabs an4 an0 lor ) ABUAZAACZBDZEZDABDZUREZUQBCZDZEZUSDZVAUPVDUSABUB
    FVEVDADZVDURDZEZVAAVDURAVAVCAUTURABGZAURUQBGHZIZAVCUQVBGHZIVJUCVHUTVAURDZVC
    URDZEZEVAVFUTVGVOVFVAADZVCADZEZUTAVAVCVKVLJVRUTQEZUTVPUTVQQVPUTADZURADZEZUT
    AUTURVIVJJWBVSUTVTUTWAQVTAADZBDUTABAUDWCABAUEFKWAAURDZQURALWDAUQDZBDZQWFWDA
    UQBMNWFQBDQWEQBQWEAONZFBPKKKRUTSZKKVQAVCDZQVCALWIWEVBDZQWJWIAUQVBMNWJQVBDQW
    EQVBWGFVBPKKKRWHKKURVAVCURUTURURABURAUQBUFZUGUQBUKZTURUQBWKWLTIURUQVBWKURBW
    LUHTJRVOURUTVOURQEURVMURVNQVMURVADZURVAURLWMURURUTEZDURVAWNURUTURUIUJURUTUL
    KKVNUQUQDZVBBDZDZQUQVBUQBUMWQWOQDQWPQWOWPBVBDZQVBBLQWRBONKUJWOUNKKRURSKUOKK
    K $.
    $( [27-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem3b $p |- ( ( a ->5 b ) ' ^ ( a v ( a ' ^ b ) ) ) =
                ( a ^ ( a ' v b ' ) ) $=
    ( wi5 wn wa wo ud5lem0c ran comorr comcom6 com2an comanr1 anass ancom anabs
    fh2 wf ax-r2 lan an32 anor2 dff ax-r1 an0 an0r 2or or0 ) ABCDZAADZBEZFZEUIB
    DZFZAULFZEZABFZEZUKEZAUMEZUHUQUKABGHURUQAEZUQUJEZFZUSAUQUJAUOUPAUMUNAUMUIUL
    IJAULIKABIKAUJUIBLJPVBUSQFUSUTUSVAQUTUOUPAEZEZUSUOUPAMVDUOAEZUSVCAUOVCAUPEA
    UPANABORSVEUMUNAEZEZUSUMUNAMVGUMAEUSVFAUMVFAUNEAUNANAULORSUMANRRRRVAUOUJEZU
    PEZQUOUPUJTVIQUPEQVHQUPVHUMUNUJEZEZQUMUNUJMVKUMQEQVJQUMVJUNUNDZEZQUJVLUNABU
    ASQVMUNUBUCRSUMUDRRHUPUERRUFUSUGRRR $.
    $( [26-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem3c $p |- ( ( a ->5 b ) ' ^ ( a v ( a ' ^ b ) ) ' ) =
                 ( ( ( a v b ) ^ ( a v b ' ) ) ^ a ' ) $=
    ( wi5 wn wa wo ud5lem0c oran con2 anor2 lan ax-r2 2an an4 ancom anabs anidm
    an32 ran anass ax-r1 ) ABCDZAADZBEZFZDZEUCBDZFZAUGFZEZABFZEZUCUIEZEZUKUIEUC
    EZUBULUFUMABGUFUCUDDZEZUMUEUQAUDHIUPUIUCUDUIABJIKLMUNUJUMEZUKEZUOUJUKUMRUSU
    KUIUCEZEZUOUSUTUKEVAURUTUKURUHUCEZUIUIEZEZUTUHUIUCUINVDUMUTVBUCVCUIVBUCUHEU
    CUHUCOUCUGPLUIQMUCUIOLLSUTUKOLUOVAUKUIUCTUALLL $.
    $( [26-Nov-97] $)

  $( Lemma for unified disjunction. $)
  ud5lem3 $p |- ( ( a ->5 b ) ->5 ( a v ( a ' ^ b ) ) ) = ( a v b ) $=
    ( wi5 wn wa wo 2or fh4 ax-a2 orabs ax-r2 ax-r1 con3 lor df-t 2an an1 com2or
    wt comcom2 df-i5 ud5lem3a ud5lem3b ud5lem3c or4 comanr1 comorr comcom6 df-a
    ax-a3 coman1 comcom7 coman2 com2an fh3 comor1 comor2 fh3r oridm ancom anabs
    or12 anor2 oml ) ABCZAADZBEZFZCVEVHEZVEDZVHEZFZVJVHDEZFZABFZVEVHUAVNABEZVGF
    ZAVFBDZFZEZFZVOAVRFZEZVFEZFZVOVLWAVMWDVIVQVKVTABUBABUCGABUDGWEVQVTWDFFZVOVQ
    VTWDUJWFVPVTFZVGWDFZFZVOVPVGVTWDUEWIAVFVOEZFVOWGAWHWJWGVPAFZVPVSFZEZAAVPVSA
    BUFAVSVFVRUGUHHWMASEAWKAWLSWKAVPFAVPAIABJKWLVPVPDZFZSVSWNVPVSVPVPVSDABUILMN
    SWOVPOLKPAQKKWHVGWCFZVGVFFZEZWJVGWCVFVGVOWBVGABVGAVFBUKZULZVFBUMZRVGAVRWTVG
    BXATRUNWSUOWRVOVFEWJWPVOWQVFWPVGVOFZVGWBFZEZVOVOVGWBVOVFBVOAABUPZTZABUQZUNV
    OAVRXEVOBXGTRHXDVOSEVOXBVOXCSXBVFVOFZBVOFZEZVOVOVFBXFXGURXJVOVFFZVOEZVOXHXK
    XIVOVFVOIXIABBFZFVOBABVBXMBABUSNKPXLVOXKEVOXKVOUTVOVFVAKKKXCVGVGDZFZSWBXNVG
    WBVGVGWBDABVCLMNSXOVGOLKPVOQKKWQVFVGFVFVGVFIVFBJKPVOVFUTKKGABVDKKKKK $.
    $( [26-Nov-97] $)

  $( Unified disjunction for Sasaki implication. $)
  ud1 $p |- ( a v b ) =
            ( ( a ->1 b ) ->1 ( ( ( a ->1 b ) ->1 ( b ->1 a ) ) ->1 a ) ) $=
    ( wi1 wo wn wa ud1lem1 ud1lem0b ud1lem2 ax-r2 ud1lem0a ud1lem3 ax-r1 ) ABCZ
    NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $.
    $( [23-Nov-97] $)

  $( Unified disjunction for Dishkant implication. $)
  ud2 $p |- ( a v b ) =
            ( ( a ->2 b ) ->2 ( ( ( a ->2 b ) ->2 ( b ->2 a ) ) ->2 a ) ) $=
    ( wi2 wo wn wa ud2lem1 ud2lem0b ud2lem2 ax-r2 ud2lem0a ud2lem3 ax-r1 ) ABCZ
    NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $.
    $( [23-Nov-97] $)

  $( Unified disjunction for Kalmbach implication. $)
  ud3 $p |- ( a v b ) =
            ( ( a ->3 b ) ->3 ( ( ( a ->3 b ) ->3 ( b ->3 a ) ) ->3 a ) ) $=
    ( wi3 wo wn wa ud3lem1 ud3lem0b ud3lem2 ax-r2 ud3lem0a ud3lem3 ax-r1 ) ABCZ
    NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $.
    $( [23-Nov-97] $)

  $( Unified disjunction for non-tollens implication. $)
  ud4 $p |- ( a v b ) =
            ( ( a ->4 b ) ->4 ( ( ( a ->4 b ) ->4 ( b ->4 a ) ) ->4 a ) ) $=
    ( wi4 wo wn wa ud4lem1 ud4lem0b ud4lem2 ax-r2 ud4lem0a ud4lem3 ax-r1 ) ABCZ
    NBACCZACZCZABDZQNRCRPRNPAAEBEFDZACROSAABGHABIJKABLJM $.
    $( [23-Nov-97] $)

  $( Unified disjunction for relevance implication. $)
  ud5 $p |- ( a v b ) =
            ( ( a ->5 b ) ->5 ( ( ( a ->5 b ) ->5 ( b ->5 a ) ) ->5 a ) ) $=
    ( wi5 wo wn wa ud5lem1 ud5lem0b ud5lem2 ax-r2 ud5lem0a ud5lem3 ax-r1 ) ABCZ
    NBACCZACZCZABDZQNAAEBFDZCRPSNPABEDZACSOTAABGHABIJKABLJM $.
    $( [23-Nov-97] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Lemmas for unified implication study
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Lemma for Sasaki implication study.  Equation 4.10 of [MegPav2000] p. 23.
     This is the second part of the equation. $)
  u1lemaa $p |- ( ( a ->1 b ) ^ a ) = ( a ^ b ) $=
    ( wi1 wa wn wo df-i1 ran comid comcom2 comanr1 fh1r ax-a2 anidm ax-r2 ancom
    wf an32 dff ax-r1 2or or0 ) ABCZADAEZABDZFZADZUEUCUFAABGHUGUDADZUEADZFZUEAU
    DUEAAAIJABKLUJUEQFZUEUJUIUHFUKUHUIMUIUEUHQUIAADZBDUEABARULABANHOUHAUDDZQUDA
    PQUMASTOUAOUEUBOOO $.
    $( [14-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemaa $p |- ( ( a ->2 b ) ^ a ) = ( a ^ b ) $=
    ( wi2 wa wn wo df-i2 ran ax-a2 coman1 comcom7 coman2 fh2r ancom anass ax-r1
    wf dff lan ax-r2 an0 2or or0 ) ABCZADBAEZBEZDZFZADZABDZUDUHAABGHUIUGBFZADZU
    JUHUKABUGIHULUGADZBADZFZUJUGABUGAUEUFJKUGBUEUFLKMUOUNUMFZUJUMUNIUPUJQFUJUNU
    JUMQBANUMAUGDZQUGANUQAUEDZUFDZQUSUQAUEUFOPUSUFURDZQURUFNUTUFQDQURQUFQURARPS
    UFUATTTTUBUJUCTTTTT $.
    $( [14-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemaa $p |- ( ( a ->3 b ) ^ a ) = ( a ^ ( a ' v b ) ) $=
    ( wi3 wa wn wo df-i3 ran comanr1 comcom6 wf ancom anass ax-r1 lan an0 ax-r2
    fh1r 2or or0 com2or comid comorr com2an dff an32 anidm ax-a2 ) ABCZADAEZBDZ
    UJBEZDZFZAUJBFZDZFZADZUPUIUQAABGHURUNADZUPADZFZUPAUNUPAUKUMAUKUJBIJZAUMUJUL
    IJZUAAAUOAUBAUOUJBUCJUDRVAKUPFZUPUSKUTUPUSUKADZUMADZFZKAUKUMVBVCRVGKKFKVEKV
    FKVEAUKDZKUKALVHAUJDZBDZKVJVHAUJBMNVJBVIDZKVIBLVKBKDKVIKBKVIAUENZOBPQQQQVFA
    UMDZKUMALVMVIULDZKVNVMAUJULMNVNULVIDZKVIULLVOULKDKVIKULVLOULPQQQQSKTQQUTAAD
    ZUODUPAUOAUFVPAUOAUGHQSVDUPKFUPKUPUHUPTQQQQ $.
    $( [14-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemaa $p |- ( ( a ->4 b ) ^ a ) = ( a ^ b ) $=
    ( wi4 wa wn wo df-i4 ran comanr1 com2or comcom comanr2 wf ax-r2 ancom anass
    ax-r1 dff lan 2or comcom6 comcom3 comcom2 com2an fh2r fh1r an32 anidm anor1
    an0 or0 ) ABCZADABDZAEZBDZFZUNBFZBEZDZFZADZUMULUTAABGHVAUPADZUSADZFZUMUPAUS
    AUPAUMUOABIZAUOUNBIZUAZJKUPUQURUPUNBUNUPUNUMUOAUMVEUBVFJKBUPBUMUOABLUNBLJKZ
    JUPBVHUCUDUEVDUMMFZUMVBUMVCMVBUMADZUOADZFZUMAUMUOVEVGUFVLVIUMVJUMVKMVJAADZB
    DUMABAUGVMABAUHHNVKAUODZMUOAOVNAUNDZBDZMVPVNAUNBPQVPBVODZMVOBOVQBMDMVOMBMVO
    ARQSBUJNNNNTUMUKZNNVCUQURADZDZMUQURAPVTUQUQEZDZMVSWAUQVSAURDWAURAOABUINSMWB
    UQRQNNTVRNNN $.
    $( [14-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemaa $p |- ( ( a ->5 b ) ^ a ) = ( a ^ b ) $=
    ( wi5 wa wn wo df-i5 ran comanr1 comcom6 fh1r wf an32 ax-r2 ancom ax-r1 lan
    an0 2or anass com2or anidm dff or0 fh4 ax-a2 orabs fh1 ) ABCZADABDZAEZBDZFZ
    UKBEZDZFZADZUJUIUPAABGHUQUMADZUOADZFZUJAUMUOAUJULABIZAULUKBIJZUAAUOUKUNIJZK
    UTUJAUODZFZUJURUJUSVDURUJADZULADZFZUJAUJULVAVBKVHUJLFZUJVFUJVGLVFAADZBDZUJA
    BAMVJABAUBHZNVGUKADZBDZLUKBAMVNBVMDZLVMBOVOBLDLVMLBVMAUKDZLVPVMAUKOPLVPAUCZ
    PNQBRNNNSUJUDZNNUOAOSVEUJAFZUJUOFZDZUJAUJUOVAVCUEWAAVTDZUJVSAVTVSAUJFAUJAUF
    ABUGNHWBAUJDZVDFZUJAUJUOVAVCUHWDVIUJWCUJVDLWCVKUJVKWCAABTPVLNVDVPUNDZLWEVDA
    UKUNTPWEUNVPDZLVPUNOWFUNLDZLWGWFLVPUNVQQPUNRNNNSVRNNNNNNN $.
    $( [14-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemana $p |- ( ( a ->1 b ) ^ a ' ) = a ' $=
    ( wi1 wn wa wo df-i1 ran ancom anabs ax-r2 ) ABCZADZEMABEZFZMEZMLOMABGHPMOE
    MOMIMNJKK $.
    $( [14-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemana $p |- ( ( a ->2 b ) ^ a ' ) =
               ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $=
    ( wi2 wn wa wo df-i2 ran ax-a2 coman1 coman2 comcom7 fh2r anidm ax-r2 ancom
    an32 2or ) ABCZADZEBTBDZEZFZTEZTBEZUBFZSUCTABGHUDUBBFZTEZUFUCUGTBUBIHUHUBTE
    ZBTEZFZUFUBTBTUAJUBBTUAKLMUKUBUEFUFUIUBUJUEUITTEZUAEUBTUATQULTUATNHOBTPRUBU
    EIOOOO $.
    $( [14-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemana $p |- ( ( a ->3 b ) ^ a ' ) =
               ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $=
    ( wi3 wn wa wo df-i3 ran comanr1 com2or comid comcom3 comorr com2an fh1r wf
    lea lel2or df2le2 ax-r2 an32 ancom dff ax-r1 lan an0 2or or0 ) ABCZADZEUJBE
    ZUJBDZEZFZAUJBFZEZFZUJEZUNUIUQUJABGHURUNUJEZUPUJEZFZUNUJUNUPUJUKUMUJBIUJULI
    JUJAUOAAAKLUJBMNOVAUNPFUNUSUNUTPUNUJUKUJUMUJBQUJULQRSUTAUJEZUOEZPAUOUJUAVCU
    OVBEZPVBUOUBVDUOPEPVBPUOPVBAUCUDUEUOUFTTTUGUNUHTTT $.
    $( [14-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemana $p |- ( ( a ->4 b ) ^ a ' ) =
               ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $=
    ( wi4 wn wa wo df-i4 comanr1 comcom3 com2or comcom comor1 com2an comanr2 wf
    ran an32 ancom ax-r2 2or comcom7 comor2 fh2r fh1r dff ax-r1 lan anidm ax-a2
    an0 or0 leo df2le2 id ) ABCZADZEABEZUPBEZFZUPBFZBDZEZFZUPEZURUPVAEZFZUOVCUP
    ABGPVDUSUPEZVBUPEZFZVFUSUPVBUPUSUPUQURAUQABHIZUPBHZJKUSUTVAUTUSUTUQURUTABUT
    AUPBLZUAUPBUBZMUTUPBVLVMMJKVAUSVAUQURBUQABNIBURUPBNIJKMUCVIVFVFVGURVHVEVGUQ
    UPEZURUPEZFZURUPUQURVJVKUDVPOURFZURVNOVOURVNAUPEZBEZOABUPQVSBVREZOVRBRVTBOE
    OVROBOVRAUEUFUGBUJSSSVOUPUPEZBEURUPBUPQWAUPBUPUHPSTVQUROFUROURUIURUKSSSVHUT
    UPEZVAEVEUTVAUPQWBUPVAWBUPUTEUPUTUPRUPUTUPBULUMSPSTVFUNSSS $.
    $( [14-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemana $p |- ( ( a ->5 b ) ^ a ' ) =
               ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $=
    ( wi5 wn wa wo df-i5 ran comanr1 comcom3 com2or fh1r ax-a2 an32 anidm ax-r2
    wf ancom dff 2or lan ax-r1 an0 or0 ) ABCZADZEABEZUFBEZFZUFBDZEZFZUFEZUHUKFZ
    UEULUFABGHUMUIUFEZUKUFEZFUNUFUIUKUFUGUHAUGABIJZUFBIZKUFUJILUOUHUPUKUOUGUFEZ
    UHUFEZFZUHUFUGUHUQURLVAUTUSFZUHUSUTMVBUHQFUHUTUHUSQUTUFUFEZBEUHUFBUFNVCUFBU
    FOZHPUSAUFEZBEZQABUFNVFBVEEZQVEBRVGBQEZQVHVGQVEBASUAUBBUCPPPTUHUDPPPUPVCUJE
    UKUFUJUFNVCUFUJVDHPTPP $.
    $( [14-Dec-97] $)

  $( Lemma for Sasaki implication study.  Equation 4.10 of [MegPav2000] p. 23.
     This is the second part of the equation. $)
  u1lemab $p |- ( ( a ->1 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( wi1 wa wn wo df-i1 ran ax-a2 coman2 coman1 comcom2 fh2r ax-r2 anass anidm
    lan ax-r5 ) ABCZBDAEZABDZFZBDZUATBDZFZSUBBABGHUCUABDZUDFZUEUCUATFZBDUGUBUHB
    TUAIHUABTABJUAAABKLMNUFUAUDUFABBDZDUAABBOUIBABPQNRNN $.
    $( [14-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemab $p |- ( ( a ->2 b ) ^ b ) = b $=
    ( wi2 wa wn wo df-i2 ran ancom anabs ax-r2 ) ABCZBDBAEBEDZFZBDZBLNBABGHOBND
    BNBIBMJKK $.
    $( [14-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemab $p |- ( ( a ->3 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( wi3 wa wn wo df-i3 comanr2 com2or comcom coman1 comcom7 coman2 com2an lan
    wf anass ax-r2 2or ax-a2 ran comcom6 fh2r fh1r anidm an32 dff ax-r1 an0 or0
    ancom anabs ) ABCZBDAEZBDZUNBEZDZFZAUNBFZDZFZBDZABDZUOFZUMVABABGUAVBURBDZUT
    BDZFZVDURBUTBURBUOUQUNBHZBUQUNUPHUBZIJUTURUTUOUQUOUTUOAUSUOAUNBKZLUOUNBVJUN
    BMINJUQUTUQAUSUQAUNUPKZLUQUNBVKUQBUNUPMLINJIJUCVGUOVCFVDVEUOVFVCVEUOBDZUQBD
    ZFZUOBUOUQVHVIUDVNUOPFUOVLUOVMPVLUNBBDZDUOUNBBQVOBUNBUEORVMUOUPDZPUNUPBUFVP
    UNBUPDZDZPUNBUPQVRUNPDPVQPUNPVQBUGUHOUNUIRRRSUOUJRRVFAUSBDZDVCAUSBQVSBAVSBU
    SDZBUSBUKVTBBUNFZDBUSWABUNBTOBUNULRRORSUOVCTRRR $.
    $( [14-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemab $p |- ( ( a ->4 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( wi4 wa wn wo df-i4 comanr2 com2or comcom6 fh1r wf lear lel2or df2le2 an32
    ran anass dff ax-r2 lan ax-r1 an0 2or or0 ) ABCZBDABDZAEZBDZFZUHBFZBEZDZFZB
    DZUJUFUNBABGQUOUJBDZUMBDZFZUJBUJUMBUGUIABHUHBHIBUMUKULHJKURUJLFUJUPUJUQLUJB
    UGBUIABMUHBMNOUQUKBDULDZLUKULBPUSUKBULDZDZLUKBULRVAUKLDZLVBVALUTUKBSUAUBUKU
    CTTTUDUJUETTT $.
    $( [14-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemab $p |- ( ( a ->5 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( wi5 wa wn wo df-i5 comanr2 com2or comcom6 fh1r wf lear lel2or df2le2 an32
    ran anass dff ax-r2 lan ax-r1 an0 2or or0 ) ABCZBDABDZAEZBDZFZUHBEZDZFZBDZU
    JUFUMBABGQUNUJBDZULBDZFZUJBUJULBUGUIABHUHBHIBULUHUKHJKUQUJLFUJUOUJUPLUJBUGB
    UIABMUHBMNOUPUIUKDZLUHUKBPURUHBUKDZDZLUHBUKRUTUHLDZLVAUTLUSUHBSUAUBUHUCTTTU
    DUJUETTT $.
    $( [14-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemanb $p |- ( ( a ->1 b ) ^ b ' ) = ( a ' ^ b ' ) $=
    ( wi1 wn wa wo df-i1 ran ax-a2 coman2 comcom2 coman1 wf anass dff lan ax-r1
    fh2r an0 ax-r2 lor or0 ) ABCZBDZEADZABEZFZUDEZUEUDEZUCUGUDABGHUHUFUEFZUDEZU
    IUGUJUDUEUFIHUKUFUDEZUIFZUIUFUDUEUFBABJKUFAABLKRUMUIULFZUIULUIIUNUIMFUIULMU
    IULABUDEZEZMABUDNUPAMEZMUQUPMUOABOPQASTTUAUIUBTTTTT $.
    $( [14-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemanb $p |- ( ( a ->2 b ) ^ b ' ) = ( a ' ^ b ' ) $=
    ( wi2 wn wa wo df-i2 ran comid comcom3 comanr2 fh1r ax-a2 anass anidm ax-r2
    wf lan dff ax-r1 2or or0 ) ABCZBDZEBADZUDEZFZUDEZUFUCUGUDABGHUHBUDEZUFUDEZF
    ZUFUDBUFBBBIJUEUDKLUKUJUIFZUFUIUJMULUFQFUFUJUFUIQUJUEUDUDEZEUFUEUDUDNUMUDUE
    UDORPQUIBSTUAUFUBPPPP $.
    $( [14-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemanb $p |- ( ( a ->3 b ) ^ b ' ) = ( a ' ^ b ' ) $=
    ( wn wa wo comanr2 com2or comcom coman1 comcom7 coman2 com2an fh2r wf anass
    lan ax-r2 dff ax-r1 2or wi3 df-i3 ran comcom3 comcom2 ax-a2 anidm an0 ancom
    or0 an32 anor1 ) ABUAZBCZDACZBDZUOUNDZEZAUOBEZDZEZUNDZUQUMVAUNABUBUCVBURUND
    ZUTUNDZEZUQURUNUTUNURUNUPUQBUPUOBFUDUOUNFGHUTURUTUPUQUPUTUPAUSUPAUOBIZJUPUO
    BVFUOBKZGLHUQUTUQAUSUQAUOUNIZJUQUOBVHUQBUOUNKJGLHGHMVEUQNEZUQVCUQVDNVCUPUND
    ZUQUNDZEZUQUPUNUQUPBVGUEZUPUOUNVFVMLMVLVKVJEZUQVJVKUFVNVIUQVKUQVJNVKUOUNUND
    ZDUQUOUNUNOVOUNUOUNUGPQVJUOBUNDZDZNUOBUNOVQUONDZNVRVQNVPUOBRPSUOUHQQTUQUJZQ
    QQVDAUNDZUSDZNAUSUNUKWAUSVTDZNVTUSUIWBUSUSCZDZNVTWCUSABULPNWDUSRSQQQTVSQQQ
    $.
    $( [14-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemanb $p |- ( ( a ->4 b ) ^ b ' ) = ( ( a ' v b ) ^ b ' ) $=
    ( wi4 wn wa wo df-i4 ran comanr2 comcom3 com2or fh1r wf anass lan ax-r2 an0
    ax-r1 2or or0 comorr2 comid com2an ax-a2 anidm dff ) ABCZBDZEABEZADZBEZFZUJ
    BFZUHEZFZUHEZUNUGUOUHABGHUPULUHEZUNUHEZFZUNUHULUNUHUIUKBUIABIJZBUKUJBIJZKUH
    UMUHBUMUJBUAJUHUBUCLUSURUQFZUNUQURUDVBUNMFUNURUNUQMURUMUHUHEZEUNUMUHUHNVCUH
    UMUHUEOPUQUIUHEZUKUHEZFZMUHUIUKUTVALVFMMFMVDMVEMVDABUHEZEZMABUHNVHAMEZMVIVH
    MVGABUFZORAQPPVEUJVGEZMUJBUHNVKUJMEZMVLVKMVGUJVJORUJQPPSMTPPSUNTPPPP $.
    $( [14-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemanb $p |- ( ( a ->5 b ) ^ b ' ) = ( a ' ^ b ' ) $=
    ( wi5 wn wa wo df-i5 ran comanr2 comcom3 com2or fh1r wf anass lan ax-r2 an0
    ax-r1 2or or0 ax-a2 anidm dff ) ABCZBDZEABEZADZBEZFZUGUEEZFZUEEZUJUDUKUEABG
    HULUIUEEZUJUEEZFZUJUEUIUJUEUFUHBUFABIJZBUHUGBIJZKUGUEILUOUNUMFZUJUMUNUAURUJ
    MFUJUNUJUMMUNUGUEUEEZEUJUGUEUENUSUEUGUEUBOPUMUFUEEZUHUEEZFZMUEUFUHUPUQLVBMM
    FMUTMVAMUTABUEEZEZMABUENVDAMEZMVEVDMVCABUCZORAQPPVAUGVCEZMUGBUENVGUGMEZMVHV
    GMVCUGVFORUGQPPSMTPPSUJTPPPP $.
    $( [14-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemoa $p |- ( ( a ->1 b ) v a ) = 1 $=
    ( wi1 wo wn wa wt df-i1 ax-r5 ax-a2 ax-a3 ax-r1 df-t lor or1 ax-r2 ) ABCZAD
    AEZABFZDZADZGQTAABHIUAATDZGTAJUBARDZSDZGUDUBARSKLUDSUCDZGUCSJUESGDZGUFUEGUC
    SAMNLSOPPPPP $.
    $( [14-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemoa $p |- ( ( a ->2 b ) v a ) = 1 $=
    ( wi2 wo wn wa wt df-i2 ax-r5 ax-a2 ax-a3 ax-r1 oran lor df-t ax-r2 ) ABCZA
    DBAEBEFZDZADZGQSAABHITASDZGSAJUAABDZRDZGUCUAABRKLUCRUBDZGUBRJUDRREZDZGUBUER
    ABMNGUFROLPPPPP $.
    $( [14-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemoa $p |- ( ( a ->3 b ) v a ) =
              ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wi3 wo wn wa df-i3 ax-r5 ax-a3 lea df-le2 lor ax-a2 ax-r2 ) ABCZADAEZBFPB
    EFDZAPBDZFZDZADZAQDZOTAABGHUAQSADZDZUBQSAIUDQADUBUCAQSAARJKLQAMNNN $.
    $( [15-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemoa $p |- ( ( a ->4 b ) v a ) = 1 $=
    ( wi4 wo wa wn df-i4 ax-r5 ax-a3 comor1 comcom7 comor2 ax-a2 df-t ax-r2 lor
    wt ax-r1 or1 ancom comcom2 fh4r or32 ran an1 anor1 ) ABCZADABEZAFZBEZDZUIBD
    ZBFZEZDZADZQUGUOAABGHUPUKUNADZDZQUKUNAIURUKUMADZDZQUQUSUKUQULADZUSEZUSULAUM
    ULAUIBJKULBUIBLUAUBVBQUSEZUSVAQUSVAUIADZBDZQUIBAUCVEBVDDZQVDBMVFBQDZQVGVFQV
    DBQAUIDVDANAUIMOPRBSOOOUDVCUSQEUSQUSTUSUEOOOPUTUHUJUSDZDZQUHUJUSIVIUHQDQVHQ
    UHVHUSUJDZQUJUSMVJUSUSFZDZQUJVKUSUJBUIEVKUIBTBAUFOPQVLUSNROOPUHSOOOOO $.
    $( [15-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemoa $p |- ( ( a ->5 b ) v a ) =
              ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wi5 wo wa wn df-i5 ax-r5 ax-a2 ax-a3 lor ax-r1 orabs ax-r2 ) ABCZADABEZAF
    ZBEZDQBFEZDZADZARSDZDZOTAABGHUAATDZUCTAIUDAPUBDZDZUCTUEAPRSJKUFAPDZUBDZUCUH
    UFAPUBJLUGAUBABMHNNNN $.
    $( [15-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemona $p |- ( ( a ->1 b ) v a ' ) = ( a ' v ( a ^ b ) ) $=
    ( wi1 wn wo wa df-i1 ax-r5 or32 oridm ax-r2 ) ABCZADZEMABFZEZMEZOLOMABGHPMM
    EZNEOMNMIQMNMJHKK $.
    $( [15-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemona $p |- ( ( a ->2 b ) v a ' ) = ( a ' v b ) $=
    ( wi2 wn wo wa df-i2 ax-r5 ax-a3 ax-a2 lea df-le2 ax-r2 ) ABCZADZEBOBDZFZEZ
    OEZOBEZNROABGHSBQOEZEZTBQOIUBUABETBUAJUAOBQOOPKLHMMM $.
    $( [15-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemona $p |- ( ( a ->3 b ) v a ' ) = ( a ' v b ) $=
    ( wi3 wn wo wa df-i3 ax-r5 or32 lea lel2or df-le2 omln ax-r2 ) ABCZADZEPBFZ
    PBDZFZEZAPBEZFZEZPEZUAOUCPABGHUDTPEZUBEZUATUBPIUFPUBEUAUEPUBTPQPSPBJPRJKLHA
    BMNNN $.
    $( [15-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemona $p |- ( ( a ->4 b ) v a ' ) = ( a ' v b ) $=
    ( wi4 wn wo wa df-i4 ax-r5 ax-a3 lea df-le2 lor ax-r2 comor1 comcom7 comor2
    or32 com2an wt ax-r1 com2or comcom2 fh4 lear leor letr leo lel2or df-a con3
    df-t 2an an1 ) ABCZADZEABFZUOBFZEZUOBEZBDZFZEZUOEZUSUNVBUOABGHVCURUOEZVAEZU
    SURVAUOQVEUPUOEZVAEZUSVDVFVAVDUPUQUOEZEVFUPUQUOIVHUOUPUQUOUOBJKLMHVGVFUSEZV
    FUTEZFZUSUSVFUTUSUPUOUSABUSAUOBNZOUOBPZRVLUAUSBVMUBUCVKUSSFUSVIUSVJSVFUSUPU
    SUOUPBUSABUDBUOUEUFUOBUGUHKVJUPUOUTEZEZSUPUOUTIVOUPUPDZEZSVNVPUPVNUPUPVNDAB
    UITUJLSVQUPUKTMMULUSUMMMMMM $.
    $( [15-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemona $p |- ( ( a ->5 b ) v a ' ) = ( a ' v ( a ^ b ) ) $=
    ( wi5 wn wo wa df-i5 ax-r5 ax-a3 lea lel2or df-le2 lor ax-a2 ax-r2 ) ABCZAD
    ZEABFZQBFZEQBDZFZEZQEZQREZPUBQABGHUCRSUAEZEZQEZUDUBUFQRSUAIHUGRUEQEZEZUDRUE
    QIUIRQEUDUHQRUEQSQUAQBJQTJKLMRQNOOOO $.
    $( [15-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemob $p |- ( ( a ->1 b ) v b ) = ( a ' v b ) $=
    ( wi1 wo wn wa df-i1 ax-r5 or32 ax-a2 lear leor letr df-le2 ax-r2 ) ABCZBDA
    EZABFZDZBDZQBDZPSBABGHTUARDZUAQRBIUBRUADUAUARJRUARBUAABKBQLMNOOO $.
    $( [15-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemob $p |- ( ( a ->2 b ) v b ) = ( ( a ' ^ b ' ) v b ) $=
    ( wi2 wo wn wa df-i2 ax-r5 or32 ax-a2 oridm lor ax-r2 ) ABCZBDBAEBEFZDZBDZO
    BDZNPBABGHQBBDZODZRBOBITOSDRSOJSBOBKLMMM $.
    $( [15-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemob $p |- ( ( a ->3 b ) v b ) = ( a ' v b ) $=
    ( wi3 wo wn wa df-i3 ax-r5 or32 lear df-le2 ax-r2 2or comor2 comor1 comcom2
    ancom wt lor ax-r1 com2an com2or comcom7 fh4 or12 oridm ax-a2 lea letr oran
    leo con2 df-t 2an an1 ) ABCZBDAEZBFZUQBEZFZDZAUQBDZFZDZBDZVBUPVDBABGHVEVABD
    ZVCDZVBVAVCBIVGBUTDZVBAFZDZVBVFVHVCVIVFURBDZUTDVHURUTBIVKBUTURBUQBJKHLAVBQM
    VJVHVBDZVHADZFZVBVBVHAVBBUTUQBNZVBUQUSUQBOZVBBVOPUAUBVBAVPUCUDVNVBRFVBVLVBV
    MRVLBVBDZUTDZVBBUTVBIVRVBUTDZVBVQVBUTVQUQBBDZDVBBUQBUEVTBUQBUFSLHVSUTVBDVBV
    BUTUGUTVBUTUQVBUQUSUHUQBUKUIKLLLVMBADZUTDZRBUTAIWBWAWAEZDZRUTWCWAUTUSUQFZWC
    UQUSQWCWEWAWEBAUJULTLSRWDWAUMTLLUNVBUOLLLLL $.
    $( [15-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemob $p |- ( ( a ->4 b ) v b ) = ( a ' v b ) $=
    ( wi4 wo wa wn df-i4 ax-r5 or32 lear lel2or df-le2 comorr2 comid comcom2 wt
    fh3 or12 oridm ax-r2 lor df-t ax-r1 2an an1 ) ABCZBDABEZAFZBEZDZUHBDZBFZEZD
    ZBDZUKUFUNBABGHUOUJBDZUMDZUKUJUMBIUQBUMDZUKUPBUMUJBUGBUIABJUHBJKLHURBUKDZBU
    LDZEZUKBUKULUHBMBBBNOQVAUKPEUKUSUKUTPUSUHBBDZDUKBUHBRVBBUHBSUATPUTBUBUCUDUK
    UETTTTT $.
    $( [15-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemob $p |- ( ( a ->5 b ) v b ) = ( ( a ' ^ b ' ) v b ) $=
    ( wi5 wo wa wn df-i5 ax-r5 ax-a3 lear lel2or leor letr df-le2 ax-r2 ) ABCZB
    DABEZAFZBEZDZRBFEZDZBDZUABDZPUBBABGHUCTUDDUDTUABITUDTBUDQBSABJRBJKBUALMNOO
    $.
    $( [15-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemonb $p |- ( ( a ->1 b ) v b ' ) = 1 $=
    ( wi1 wn wo wa wt df-i1 ax-r5 or32 df-a lor df-t ax-r1 ax-r2 ) ABCZBDZEADZA
    BFZEZQEZGPTQABHIUARQEZSEZGRSQJUCUBUBDZEZGSUDUBABKLGUEUBMNOOO $.
    $( [15-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemonb $p |- ( ( a ->2 b ) v b ' ) = 1 $=
    ( wi2 wn wo wa wt df-i2 ax-r5 or32 ax-a2 df-t lor ax-r1 or1 ax-r2 ) ABCZBDZ
    EBADRFZEZREZGQTRABHIUABREZSEZGBSRJUCSUBEZGUBSKUDSGEZGUEUDGUBSBLMNSOPPPP $.
    $( [15-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemonb $p |- ( ( a ->3 b ) v b ' ) = 1 $=
    ( wi3 wn wo wa df-i3 ax-r5 or32 ax-a3 lear df-le2 lor ax-r2 ancom 2or ax-r1
    wt df-t or1 comor1 comor2 com2an comcom2 com2or comcom7 fh4 ax-a2 anor1 2an
    con2 an1 ) ABCZBDZEADZBFZUOUNFZEZAUOBEZFZEZUNEZRUMVAUNABGHVBURUNEZUTEZRURUT
    UNIVDUPUNEZUSAFZEZRVCVEUTVFVCUPUQUNEZEVEUPUQUNJVHUNUPUQUNUOUNKLMNAUSOPVGVEU
    SEZVEAEZFZRUSVEAUSUPUNUSUOBUOBUAZUOBUBZUCUSBVMUDUEUSAVLUFUGVKRRFRVIRVJRVIUP
    UNUSEZEZRUPUNUSJVOUPRERVNRUPVNUSUNEZRUNUSUHVPUOBUNEZEZRUOBUNJVRUORERVQRUORV
    QBSQMUOTNNNMUPTNNVJUPUNAEZEZRUPUNAJVTUPUPDZEZRVSWAUPWAVSUPVSUPBUOFVSDUOBOBA
    UINUKQMRWBUPSQNNUJRULNNNNN $.
    $( [15-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemonb $p |- ( ( a ->4 b ) v b ' ) =
               ( ( ( a ^ b ) v ( a ' ^ b ) ) v b ' ) $=
    ( wi4 wn wo wa df-i4 ax-r5 ax-a3 lear df-le2 lor ax-r2 ) ABCZBDZEABFADZBFEZ
    PBEZOFZEZOEZQOEZNTOABGHUAQSOEZEUBQSOIUCOQSOROJKLMM $.
    $( [15-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemonb $p |- ( ( a ->5 b ) v b ' ) =
               ( ( ( a ^ b ) v ( a ' ^ b ) ) v b ' ) $=
    ( wi5 wn wo wa df-i5 ax-r5 ax-a3 lear df-le2 lor ax-r2 ) ABCZBDZEABFADZBFEZ
    POFZEZOEZQOEZNSOABGHTQROEZEUAQROIUBOQROPOJKLMM $.
    $( [15-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnaa $p |- ( ( a ->1 b ) ' ^ a ) = ( a ^ ( a ' v b ' ) ) $=
    ( wi1 wn wa wo anor2 u1lemona ax-r4 df-a lor ax-r1 ax-r2 ) ABCZDAENADZFZDZA
    OBDFZEZNAGQOABEZFZDZSPUAABHISUBSORDZFZDZUBARJUBUEUAUDTUCOABJKILMLMM $.
    $( [15-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnaa $p |- ( ( a ->2 b ) ' ^ a ) = ( a ^ b ' ) $=
    ( wi2 wn wa wo anor2 u2lemona ax-r4 ax-r2 anor1 ax-r1 ) ABCZDAEZADZBFZDZABD
    EZNMOFZDQMAGSPABHIJRQABKLJ $.
    $( [15-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnaa $p |- ( ( a ->3 b ) ' ^ a ) = ( a ^ b ' ) $=
    ( wi3 wn wa wo anor2 anor1 u3lemona ax-r4 ax-r1 ax-r2 ) ABCZDAEMADZFZDZABDE
    ZMAGQPQNBFZDZPABHPSORABIJKLKL $.
    $( [15-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnaa $p |- ( ( a ->4 b ) ' ^ a ) = ( a ^ b ' ) $=
    ( wi4 wn wa wo anor2 u4lemona ax-r4 anor1 ax-r1 ax-r2 ) ABCZDAEMADZFZDZABDE
    ZMAGPNBFZDZQORABHIQSABJKLL $.
    $( [15-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnaa $p |- ( ( a ->5 b ) ' ^ a ) = ( a ^ ( a ' v b ' ) ) $=
    ( wi5 wn wa wo anor2 u5lemona ax-r4 anor1 ax-r1 df-a con2 lan ax-r2 ) ABCZD
    AEPADZFZDZAQBDFZEZPAGSQABEZFZDZUARUCABHIUDAUBDZEZUAUFUDAUBJKUETAUBTABLMNOOO
    $.
    $( [15-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnana $p |- ( ( a ->1 b ) ' ^ a ' ) = 0 $=
    ( wi1 wn wa wt wf wo anor3 u1lemoa ax-r4 ax-r2 df-f ax-r1 ) ABCZDADEZFDZGPO
    AHZDQOAIRFABJKLGQMNL $.
    $( [15-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnana $p |- ( ( a ->2 b ) ' ^ a ' ) = 0 $=
    ( wi2 wn wa wt wf wo anor3 u2lemoa ax-r4 ax-r2 df-f ax-r1 ) ABCZDADEZFDZGPO
    AHZDQOAIRFABJKLGQMNL $.
    $( [15-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnana $p |- ( ( a ->3 b ) ' ^ a ' ) =
                ( a ' ^ ( ( a v b ) ^ ( a v b ' ) ) ) $=
    ( wi3 wn wa wo u3lemoa ax-a2 anor3 anor2 2or oran3 ax-r2 lor oran 3tr2 con1
    oran1 ) ABCZDADZEZTABFZABDZFZEZEZSAFZAUEDZFZUADUFDUGATBEZTUCEZFZFUIABGULUHA
    ULUKUJFZUHUJUKHUMUBDZUDDZFUHUKUNUJUOABIABJKUBUDLMMNMSAOAUERPQ $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnana $p |- ( ( a ->4 b ) ' ^ a ' ) = 0 $=
    ( wi4 wn wa wt wf wo anor3 u4lemoa ax-r4 ax-r2 df-f ax-r1 ) ABCZDADEZFDZGPO
    AHZDQOAIRFABJKLGQMNL $.
    $( [15-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnana $p |- ( ( a ->5 b ) ' ^ a ' ) =
                ( a ' ^ ( ( a v b ) ^ ( a v b ' ) ) ) $=
    ( wi5 wn wa wo u5lemoa ax-a2 anor3 anor2 2or oran3 ax-r2 lor oran 3tr2 con1
    oran1 ) ABCZDADZEZTABFZABDZFZEZEZSAFZAUEDZFZUADUFDUGATBEZTUCEZFZFUIABGULUHA
    ULUKUJFZUHUJUKHUMUBDZUDDZFUHUKUNUJUOABIABJKUBUDLMMNMSAOAUERPQ $.
    $( [16-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnab $p |- ( ( a ->1 b ) ' ^ b ) = 0 $=
    ( wi1 wn wa wf wo wt u1lemonb oran1 df-f con2 ax-r1 3tr2 con1 ) ABCZDBEZFPB
    DGHQDFDZABIPBJRHFHKLMNO $.
    $( [16-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnab $p |- ( ( a ->2 b ) ' ^ b ) = 0 $=
    ( wi2 wn wa wf wo wt u2lemonb oran1 df-f con2 ax-r1 3tr2 con1 ) ABCZDBEZFPB
    DGHQDFDZABIPBJRHFHKLMNO $.
    $( [16-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnab $p |- ( ( a ->3 b ) ' ^ b ) = 0 $=
    ( wi3 wn wa wf wo wt u3lemonb oran1 df-f con2 ax-r1 3tr2 con1 ) ABCZDBEZFPB
    DGHQDFDZABIPBJRHFHKLMNO $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnab $p |- ( ( a ->4 b ) ' ^ b ) =
               ( ( ( a v b ' ) ^ ( a ' v b ' ) ) ^ b ) $=
    ( wi4 wn wa u4lemonb ax-a2 anor2 df-a 2or oran3 ax-r2 ax-r5 oran1 3tr2 con1
    wo ) ABCZDBEZABDZQZADZTQZEZBEZRTQZUDDZTQZSDUEDUFABEZUBBEZQZTQUHABFUKUGTUKUJ
    UIQZUGUIUJGULUADZUCDZQUGUJUMUIUNABHABIJUAUCKLLMLRBNUDBKOP $.
    $( [16-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnab $p |- ( ( a ->5 b ) ' ^ b ) =
               ( ( ( a v b ' ) ^ ( a ' v b ' ) ) ^ b ) $=
    ( wi5 wn wa u5lemonb ax-a2 anor2 df-a 2or oran3 ax-r2 ax-r5 oran1 3tr2 con1
    wo ) ABCZDBEZABDZQZADZTQZEZBEZRTQZUDDZTQZSDUEDUFABEZUBBEZQZTQUHABFUKUGTUKUJ
    UIQZUGUIUJGULUADZUCDZQUGUJUMUIUNABHABIJUAUCKLLMLRBNUDBKOP $.
    $( [16-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnanb $p |- ( ( a ->1 b ) ' ^ b ' ) = ( a ^ b ' ) $=
    ( wi1 wn wa wo u1lemob oran oran2 3tr2 con1 ) ABCZDBDZEZAMEZLBFADBFNDODABGL
    BHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnanb $p |- ( ( a ->2 b ) ' ^ b ' ) = ( ( a v b ) ^ b ' ) $=
    ( wi2 wn wa wo u2lemob anor3 ax-r5 ax-r2 oran oran2 3tr2 con1 ) ABCZDBDZEZA
    BFZPEZOBFZRDZBFZQDSDTADPEZBFUBABGUCUABABHIJOBKRBLMN $.
    $( [16-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnanb $p |- ( ( a ->3 b ) ' ^ b ' ) = ( a ^ b ' ) $=
    ( wi3 wn wa wo u3lemob oran oran2 3tr2 con1 ) ABCZDBDZEZAMEZLBFADBFNDODABGL
    BHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnanb $p |- ( ( a ->4 b ) ' ^ b ' ) = ( a ^ b ' ) $=
    ( wi4 wn wa wo u4lemob oran oran2 3tr2 con1 ) ABCZDBDZEZAMEZLBFADBFNDODABGL
    BHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnanb $p |- ( ( a ->5 b ) ' ^ b ' ) = ( ( a v b ) ^ b ' ) $=
    ( wi5 wn wa wo u5lemob anor3 ax-r5 ax-r2 oran oran2 3tr2 con1 ) ABCZDBDZEZA
    BFZPEZOBFZRDZBFZQDSDTADPEZBFUBABGUCUABABHIJOBKRBLMN $.
    $( [16-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnoa $p |- ( ( a ->1 b ) ' v a ) = a $=
    ( wi1 wn wo wa anor1 ax-r1 u1lemana ax-r2 con1 ) ABCZDAEZAMDZLADZFZOPNLAGHA
    BIJK $.
    $( [16-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnoa $p |- ( ( a ->2 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $=
    ( wi2 wn wo wa u2lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 )
    ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI
    UEUHUFABIABJKLLQAMSUANOP $.
    $( [16-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnoa $p |- ( ( a ->3 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $=
    ( wi3 wn wo wa u3lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 )
    ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI
    UEUHUFABIABJKLLQAMSUANOP $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnoa $p |- ( ( a ->4 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $=
    ( wi4 wn wo wa u4lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 )
    ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI
    UEUHUFABIABJKLLQAMSUANOP $.
    $( [16-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnoa $p |- ( ( a ->5 b ) ' v a ) = ( ( a v b ) ^ ( a v b ' ) ) $=
    ( wi5 wn wo wa u5lemana ax-a2 anor3 anor2 2or ax-r2 anor1 oran3 3tr2 con1 )
    ABCZDAEZABEZABDZEZFZQADZFZSDZUADZEZRDUBDUDUCBFZUCTFZEZUGABGUJUIUHEUGUHUIHUI
    UEUHUFABIABJKLLQAMSUANOP $.
    $( [16-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnona $p |- ( ( a ->1 b ) ' v a ' ) = ( a ' v b ' ) $=
    ( wi1 wn wo wa u1lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI
    J $.
    $( [16-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnona $p |- ( ( a ->2 b ) ' v a ' ) = ( a ' v b ' ) $=
    ( wi2 wn wo wa u2lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI
    J $.
    $( [16-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnona $p |- ( ( a ->3 b ) ' v a ' ) = ( a ' v ( a ^ b ' ) ) $=
    ( wi3 wn wo wa u3lemaa oran2 lan ax-r2 df-a anor1 3tr2 con1 ) ABCZDADZEZPAB
    DFZEZOAFZARDZFZQDSDTAPBEZFUBABGUCUAAABHIJOAKARLMN $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnona $p |- ( ( a ->4 b ) ' v a ' ) = ( a ' v b ' ) $=
    ( wi4 wn wo wa u4lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI
    J $.
    $( [16-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnona $p |- ( ( a ->5 b ) ' v a ' ) = ( a ' v b ' ) $=
    ( wi5 wn wo wa u5lemaa df-a 3tr2 con1 ) ABCZDADZEZLBDEZKAFABFMDNDABGKAHABHI
    J $.
    $( [16-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnob $p |- ( ( a ->1 b ) ' v b ) = ( a v b ) $=
    ( wi1 wn wo wa u1lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB
    GLBHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnob $p |- ( ( a ->2 b ) ' v b ) = ( a v b ) $=
    ( wi2 wn wo wa u2lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB
    GLBHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnob $p |- ( ( a ->3 b ) ' v b ) = ( a v b ) $=
    ( wi3 wn wo wa u3lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB
    GLBHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnob $p |- ( ( a ->4 b ) ' v b ) = ( ( a ^ b ' ) v b ) $=
    ( wi4 wn wo wa u4lemanb oran2 ran ax-r2 anor1 anor3 3tr2 con1 ) ABCZDBEZABD
    ZFZBEZOQFZRDZQFZPDSDTADBEZQFUBABGUCUAQABHIJOBKRBLMN $.
    $( [16-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnob $p |- ( ( a ->5 b ) ' v b ) = ( a v b ) $=
    ( wi5 wn wo wa u5lemanb anor1 anor3 3tr2 con1 ) ABCZDBEZABEZLBDZFADOFMDNDAB
    GLBHABIJK $.
    $( [16-Dec-97] $)

  $( Lemma for Sasaki implication study. $)
  u1lemnonb $p |- ( ( a ->1 b ) ' v b ' ) =
                ( ( a v b ' ) ^ ( a ' v b ' ) ) $=
    ( wi1 wn wo wa u1lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD
    ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI
    ABJKLLPBJSUAMNO $.
    $( [16-Dec-97] $)

  $( Lemma for Dishkant implication study. $)
  u2lemnonb $p |- ( ( a ->2 b ) ' v b ' ) = b ' $=
    ( wi2 wn wo wa df-a ax-r1 u2lemab ax-r2 con3 ) ABCZDBDEZBMDZLBFZBONLBGHABIJ
    K $.
    $( [16-Dec-97] $)

  $( Lemma for Kalmbach implication study. $)
  u3lemnonb $p |- ( ( a ->3 b ) ' v b ' ) =
                ( ( a v b ' ) ^ ( a ' v b ' ) ) $=
    ( wi3 wn wo wa u3lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD
    ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI
    ABJKLLPBJSUAMNO $.
    $( [16-Dec-97] $)

  $( Lemma for non-tollens implication study. $)
  u4lemnonb $p |- ( ( a ->4 b ) ' v b ' ) =
                ( ( a v b ' ) ^ ( a ' v b ' ) ) $=
    ( wi4 wn wo wa u4lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD
    ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI
    ABJKLLPBJSUAMNO $.
    $( [16-Dec-97] $)

  $( Lemma for relevance implication study. $)
  u5lemnonb $p |- ( ( a ->5 b ) ' v b ' ) =
                ( ( a v b ' ) ^ ( a ' v b ' ) ) $=
    ( wi5 wn wo wa u5lemab ax-a2 anor2 df-a 2or ax-r2 oran3 3tr2 con1 ) ABCZDBD
    ZEZAQEZADZQEZFZPBFZSDZUADZEZRDUBDUCABFZTBFZEZUFABGUIUHUGEUFUGUHHUHUDUGUEABI
    ABJKLLPBJSUAMNO $.
    $( [16-Dec-97] $)

  $( Commutation theorem for Sasaki implication. $)
  u1lemc1 $p |- a C ( a ->1 b ) $=
    ( wn wa wo wi1 comid comcom2 comanr1 com2or df-i1 ax-r1 cbtr ) AACZABDZEZAB
    FZANOAAAGHABIJQPABKLM $.
    $( [14-Dec-97] $)

  $( Commutation theorem for Dishkant implication. $)
  u2lemc1 $p |- b C ( a ->2 b ) $=
    ( wn wa wo wi2 comid comanr2 comcom6 com2or df-i2 ax-r1 cbtr ) BBACZBCZDZEZ
    ABFZBBPBGBPNOHIJRQABKLM $.
    $( [14-Dec-97] $)

  $( Commutation theorem for Kalmbach implication. $)
  u3lemc1 $p |- a C ( a ->3 b ) $=
    ( comi31 ) ABC $.
    $( [14-Dec-97] $)

  $( Commutation theorem for non-tollens implication. $)
  u4lemc1 $p |- b C ( a ->4 b ) $=
    ( wa wn wo wi4 comanr2 com2or comorr2 comid comcom2 com2an df-i4 ax-r1 cbtr
    ) BABCZADZBCZEZQBEZBDZCZEZABFZBSUBBPRABGQBGHBTUAQBIBBBJKLHUDUCABMNO $.
    $( [14-Dec-97] $)

  $( Commutation theorem for relevance implication. $)
  u5lemc1 $p |- a C ( a ->5 b ) $=
    ( wa wn wo wi5 comanr1 comcom6 com2or df-i5 ax-r1 cbtr ) AABCZADZBCZEZNBDZC
    ZEZABFZAPRAMOABGAONBGHIARNQGHITSABJKL $.
    $( [14-Dec-97] $)

  $( Commutation theorem for relevance implication. $)
  u5lemc1b $p |- b C ( a ->5 b ) $=
    ( wa wn wo wi5 comanr2 com2or comcom6 df-i5 ax-r1 cbtr ) BABCZADZBCZEZNBDZC
    ZEZABFZBPRBMOABGNBGHBRNQGIHTSABJKL $.
    $( [14-Dec-97] $)

  ${
    ulemc2.1 $e |- a C b $.
    ulemc2.2 $e |- a C c $.
    $( Commutation theorem for Sasaki implication. $)
    u1lemc2 $p |- a C ( b ->1 c ) $=
      ( wn wa wo wi1 comcom2 com2an com2or df-i1 ax-r1 cbtr ) ABFZBCGZHZBCIZAPQ
      ABDJABCDEKLSRBCMNO $.
      $( [14-Dec-97] $)

    $( Commutation theorem for Dishkant implication. $)
    u2lemc2 $p |- a C ( b ->2 c ) $=
      ( wn wa wo wi2 comcom2 com2an com2or df-i2 ax-r1 cbtr ) ACBFZCFZGZHZBCIZA
      CREAPQABDJACEJKLTSBCMNO $.
      $( [14-Dec-97] $)

    $( Commutation theorem for Kalmbach implication. $)
    u3lemc2 $p |- a C ( b ->3 c ) $=
      ( com2i3 ) ABCDEF $.
      $( [14-Dec-97] $)

    $( Commutation theorem for non-tollens implication. $)
    u4lemc2 $p |- a C ( b ->4 c ) $=
      ( wa wn wo wi4 com2an comcom2 com2or df-i4 ax-r1 cbtr ) ABCFZBGZCFZHZQCHZ
      CGZFZHZBCIZASUBAPRABCDEJAQCABDKZEJLATUAAQCUEELACEKJLUDUCBCMNO $.
      $( [14-Dec-97] $)

    $( Commutation theorem for relevance implication. $)
    u5lemc2 $p |- a C ( b ->5 c ) $=
      ( wa wn wo wi5 com2an comcom2 com2or df-i5 ax-r1 cbtr ) ABCFZBGZCFZHZQCGZ
      FZHZBCIZASUAAPRABCDEJAQCABDKZEJLAQTUDACEKJLUCUBBCMNO $.
      $( [14-Dec-97] $)

  $}

  ${
    ulemc3.1 $e |- a C b $.
    $( Commutation theorem for Sasaki implication. $)
    u1lemc3 $p |- a C ( b ->1 a ) $=
      ( comid u1lemc2 ) ABACADE $.
      $( [14-Dec-97] $)

    $( Commutation theorem for Dishkant implication. $)
    u2lemc3 $p |- a C ( b ->2 a ) $=
      ( u2lemc1 ) BAD $.
      $( [14-Dec-97] $)

    $( Commutation theorem for Kalmbach implication. $)
    u3lemc3 $p |- a C ( b ->3 a ) $=
      ( comi32 ) ABCD $.
      $( [14-Dec-97] $)

    $( Commutation theorem for non-tollens implication. $)
    u4lemc3 $p |- a C ( b ->4 a ) $=
      ( u4lemc1 ) BAD $.
      $( [14-Dec-97] $)

    $( Commutation theorem for relevance implication. $)
    u5lemc3 $p |- a C ( b ->5 a ) $=
      ( u5lemc1b ) BAD $.
      $( [14-Dec-97] $)

    $( Commutation theorem for Sasaki implication. $)
    u1lemc5 $p |- a C ( a ->1 b ) $=
      ( u1lemc1 ) ABD $.
      $( [11-Jan-98] $)

    $( Commutation theorem for Dishkant implication. $)
    u2lemc5 $p |- a C ( a ->2 b ) $=
      ( comid u2lemc2 ) AABADCE $.
      $( [11-Jan-98] $)

    $( Commutation theorem for Kalmbach implication. $)
    u3lemc5 $p |- a C ( a ->3 b ) $=
      ( comi31 ) ABD $.
      $( [11-Jan-98] $)

    $( Commutation theorem for non-tollens implication. $)
    u4lemc5 $p |- a C ( a ->4 b ) $=
      ( comid u4lemc2 ) AABADCE $.
      $( [11-Jan-98] $)

    $( Commutation theorem for relevance implication. $)
    u5lemc5 $p |- a C ( a ->5 b ) $=
      ( u5lemc1 ) ABD $.
      $( [11-Jan-98] $)

    $( Lemma for Sasaki implication study. $)
    u1lemc4 $p |- ( a ->1 b ) = ( a ' v b ) $=
      ( wi1 wn wa wo df-i1 comid comcom2 fh4 ancom wt ax-a2 ax-r1 ax-r2 lan an1
      df-t ) ABDAEZABFGZTBGZABHUATAGZUBFZUBATBAAAIJCKUDUBUCFZUBUCUBLUEUBMFUBUCM
      UBUCATGZMTANMUFASOPQUBRPPPP $.
      $( [24-Dec-97] $)

    $( Lemma for Dishkant implication study. $)
    u2lemc4 $p |- ( a ->2 b ) = ( a ' v b ) $=
      ( wi2 wn wa wo df-i2 comcom3 comcom4 fh4 ax-a2 df-t ax-r1 2an an1 ax-r2
      wt ) ABDBAEZBEZFGZSBGZABHUABSGZBTGZFZUBSBTABCIABCJKUEUBRFUBUCUBUDRBSLRUDB
      MNOUBPQQQ $.
      $( [24-Dec-97] $)

    $( Lemma for Kalmbach implication study. $)
    u3lemc4 $p |- ( a ->3 b ) = ( a ' v b ) $=
      ( wi3 wn wa wo df-i3 comcom3 comcom4 fh1 ax-r1 df-t lan ax-r2 comid ax-a2
      wt an1 wf comcom2 dff lor or0 2or fh4 ancom ) ABDAEZBFUHBEZFGZAUHBGZFZGZU
      KABHUMUHABFZGZUKUJUHULUNUJUHBUIGZFZUHUQUJUHBUIABCIABCJKLUQUHRFUHUPRUHRUPB
      MLNUHSOOULAUHFZUNGZUNAUHBAAAPUAZCKUSUNURGZUNURUNQVAUNTGUNURTUNTURAUBLUCUN
      UDOOOUEUOUHAGZUKFZUKAUHBUTCUFVCUKVBFZUKVBUKUGVDUKRFUKVBRUKVBAUHGZRUHAQRVE
      AMLONUKSOOOOO $.
      $( [24-Dec-97] $)

    $( Lemma for non-tollens implication study. $)
    u4lemc4 $p |- ( a ->4 b ) = ( a ' v b ) $=
      ( wi4 wa wn wo df-i4 comid comcom2 fh2r ax-r1 ancom wt df-t lan an1 ax-r2
      comcom4 wf comcom3 dff lor or0 2or fh4 ax-a2 2an ) ABDABEAFZBEGZUIBGZBFZE
      ZGZUKABHUNBUIULEZGZUKUJBUMUOUJAUIGZBEZBURUJABUICAAAIJKLURBUQEZBUQBMUSBNEB
      UQNBNUQAOLPBQRRRUMUOBULEZGZUOUIULBABCSZABCUAZKVAUOTGUOUTTUOTUTBUBLUCUOUDR
      RUEUPBUIGZBULGZEZUKUIBULVCVBUFVFUKNEUKVDUKVENBUIUGNVEBOLUHUKQRRRR $.
      $( [24-Dec-97] $)

    $( Lemma for relevance implication study. $)
    u5lemc4 $p |- ( a ->5 b ) = ( a ' v b ) $=
      ( wi5 wa wn wo df-i5 comid comcom2 fh2r ax-r1 ancom wt df-t lan an1 ax-r2
      ax-r5 comcom3 comcom4 fh4 ax-a2 2an ) ABDABEAFZBEGZUEBFZEZGZUEBGZABHUIBUH
      GZUJUFBUHUFAUEGZBEZBUMUFABUECAAAIJKLUMBULEZBULBMUNBNEBULNBNULAOLPBQRRRSUK
      BUEGZBUGGZEZUJUEBUGABCTABCUAUBUQUJNEUJUOUJUPNBUEUCNUPBOLUDUJQRRRR $.
      $( [24-Dec-97] $)

  $}

  $( Commutation theorem for Sasaki implication. $)
  u1lemc6 $p |- ( a ->1 b ) C ( a ' ->1 b ) $=
    ( wi1 wn wo wa lea ax-a1 lbtr leo letr ud1lem0c df-i1 le3tr1 lecom comcom6
    ) ABCZADZBCZQDZSARBDEZFZRDZRBFZEZTSUBUCUEUBAUCAUAGAHIUCUDJKABLRBMNOP $.
    $( [19-Mar-99] $)

  $( Commutation theorem for ` ->1 ` and ` ->2 ` . $)
  comi12 $p |- ( a ->1 b ) C ( c ->2 a ) $=
    ( wi1 wn wa wo wi2 df-i1 lea leo letr lecom comcom anor3 cbtr comcom7 df-i2
    ax-r1 bctr ) ABDAEZABFZGZCAHZABIUCACEUAFZGZUDUCUFUCUAUEEZFZUFEUHUCUHUCUHUAU
    CUAUGJUAUBKLMNAUEOPQUDUFCARSPT $.
    $( [5-Jul-00] $)

  ${
    i1com.1 $e |- b =< ( a ->1 b ) $.
    $( Commutation expressed with ` ->1 ` . $)
    i1com $p |- a C b $=
      ( wi1 wa wn wo ancom df2le2 u1lemab 2or ax-r2 3tr2 df-c1 comcom ) BABABAB
      DZEPBEZBBAEZBAFZEZGZBPHBPCIQABEZSBEZGUAABJUBRUCTABHSBHKLMNO $.
      $( [1-Dec-99] $)
  $}

  ${
    comi1.1 $e |- a C b $.
    $( Commutation expressed with ` ->1 ` . $)
    comi1 $p |- b =< ( a ->1 b ) $=
      ( wa wn wo wi1 ancom ax-r5 ax-a2 ax-r2 lear leror bltr comcom df-c2 df-i1
      le3tr1 ) BADZBAEZDZFZTABDZFZBABGUBUAUCFZUDUBUCUAFUESUCUABAHIUCUAJKUATUCBT
      LMNBAABCOPABQR $.
      $( [1-Dec-99] $)
  $}

  ${
    ulemle1.1 $e |- a =< b $.
    $( L.e. to Sasaki implication. $)
    u1lemle1 $p |- ( a ->1 b ) = 1 $=
      ( wi1 wn wo wt lecom u1lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $.
      $( [11-Jan-98] $)

    $( L.e. to Dishkant implication. $)
    u2lemle1 $p |- ( a ->2 b ) = 1 $=
      ( wi2 wn wo wt lecom u2lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $.
      $( [11-Jan-98] $)

    $( L.e. to Kalmbach implication. $)
    u3lemle1 $p |- ( a ->3 b ) = 1 $=
      ( wi3 wn wo wt lecom u3lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $.
      $( [11-Jan-98] $)

    $( L.e. to non-tollens implication. $)
    u4lemle1 $p |- ( a ->4 b ) = 1 $=
      ( wi4 wn wo wt lecom u4lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $.
      $( [11-Jan-98] $)

    $( L.e. to relevance implication. $)
    u5lemle1 $p |- ( a ->5 b ) = 1 $=
      ( wi5 wn wo wt lecom u5lemc4 sklem ax-r2 ) ABDAEBFGABABCHIABCJK $.
      $( [11-Jan-98] $)

  $}

  ${
    u1lemle2.1 $e |- ( a ->1 b ) = 1 $.
    $( Sasaki implication to l.e. $)
    u1lemle2 $p |- a =< b $=
      ( wa wf wo wt wn anidm ran ax-r1 anass ax-r2 dff 2or ax-a2 coman1 comcom2
      lan fh2 wi1 df-i1 or0 an1 3tr2 df2le1 ) ABABDZEFZAGDZUGAUHAAHZUGFZDZUIUHA
      UGDZAUJDZFZULUGUMEUNUGAADZBDZUMUQUGUPABAIJKAABLMANOULUOULAUGUJFZDUOUKURAU
      JUGPSUGAUJABQZUGAUSRTMKMUKGAUKABUAZGUTUKABUBKCMSMUGUCAUDUEUF $.
      $( [11-Jan-98] $)
  $}

  ${
    u2lemle2.1 $e |- ( a ->2 b ) = 1 $.
    $( Dishkant implication to l.e. $)
    u2lemle2 $p |- a =< b $=
      ( wa wf wo wt ax-a2 lan coman1 comcom7 coman2 fh2 ancom anass ax-r1 ax-r2
      wn dff 3tr2 an0 ax-r5 wi2 df-i2 or0 an1 df2le1 ) ABABDZEFZAGDZUHAUIABARZB
      RZDZFZDZUJUOUIUOAUMBFZDZUIUNUPABUMHIUQAUMDZUHFZUIUMABUMAUKULJKUMBUKULLKMU
      SEUHFUIUREUHAUKDZULDULUTDZUREUTULNAUKULOVAULEDEUTEULEUTASPIULUAQTUBEUHHQQ
      QPUNGAUNABUCZGVBUNABUDPCQIQUHUEAUFTUG $.
      $( [11-Jan-98] $)
  $}

  ${
    u3lemle2.1 $e |- ( a ->3 b ) = 1 $.
    $( Kalmbach implication to l.e. $)
    u3lemle2 $p |- a =< b $=
      ( i3le ) ABCD $.
      $( [11-Jan-98] $)
  $}

  ${
    u4lemle2.1 $e |- ( a ->4 b ) = 1 $.
    $( Non-tollens implication to l.e. $)
    u4lemle2 $p |- a =< b $=
      ( wa wn wo wt ax-r1 ax-r2 comanr1 com2or comcom com2an comanr2 comcom3 wf
      lan anass dff 3tr2 wi4 df-i4 comcom6 comor1 comcom7 fh2 fh1 anidm ran an0
      comor2 ancom 2or or0 anor1 an12 3tr1 an1 df2le1 ) ABAABDZAEZBDZFZVABFZBEZ
      DZFZDZAGDUTAVGGAVGABUAZGVIVGABUBHCIQVHAVCDZAVFDZFZUTVCAVFAVCAUTVBABJZAVBV
      ABJUCZKLVCVDVEVDVCVDUTVBVDABVDAVABUDZUEVABUKZMVDVABVOVPMKLVEVCVEUTVBBUTAB
      NOBVBVABNOKLMUFVLUTPFZUTVJUTVKPVJAUTDZAVBDZFZUTAUTVBVMVNUGVTVQUTVQVTUTVRP
      VSUTAADZBDZVRWBUTWAABAUHUIHAABRIPAVADZBDZVSBPDBWCDPWDPWCBASQBUJBWCULTAVAB
      RIUMHUTUNZIIVDAVEDZDVDVDEZDVKPWFWGVDABUOQAVDVEUPVDSUQUMWEIIAURTUS $.
      $( [11-Jan-98] $)
  $}

  ${
    u5lemle2.1 $e |- ( a ->5 b ) = 1 $.
    $( Relevance implication to l.e. $)
    u5lemle2 $p |- a =< b $=
      ( wa wn wo wt wi5 ax-r1 ax-r2 lan comanr1 comcom6 fh1 wf anass ancom 3tr2
      an0 2or df-i5 com2or anidm ran dff or0 an1 df2le1 ) ABAABDZAEZBDZFZUJBEZD
      ZFZDZAGDUIAUOGAUOABHZGUQUOABUAICJKUPAULDZAUNDZFZUIAULUNAUIUKABLZAUKUJBLMZ
      UBAUNUJUMLMNUTUIOFZUIURUIUSOURAUIDZAUKDZFZUIAUIUKVAVBNVFVCUIVDUIVEOVDAADZ
      BDZUIVHVDAABPIVGABAUCUDJAUJDZBDBVIDZVEOVIBQAUJBPVJBODOVIOBOVIAUEZIKBSJRTU
      IUFZJJVIUMDUMVIDZUSOVIUMQAUJUMPVMUMODZOVNVMOVIUMVKKIUMSJRTVLJJAUGRUH $.
      $( [11-Jan-98] $)
  $}

  $( Sasaki implication and biconditional. $)
  u1lembi $p |- ( ( a ->1 b ) ^ ( b ->1 a ) ) = ( a == b ) $=
    ( wn wa wo wi1 tb ax-a2 2an coman1 comcom2 coman2 fh3 ax-r1 ax-r2 df-i1 lor
    ancom dfb 3tr1 ) ACZABDZEZBCZUBEZDZUBUAUDDEZABFZBAFZDABGUFUBUAEZUBUDEZDZUGU
    CUJUEUKUAUBHUDUBHIUGULUBUAUDUBAABJKUBBABLKMNOUHUCUIUEABPUIUDBADZEUEBAPUMUBU
    DBARQOIABST $.
    $( [17-Jan-98] $)

  $( Dishkant implication and biconditional. $)
  u2lembi $p |- ( ( a ->2 b ) ^ ( b ->2 a ) ) = ( a == b ) $=
    ( wn wa wo wi2 tb ancom coman1 comcom7 coman2 ax-r1 ax-r2 df-i2 lor 2an dfb
    fh3r 3tr1 ) BACZBCZDZEZAUBEZDZABDUBEZABFZBAFZDABGUEUDUCDZUFUCUDHUFUIUBABUBA
    TUAIJUBBTUAKJRLMUGUCUHUDABNUHAUATDZEUDBANUJUBAUATHOMPABQS $.
    $( [17-Jan-98] $)

  $( Dishkant implication expressed with biconditional. $)
  i2bi $p |- ( a ->2 b ) = ( b v ( a == b ) ) $=
    ( wi2 tb wo wn wa leor lelor df-i2 dfb lor le3tr1 leo lbtr u2lembi lea bltr
    ax-r1 lel2or lebi ) ABCZBABDZEZBAFBFGZEZBABGZUEEZEUBUDUEUHBUEUGHIABJZUCUHBA
    BKLMBUBUCBUFUBBUENUBUFUISOUCUBBACZGZUBUKUCABPSUBUJQRTUA $.
    $( [20-Nov-98] $)

  $( Kalmbach implication and biconditional. $)
  u3lembi $p |- ( ( a ->3 b ) ^ ( b ->3 a ) ) = ( a == b ) $=
    ( i3bi ) ABC $.
    $( [17-Jan-98] $)

  $( Non-tollens implication and biconditional. $)
  u4lembi $p |- ( ( a ->4 b ) ^ ( b ->4 a ) ) = ( a == b ) $=
    ( wi4 wa wn wo tb ud4lem1a dfb ax-r1 ax-r2 ) ABCBACDABDAEBEDFZABGZABHMLABIJ
    K $.
    $( [17-Jan-98] $)

  $( Relevance implication and biconditional. $)
  u5lembi $p |- ( ( a ->5 b ) ^ ( b ->5 a ) ) = ( a == b ) $=
    ( wi5 wa wn wo tb u5lemc1b comcom com2an comcom2 wf ancom df-i5 ax-r2 anabs
    fh1 2an lan 2or u5lemc1 com2or ax-a3 u5lemanb u5lemaa an4 dff ax-r1 an0 or0
    anandi ax-a2 id dfb 3tr1 ) ABCZBADZBEZADZFZURAEZDZFZDZABDZVAURDZFZUPBACZDAB
    GVDUPUTDZUPVBDZFZVGUPUTVBUPUQUSUPBABUPABHIZAUPABUAIZJZUPURAUPBVLKZVMJZUBUPU
    RVAVOUPAVMKJQVKVGVGVIVEVJVFVIUPUQDZUPUSDZFZVEUPUQUSVNVPQVSVELFVEVQVEVRLVQUQ
    UPDZVEUPUQMVTVEVEVABDZVFFZFZDVEUQVEUPWCBAMUPVEWAFZVFFZWCABNZVEWAVFUCORVEWBP
    OOVRUPURDZUPADZDZLUPURAUKWIVFVEDZLWGVFWHVEABUDABUERWJVEVFDZLVFVEMWKAVADZBUR
    DZDZLABVAURUFWNWLLDLWMLWLLWMBUGUHSWLUIOOOOOTVEUJOOVJVBUPDZVFUPVBMWOVFVFWDFZ
    DVFVBVFUPWPURVAMUPWEWPWFWDVFULORVFWDPOOTVGUMOOVHVCUPBANSABUNUO $.
    $( [17-Jan-98] $)

  $( Sasaki/Dishkant implication and biconditional.  Equation 4.14 of
     [MegPav2000] p. 23.  The variable i in the paper is set to 1, and j is set
     to 2. $)
  u12lembi $p |- ( ( a ->1 b ) ^ ( b ->2 a ) ) = ( a == b ) $=
    ( wi1 wn wa wo wi2 tb u1lemc1 comcom lear leo df-i1 ax-r1 lbtr letr u1lemaa
    lecom fh1 lan an12 u1lemana ancom 3tr 2or ax-r2 df-i2 dfb 3tr1 ) ABCZABDZAD
    ZEZFZEZABEZULUKEZFZUJBAGZEABHUOUJAEZUJUMEZFURUJAUMAUJABIJUMUJUMUJUMULUJUKUL
    KULULUPFZUJULUPLUJVBABMNOPRJSUTUPVAUQABQVAUKUJULEZEUMUQUJUKULUAVCULUKABUBTU
    KULUCUDUEUFUSUNUJBAUGTABUHUI $.
    $( [2-Mar-00] $)

  $( Dishkant/Sasaki implication and biconditional. $)
  u21lembi $p |- ( ( a ->2 b ) ^ ( b ->1 a ) ) = ( a == b ) $=
    ( wi2 wn wa wo wi1 u2lemc1 comcom3 comanr1 fh2 u2lemanb u2lemab anass ancom
    tb ran 3tr2 2or ax-a2 3tr df-i1 lan dfb 3tr1 ) ABCZBDZBAEZFZEZABEZADUGEZFZU
    FBAGZEABPUJUFUGEZUFUHEZFULUKFUMUGUFUHBUFABHIBUHBAJIKUOULUPUKABLUFBEZAEUHUPU
    KUQBAABMQUFBANBAORSULUKTUAUNUIUFBAUBUCABUDUE $.
    $( [3-Mar-00] $)

  $( Commutation theorem for biimplication. $)
  ublemc1 $p |- a C ( a == b ) $=
    ( combi ) ABC $.
    $( [19-Sep-98] $)

  $( Commutation theorem for biimplication. $)
  ublemc2 $p |- b C ( a == b ) $=
    ( tb ublemc1 bicom cbtr ) BBACABCBADBAEF $.
    $( [19-Sep-98] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Some proofs contributed by Josiah Burroughs
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( This theorem continues the line of proofs such as ~ u1lemnaa ,
     ~ ud1lem0b , ~ u1lemnanb , etc.  (Contributed by Josiah Burroughs
     26-May-04.) $)
  u1lemn1b $p |- ( a ->1 b ) = ( ( a ->1 b ) ' ->1 b ) $=
    ( wi1 wf wo wn wa ax-a1 u1lemnab ax-r1 2or or0 df-i1 3tr1 ) ABCZDEZOFZFZQBG
    ZEOQBCORDSOHSDABIJKPOOLJQBMN $.
    $( [26-May-04] $)

  $( A 3-variable formula.  (Contributed by Josiah Burroughs 26-May-04.) $)
  u1lem3var1 $p |- ( ( ( a ->1 c ) ^ ( b ->1 c ) ) ' v
               ( ( ( a ->1 c ) ' ->1 c ) ^ ( ( b ->1 c ) ' ->1 c ) ) ) = 1 $=
    ( wi1 wa wn wo wt ax-a2 u1lemn1b 2an ax-r1 lor df-t 3tr1 ) ACDZBCDZEZFZRGRS
    GSPFCDZQFCDZEZGHSRIUBRSRUBPTQUAACJBCJKLMRNO $.
    $( [26-May-04] $)

  ${
    oi3oa3lem1.1 $e |- 1 = ( b == a ) $.
    $( An attempt at the OA3 conjecture, which is true if ` ( a == b ) = 1 ` .
       (Contributed by Josiah Burroughs 27-May-04.) $)
    oi3oa3lem1 $p |- ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( a ^ b ) ) = 1 $=
      ( wi1 wa wo wt r3a ud1lem0b lan 2or anidm u1lemoa 3tr ) ACEZBCEZFZABFZGPP
      FZAAFZGPAGHRTSUAQPPBACBADIZJKBAAUBKLTPUAAPMAMLACNO $.
      $( [27-May-04] $)
  $}

  ${
    oi3oa3.1 $e |- 1 = ( b == a ) $.
    $( An attempt at the OA3 conjecture, which is true if ` ( a == b ) = 1 ` .
       (Contributed by Josiah Burroughs 27-May-04.) $)
    oi3oa3 $p |- ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v
                  ( ( ( ( a ->1 c ) ^
                    ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( a ^ b ) ) ) ->1 c ) ^
                    ( ( ( b ->1 c ) ^
                    ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( a ^ b ) ) ) ->1 c )
                     ) ) = 1 $=
      ( wi1 wa wo oi3oa3lem1 lan an1 ax-r2 ud1lem0b 2an lor ax-a2 r3a 1bi 3tr
      wt ) ACEZBCEZFZTUBABFGZFZCEZUAUCFZCEZFZGUBTCEZUACEZFZGUKUBGSUHUKUBUEUIUGU
      JUDTCUDTSFTUCSTABCDHZITJKLUFUACUFUASFUAUCSUAULIUAJKLMNUBUKOTUACUATBACBADP
      LQHR $.
      $( [27-May-04] $)
  $}

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        More lemmas for unified implication
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $(
  u1lem0 $p |- ( b ' ->1 a ' ) = ( a ->2 b ) $=
?$.

  u2lem0 $p |- ( b ' ->2 a ' ) = ( a ->1 b ) $=
?$.

  u3lem0 $p |- ( b ' ->3 a ' ) = ( a ->4 b ) $=
?$.

  u4lem0 $p |- ( b ' ->4 a ' ) = ( a ->3 b ) $=
?$.

  u5lem0 $p |- ( b ' ->5 a ' ) = ( a ->5 b ) $=
?$.
  $)


  $( Lemma for unified implication study. $)
  u1lem1 $p |- ( ( a ->1 b ) ->1 a ) = a $=
    ( wi1 wn wo u1lemc1 comcom u1lemc4 u1lemnoa ax-r2 ) ABCZACKDAEAKAAKABFGHABI
    J $.
    $( [14-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem1 $p |- ( ( a ->2 b ) ->2 a ) = a $=
    ( wi2 wn wa wo df-i2 wf ud2lem0c ran an32 ax-a2 ax-r2 lan dff ax-r1 lor or0
    oran ) ABCZACATDZADZEZFZATAGUDAHFAUCHAUCBDZABFZEZUBEZHUAUGUBABIJUHUEUBEZUFE
    ZHUEUFUBKUJUIUIDZEZHUFUKUIUFBAFUKABLBASMNHULUIOPMMMQARMM $.
    $( [14-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem1 $p |- ( ( a ->3 b ) ->3 a ) = ( ( a v b ) ^ ( a v b ' ) ) $=
    ( wi3 wn wo wa comi31 comcom u3lemc4 u3lemnoa ax-r2 ) ABCZACLDAEABEABDEFLAA
    LABGHIABJK $.
    $( [14-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem1 $p |- ( ( a ->4 b ) ->4 a ) =
          ( ( ( ( a ^ b ) v ( a ^ b ' ) ) v a ' ) ^
          ( ( a v b ) ^ ( a v b ' ) ) ) $=
    ( wi4 wa wn wo u4lemaa 2or comanr1 com2or comcom3 comorr com2an fh4 lea leo
    df-i4 letr df-le2 ax-r2 u4lemnaa ran ancom lor comor1 comor2 comcom2 lel2or
    u4lemnoa 2an lan id ) ABCZACUMADZUMEZADZFZUOAFZAEZDZFZABDZABEZDZFZUSFZABFZA
    VCFZDZDZUMAQVAVEVIUSDZFZVJUQVEUTVKUNVBUPVDABGABUAHURVIUSABUIUBHVLVEUSVIDZFZ
    VJVKVMVEVIUSUCUDVNVFVEVIFZDZVJUSVEVIAVEAVBVDABIAVCIJKAVIAVGVHABLAVCLMKNVPVJ
    VJVOVIVFVOVEVGFZVEVHFZDVIVGVEVHVGVBVDVGABABUEZABUFZMVGAVCVSVGBVTUGZMJVGAVCV
    SWAJNVQVGVRVHVEVGVEAVGVBAVDABOAVCOUHZABPRSVEVHVEAVHWBAVCPRSUJTUKVJULTTTTT
    $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem1 $p |- ( ( a ->5 b ) ->5 a ) = ( ( a v b ) ^ ( a v b ' ) ) $=
    ( wi5 wn wo wa u5lemc1 comcom u5lemc4 u5lemnoa ax-r2 ) ABCZACLDAEABEABDEFLA
    ALABGHIABJK $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u1lem1n $p |- ( ( a ->1 b ) ->1 a ) ' = a ' $=
    ( wi1 u1lem1 ax-r4 ) ABCACAABDE $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem1n $p |- ( ( a ->2 b ) ->2 a ) ' = a ' $=
    ( wi2 u2lem1 ax-r4 ) ABCACAABDE $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem1n $p |- ( ( a ->3 b ) ->3 a ) ' =
                ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $=
    ( wi3 wn wa wo u3lem1 ancom df-a anor2 anor3 2or ax-r4 ax-r1 ax-r2 con2 ) A
    BCACZADZBEZRBDZEZFZQABFZATFZEZUBDZABGUEUDUCEZUFUCUDHUGUDDZUCDZFZDZUFUDUCIUF
    UKUBUJSUHUAUIABJABKLMNOOOP $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem1n $p |- ( ( a ->4 b ) ->4 a ) ' =
          ( ( ( ( a ' v b ) ^ ( a ' v b ' ) ) ^ a ) v
          ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wa wn wo wi4 oran1 df-a anor1 2or ax-r4 ax-r1 ax-r2 ancom ran anor2 anor3
    2an u4lem1 oran 3tr1 ) ABCZABDZCZEZADZEZABEZAUCEZCZCZDUFBEZUFUCEZCZACZDZUFB
    CZUFUCCZEZDZCZDABFAFZDUOUSEUKVAUGUPUJUTUGUEDZACZDUPUEAGVDUOVCUNAVCUMULCZUNV
    CUMDZULDZEZDZVEUEVHUBVFUDVGABHABIJKVEVIUMULHLMUMULNMOKMUJUIUHCZUTUHUINVJUID
    ZUHDZEZDZUTUIUHHUTVNUSVMUQVKURVLABPABQJKLMMRKVBUKABSKUOUSTUA $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem1n $p |- ( ( a ->5 b ) ->5 a ) ' =
                ( ( a ' ^ b ) v ( a ' ^ b ' ) ) $=
    ( wi5 wn wa wo u5lem1 ancom df-a anor2 anor3 2or ax-r4 ax-r1 ax-r2 con2 ) A
    BCACZADZBEZRBDZEZFZQABFZATFZEZUBDZABGUEUDUCEZUFUCUDHUGUDDZUCDZFZDZUFUDUCIUF
    UKUBUJSUHUAUIABJABKLMNOOOP $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u1lem2 $p |- ( ( ( a ->1 b ) ->1 a ) ->1 a ) = 1 $=
    ( wi1 wn wa wo wt df-i1 u1lem1n u1lem1 ran anidm ax-r2 2or ax-a2 df-t ax-r1
    ) ABCACZACRDZRAEZFZGRAHUAADZAFZGSUBTAABITAAEARAAABJKALMNUCAUBFZGUBAOGUDAPQM
    MM $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem2 $p |- ( ( ( a ->2 b ) ->2 a ) ->2 a ) = 1 $=
    ( wi2 wn wa wo wt df-i2 u2lem1n ran anidm ax-r2 lor df-t ax-r1 ) ABCACZACAP
    DZADZEZFZGPAHTARFZGSRASRRERQRRABIJRKLMGUAANOLL $.
    $( [16-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem2 $p |- ( ( ( a ->3 b ) ->3 a ) ->3 a ) =
               ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wi3 wn wo comi31 comid u3lemc2 comcom u3lemc4 u3lem1n ax-r5 ax-a2 ax-r2
    wa ) ABCZACZACQDZAEZAADZBOTBDOEZEZQAAQAPAABFAGHIJSUAAEUBRUAAABKLUAAMNN $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem2 $p |- ( ( ( a ->4 b ) ->4 a ) ->4 a ) =
               ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wn wo wa u4lemc1 comcom u4lemc4 u4lem1n ax-r5 ax-a3 lear leor letr df-le2
    wi4 ax-a2 ax-r2 ) ABPZAPZAPTCZADZAACZBEUCBCZEDZDZTAATSAFGHUBUCBDUCUDDEZAEZU
    EDZADZUFUAUIAABIJUJUHUEADZDZUFUHUEAKULUKUFUHUKUHAUKUGALAUEMNOUEAQRRRR $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem2 $p |- ( ( ( a ->5 b ) ->5 a ) ->5 a ) =
               ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wi5 wn wo wa u5lemc1b comcom u5lemc4 u5lem1n ax-r5 ax-a2 ax-r2 ) ABCZACZA
    CODZAEZAADZBFRBDFEZEZOAAONAGHIQSAETPSAABJKSALMM $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u1lem3 $p |- ( a ->1 ( b ->1 a ) ) =
               ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $=
    ( wi1 wn wa wo df-i1 ancom 2or u1lemab ax-r1 ax-r2 lor id ) ABACZCADZAOEZFZ
    PABEZABDZEZFZFZAOGRUCUCQUBPUBQUBOAEZQUBBAEZTAEZFZUDSUEUAUFABHATHIUDUGBAJKLO
    AHLKMUCNLL $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem3 $p |- ( a ->2 ( b ->2 a ) ) = 1 $=
    ( wi2 wn wa wo wt df-i2 u2lemc1 comcom3 comcom4 fh4 u2lemonb df-t ax-r1 2an
    an1 ax-r2 ) ABACZCSADZSDZEFZGASHUBSTFZSUAFZEZGTSUAASBAIZJASUFKLUEGGEGUCGUDG
    BAMGUDSNOPGQRRR $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem3 $p |- ( a ->3 ( b ->3 a ) ) =
               ( a v ( ( a ' ^ b ) v ( a ' ^ b ' ) ) ) $=
    ( wi3 wn wa df-i3 ancom u3lemanb ax-r2 u3lemnanb 2or ax-a2 u3lemonb lan an1
    wo wt ) ABACZCADZREZSRDZEZPZASRPZEZPZASBEZSBDZEZPZPZARFUFUJAPUKUCUJUEAUCUHS
    EZBSEZPZUJTULUBUMTRSEULSRGBAHIUBUASEUMSUAGBAJIKUNUIUGPUJULUIUMUGUHSGBSGKUIU
    GLIIUEAQEAUDQAUDRSPQSRLBAMINAOIKUJALII $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem3 $p |- ( a ->4 ( b ->4 a ) ) =
               ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $=
    ( wi4 wn wo wa u4lemc1 u4lemc4 ax-a2 u4lemonb ancom 2or ax-r5 ax-r2 ) ABACZ
    CADZOEZPABFZABDZFZEZEZAOBAGHQOPEZUBPOIUCBAFZSAFZEZPEZUBBAJUGUAPEUBUFUAPUDRU
    ETBAKSAKLMUAPINNNN $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem3 $p |- ( a ->5 ( b ->5 a ) ) =
               ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $=
    ( wi5 wn wo wa u5lemc1b u5lemc4 ax-a2 u5lemonb ancom 2or ax-r5 ax-r2 ) ABAC
    ZCADZOEZPABFZABDZFZEZEZAOBAGHQOPEZUBPOIUCBAFZSAFZEZPEZUBBAJUGUAPEUBUFUAPUDR
    UETBAKSAKLMUAPINNNN $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem3n $p |- ( a ->3 ( b ->3 a ) ) ' =
               ( a ' ^ ( ( a v b ) ^ ( a v b ' ) ) ) $=
    ( wi3 wn wo wa u3lem3 ax-a2 anor3 anor2 2or oran3 ax-r2 lor oran1 con2 ) AB
    ACCZADZABEZABDZEZFZFZQARBFZRTFZEZEZUCDZABGUGAUBDZEUHUFUIAUFUEUDEZUIUDUEHUJS
    DZUADZEUIUEUKUDULABIABJKSUALMMNAUBOMMP $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem3n $p |- ( a ->4 ( b ->4 a ) ) ' =
               ( a ^ ( ( a ' v b ) ^ ( a ' v b ' ) ) ) $=
    ( wi4 wn wo wa u4lem3 ax-a2 anor1 df-a 2or oran3 ax-r2 lor con2 ) ABACCZAAD
    ZBEZQBDZEZFZFZPQABFZASFZEZEZUBDZABGUFQUADZEUGUEUHQUEUDUCEZUHUCUDHUIRDZTDZEU
    HUDUJUCUKABIABJKRTLMMNAUALMMO $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem3n $p |- ( a ->5 ( b ->5 a ) ) ' =
               ( a ^ ( ( a ' v b ) ^ ( a ' v b ' ) ) ) $=
    ( wi5 wn wo wa u5lem3 ax-a2 anor1 df-a 2or oran3 ax-r2 lor con2 ) ABACCZAAD
    ZBEZQBDZEZFZFZPQABFZASFZEZEZUBDZABGUFQUADZEUGUEUHQUEUDUCEZUHUCUDHUIRDZTDZEU
    HUDUJUCUKABIABJKRTLMMNAUALMMO $.
    $( [17-Dec-97] $)

  $( Lemma for unified implication study. $)
  u1lem4 $p |- ( a ->1 ( a ->1 ( b ->1 a ) ) ) = ( a ->1 ( b ->1 a ) ) $=
    ( wi1 wn wa wo df-i1 comid comcom2 u1lemc1 fh4 wt ax-a2 df-t ax-r1 u1lemona
    ax-r2 ancom lor lan u1lem3 coman1 coman2 fh2 anass anidm ran ax-r5 2an an1
    ) AABACZCZCADZAULEFZULAULGUNUMAFZUMULFZEZULAUMULAAAHIAUKJKUQLULEZULUOLUPULU
    OAUMFZLUMAMLUSANOQUPULUMFZULUMULMUTUMAUKEZFZULAUKPVBUMABDZABEZFZEZFZULVAVFU
    MUKVEAUKVCBAEZFVEBAGVHVDVCBARSQTSULVGULUMVDAVCEZFZFVGABUAVJVFUMVFVJVFAVDVCF
    ZEZVJVEVKAVCVDMTVLAVDEZVIFVJVDAVCABUBVDBABUCIUDVMVDVIVMAAEZBEZVDVOVMAABUEOV
    NABAUFUGQUHQQOSQOQQQUIURULLEULLULRULUJQQQQ $.
    $( [11-Jan-98] $)

  $( Lemma for unified implication study. $)
  u3lem4 $p |- ( a ->3 ( a ->3 ( b ->3 a ) ) ) = 1 $=
    ( wi3 wn wo wt lem4 ax-a2 u3lemonb ax-r2 ) AABACZCCADZKEZFAKGMKLEFLKHBAIJJ
    $.
    $( [21-Jan-98] $)

  $( Lemma for unified implication study. $)
  u4lem4 $p |- ( a ->4 ( a ->4 ( b ->4 a ) ) ) = ( a ->4 ( b ->4 a ) ) $=
    ( wi4 wa wn wo df-i4 comid comcom2 comanr1 com2or comcom ax-r1 df-t lan an1
    wt ax-r2 wf ax-r5 u4lem3 bctr fh2r comcom4 comcom3 fh1r dff lor or0 2or fh3
    ancom or32 oridm ) AABACCZCAUODAEZUODFZUPUOFUOEZDZFZUOAUOGUTUOUPURDZFZUOUQU
    OUSVAUQAUPFZUODZUOVDUQAUOUPUOAUOUPABDZABEZDZFZFZAABUAZAVIAUPVHAAAHIZAVEVGAB
    JAVFJKKLUBZLVKUCMVDUOVCDZUOVCUOULVMUOQDUOVCQUOQVCANMOUOPRRRUSVAUOURDZFZVAUR
    UPUOUOAVLUDUOUOUOHZUEUFVOVASFVAVNSVASVNUOUGMUHVAUIRRUJVBUOUPFZUOVBVQUOURFZD
    ZVQUOUPURUOAVLIUOUOVPIUKVSVQQDVQVRQVQQVRUONMOVQPRRVQVIUPFZUOUOVIUPVJTVTUPUP
    FZVHFZUOUPVHUPUMWBVIUOWAUPVHUPUNTUOVIVJMRRRRRR $.
    $( [18-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem4 $p |- ( a ->5 ( a ->5 ( b ->5 a ) ) ) = ( a ->5 ( b ->5 a ) ) $=
    ( wi5 wn wo u5lemc1 u5lemc4 wa u5lem3 lor ax-a3 ax-r1 oridm ax-r5 ax-r2 ) A
    ABACZCZCADZQEZQAQAPFGSRRABHABDHEZEZEZQQUARABIZJUBRREZTEZQUEUBRRTKLUEUAQUDRT
    RMNQUAUCLOOOO $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u1lem5 $p |- ( a ->1 ( a ->1 b ) ) = ( a ->1 b ) $=
    ( wi1 wn wa wo df-i1 ancom u1lemaa ax-r2 lor ax-r1 ) AABCZCADZAMEZFZMAMGPNA
    BEZFZMOQNOMAEQAMHABIJKMRABGLJJ $.
    $( [20-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem5 $p |- ( a ->2 ( a ->2 b ) ) = ( a ->2 b ) $=
    ( wi2 wn wa wo df-i2 wf ancom u2lemnana ax-r2 lor or0 ) AABCZCNADZNDZEZFZNA
    NGRNHFNQHNQPOEHOPIABJKLNMKK $.
    $( [20-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem5 $p |- ( a ->3 ( a ->3 b ) ) = ( a ' v b ) $=
    ( wi3 wn wo comi31 u3lemc4 ax-a2 u3lemona ax-r2 ) AABCZCADZKEZLBEZAKABFGMKL
    ENLKHABIJJ $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem5 $p |- ( a ->4 ( a ->4 b ) ) = ( ( a ' ^ b ' ) v b ) $=
    ( wi4 wa wn wo ancom ax-r2 2or ax-a3 ax-r1 ax-a2 2an comcom7 com2an comanr2
    wf com2or wt lor df-i4 u4lemaa u4lemana u4lemona ud4lem0c anass comor1 fh1r
    comor2 comcom2 leor df2le2 lan dff or0 comcom6 comorr2 fh4 or32 lear lel2or
    oran2 df-le2 ax-r5 or4 oran3 df-t or1 oran1 an1 ) AABCZCAVKDZAEZVKDZFZVMVKF
    ZVKEZDZFZVMBEZDZBFZAVKUAVSABDZVMBDZFZWAFZBVMVTFZAVTFZDZDZFZWBVOWFVRWJVOWCWD
    WAFZFZWFVLWCVNWLVLVKADWCAVKGABUBHVNVKVMDWLVMVKGABUCHIWFWMWCWDWAJKHVRVMBFZWI
    AVTDZBFZDZDZWJVPWNVQWQVPVKVMFWNVMVKLABUDHABUEMWRWQWNDZWJWNWQGWSWIWPWNDZDZWJ
    WIWPWNUFXAWIBDWJWTBWIWTWOWNDZBWNDZFZBWNWOBWNAVTWNAVMBUGNWNBVMBUIZUJOXEUHXDX
    CXBFZBXBXCLXFBQFBXCBXBQBWNBVMUKULXBWOWOEZDZQWNXGWOABVBUMQXHWOUNKHIBUOHHHUMW
    IBGHHHHIWKWFBFZWFWIFZDZWBBWFWIBWEWABWCWDABPVMBPRBWAVMVTPUPRBWIVTWGWHVMVTUQA
    VTUQOUPURXKBWAFZSDZWBXIXLXJSXIWEBFZWAFXLWEWABUSXNBWAWEBWCBWDABUTVMBUTVAVCVD
    HXJWFWGFZWFWHFZDZSWGWFWHWGWEWAWGWCWDWGABWGAVMVTUGZNZWGBVMVTUIZNZOWGVMBXRYAO
    RWGVMVTXRXTORWGAVTXSXTRURXQSSDSXOSXPSXOWEWGFWAFZSWEWAWGUSYBWEWGWAFFZSWEWGWA
    JYCWCWGFZWLFZSWCWDWGWAVEYEWLYDFZSYDWLLYFWLSFSYDSWLYDWCWCEZFZSWGYGWCABVFTSYH
    WCVGKHTWLVHHHHHHXPWEWAWHFFZSWEWAWHJYIWCWAFZWDWHFZFZSWCWDWAWHVEYLYJSFSYKSYJY
    KWDWDEZFZSWHYMWDABVITSYNWDVGKHTYJVHHHHMSVJHHMXMXLWBXLVJBWALHHHHH $.
    $( [26-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem5 $p |- ( a ->5 ( a ->5 b ) ) = ( a ' v ( a ^ b ) ) $=
    ( wi5 wa wn wo df-i5 u5lemc1 comcom comcom2 fh1r ax-r1 ancom df-t lan ax-r2
    wt an1 ax-r5 comcom3 comcom4 fh4 u5lemona ) AABCZCAUDDAEZUDDFZUEUDEZDZFZUEA
    BDFZAUDGUIUDUHFZUJUFUDUHUFAUEFZUDDZUDUMUFUDAUEAUDABHZIZUDAUOJKLUMUDULDZUDUL
    UDMUPUDQDUDULQUDQULANLOUDRPPPSUKUDUEFZUDUGFZDZUJUEUDUGAUDUNTAUDUNUAUBUSUQQD
    ZUJURQUQQURUDNLOUTUQUJUQRABUCPPPPP $.
    $( [20-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem5n $p |- ( a ->4 ( a ->4 b ) ) ' = ( ( a v b ) ^ b ' ) $=
    ( wi4 wo wn wa u4lem5 anor3 ax-r5 ax-r2 oran2 con2 ) AABCCZABDZBEZFZMNEZBDZ
    PEMAEOFZBDRABGSQBABHIJNBKJL $.
    $( [20-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem6 $p |- ( a ->3 ( a ->3 ( a ->3 b ) ) ) = ( a ->3 ( a ->3 b ) ) $=
    ( wi3 wn wo comi31 u3lemc4 u3lem5 lor ax-a3 ax-r1 oridm ax-r5 ax-r2 ) AAABC
    ZCZCADZPEZPAPAOFGRQQBEZEZPPSQABHZITQQEZBEZPUCTQQBJKUCSPUBQBQLMPSUAKNNNN $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u4lem6 $p |- ( a ->4 ( a ->4 ( a ->4 b ) ) ) = ( a ->4 b ) $=
    ( wi4 wa wn wo lan comcom7 fh2 ax-a2 ancom ax-r1 ax-r2 lor ax-r5 2an com2an
    wf wt com2or df-i4 u4lem5 coman1 coman2 anass dff an0 3tr2 or0 anidm ran id
    2or or12 comor1 comcom2 fh3r ax-a3 oridm df-t or1 an1 u4lem5n fh4 lear leor
    comor2 letr lea lel2or leo df-le2 or32 anor3 comorr2 comcom3 comanr2 df2le2
    3tr1 ) AAABCZCZCAWADZAEZWADZFZWCWAFZWAEZDZFZVTAWAUAWIABDZWCBEZDZWCBDZFZFZWC
    BFZABFZWKDZDZFZVTWEWOWHWSWEWOWOWBWJWDWNWBAWLBFZDZWJWAXAAABUBZGXBAWLDZWJFZWJ
    WLABWLAWCWKUCZHWLBWCWKUDHZIXEWJXDFZWJXDWJJXHWJRFWJXDRWJAWCDZWKDWKXIDZXDRXIW
    KKAWCWKUEXJWKRDRXIRWKRXIAUFLGWKUGMUHNWJUIMMMMWDWCXADZWNWAXAWCXCGXKWCWLDZWMF
    WNWLWCBXFXGIXLWLWMXLWCWCDZWKDZWLXNXLWCWCWKUELXMWCWKWCUJUKMOMMUMWOULMWHWSWSW
    FWPWGWRWFWCXAFZWPWAXAWCXCNXOWLWPFZWPWCWLBUNXPWCWPFZWKWPFZDZWPWPWCWKWCBUOZWP
    BWCBVGZUPZUQXSWPSDWPXQWPXRSXQWCWCFZBFZWPYDXQWCWCBURLYCWCBWCUSOMXRWCWKBFZFZS
    WKWCBUNYFWCSFSYESWCYEBWKFZSWKBJSYGBUTLMNWCVAMMPWPVBMMMMABVCPWSULMUMWTWOWPFZ
    WOWRFZDZVTWPWOWRWPWJWNWPABWPAXTHZYAQWPWLWMWPWCWKXTYBQWPWCBXTYAQTTWPWQWKWPAB
    YKYATYBQVDYJWPWKWJWMFZFZDZVTYHWPYIYMWOWPWJWPWNWJBWPABVEZBWCVFZVHWNWCWPWLWCW
    MWCWKVIWCBVIVJWCBVKVHVJVLYIWOWQFZWOWKFZDZYMWQWOWKWQWJWNWQABABUOZABVGZQWQWLW
    MWQWCWKWQAYTUPZWQBUUAUPZQWQWCBUUBUUAQTTUUCVDYSSYMDZYMYQSYRYMYQWJWQFZWNFZSWJ
    WNWQVMUUEWLFZWMFSWMFZUUFSUUGSWMUUGWJWQWLFZFZSWJWQWLURUUJWJSFSUUISWJUUIWQWQE
    ZFZSWLUUKWQABVNNSUULWQUTLMNWJVAMMOUUEWLWMURUUHWMSFSSWMJWMVAMUHMYRWLYLFZWKFZ
    YMWOUUMWKWJWLWMUNOWLWKFZYLFYMUUNYMUUOWKYLWLWKWCWKVEVLOWLYLWKVMYMULVSMPUUDYM
    SDYMSYMKYMVBMMMPYNWPWKDZWPYLDZFZVTWKWPYLBWPWCBVOVPBYLBWJWMABVQWCBVQTVPIUUPY
    LFYLUUPFUURVTUUPYLJUUQYLUUPUUQYLWPDYLWPYLKYLWPYLBWPWJBWMYOWCBVEVJYPVHVRMNAB
    UAVSMMMMM $.
    $( [26-Dec-97] $)

  $( Lemma for unified implication study. $)
  u5lem6 $p |- ( a ->5 ( a ->5 ( a ->5 b ) ) ) = ( a ->5 ( a ->5 b ) ) $=
    ( wi5 wa wn wo df-i5 ancom u5lemc1 comcom comcom2 fh1r df-t ax-r1 lan ax-r2
    wt an1 3tr2 ax-r5 comcom3 comcom4 fh4 u5lem5 oridm or32 3tr1 ) AAABCZCZCAUI
    DAEZUIDFZUJUIEZDZFZUIAUIGUNUIUMFZUIUKUIUMAUJFZUIDUIUPDZUKUIUPUIHUIAUJAUIAUH
    IZJZUIAUSKLUQUIQDUIUPQUIQUPAMNOUIRPSTUOUIUJFZUIULFZDZUIUJUIULAUIURUAAUIURUB
    UCVBUTQDZUIVAQUTQVAUIMNOVCUTUIUTRUTUJABDZFZUJFZUIUIVEUJABUDZTUJUJFZVDFVEVFU
    IVHUJVDUJUETUJVDUJUFVGUGPPPPPP $.
    $( [20-Dec-97] $)

  $( Lemma for unified implication study. $)
  u24lem $p |- ( ( a ->2 b ) ^ ( a ->4 b ) ) = ( a ->5 b ) $=
    ( wi2 wi4 wa wn wo wi5 df-i2 u4lemc1 comanr2 comcom6 fh2r ancom ax-r2 anass
    ran ax-r1 2or id u4lemanb lan anabs comanr1 com2or fh1 u4lemab ax-r5 df2le2
    fh4r leor ax-a3 lear df-le2 lor df-i5 ) ABCZABDZEBAFZBFZEZGZUREZABHZUQVBURA
    BIQVCBUREZVAUREZGZVDBURVAABJZBVAUSUTKLMVGVEUTUSEZGZVDVEVEVFVIVEURBEZVEBURNZ
    URBNOVFUSUTUREZEZVIUSUTURPVNUSUSBGZUTEZEZVIVMVPUSVMURUTEVPUTURNABUAOUBVQUSV
    OEZUTEZVIVSVQUSVOUTPRVSVAVIVRUSUTUSBUCQUSUTNOOOOSVJBVIGURVIGZEZVDBVIURBVIUT
    USUDLZVHUJWABVTEZVIVTEZGZVDBVTVIBURVIVHWBUEWBMWEABEUSBEGZBVIEZGZVIGZVDWCWHW
    DVIWCVEWGGZWHBURVIVHWBUFWJWHWHVEWFWGVEVKWFVLABUGOUHWHTOOVIVTVIURUKUISWIWFWG
    VIGZGZVDWFWGVIULWLWFVAGZVDWKVAWFWKVIVAWGVIBVIUMUNUTUSNOUOWMVDVDVDWMABUPRVDT
    OOOOOOOOO $.
    $( [20-Dec-97] $)

  $( Implication lemma. $)
  u12lem $p |- ( ( a ->1 b ) v ( a ->2 b ) ) = ( a ->0 b ) $=
    ( wi1 wn wa wo wi2 wi0 orordi u1lemob df-i1 ax-r5 or32 orabs ax-r2 2or bile
    id lear lelor lel2or leo lebi df-i2 lor df-i0 3tr1 ) ABCZBADZBDZEZFZFZUIBFZ
    UHABGZFABHUMUHBFZUHUKFZFZUNUHBUKIURUNUIABEZFZFZUNUPUNUQUTABJUQUTUKFZUTUHUTU
    KABKLVBUIUKFZUSFUTUIUSUKMVCUIUSUIUJNLOOPVAUNUNUNUTUNUNUNRQUSBUIABSTUAUNUTUB
    UCOOUOULUHABUDUEABUFUG $.
    $( [17-Nov-98] $)

  $( Lemma for unified implication study. $)
  u1lem7 $p |- ( a ->1 ( a ' ->1 b ) ) = 1 $=
    ( wn wi1 wa wo wt df-i1 ax-a1 ran ancom u1lemana ax-r2 lor df-t ax-r1 ) AAC
    ZBDZDQAREZFZGARHTQQCZFZGSUAQSUAREZUAAUARAIJUCRUAEUAUARKQBLMMNGUBQOPMM $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem7 $p |- ( a ->2 ( a ' ->2 b ) ) =
              ( ( ( a ^ b ' ) v ( a ' ^ b ' ) ) v b ) $=
    ( wn wi2 wa df-i2 ax-a1 ax-r1 ran lor ax-r2 ancom u2lemnaa 2or ax-a3 ax-a2
    wo ) AACZBDZDSRSCZEZQZABCZEZRUCEZQZBQZASFUBBUDQZUEQZUGSUHUAUESBRCZUCEZQUHRB
    FUKUDBUJAUCAUJAGHIJKUATREUERTLRBMKNUIBUFQUGBUDUEOBUFPKKK $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem7 $p |- ( a ->3 ( a ' ->3 b ) ) =
              ( a ' v ( ( a ^ b ) v ( a ^ b ' ) ) ) $=
    ( wn wi3 wo comi31 comcom6 u3lemc4 df-i3 lor or12 ax-a1 ran 2or ax-r1 orabs
    wa ax-a2 ax-r2 ) AACZBDZDTUAEZTABQZABCZQZEZEZAUAAUATBFGHUBTTCZBQZUHUDQZEZTU
    HBEZQZEZEZUGUAUNTTBIJUOUKTUMEZEZUGTUKUMKUQUFTEUGUKUFUPTUFUKUCUIUEUJAUHBALZM
    AUHUDURMNOTULPNUFTRSSSS $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u2lem7n $p |- ( a ->2 ( a ' ->2 b ) ) ' =
              ( ( ( a v b ) ^ ( a ' v b ) ) ^ b ' ) $=
    ( wn wi2 wo wa u2lem7 ax-a2 anor3 anor1 2or ax-r2 oran3 ax-r5 oran2 con2 )
    AACZBDDZABEZQBEZFZBCZFZRAUBFZQUBFZEZBEZUCCZABGUGUACZBEUHUFUIBUFSCZTCZEZUIUF
    UEUDEULUDUEHUEUJUDUKABIABJKLSTMLNUABOLLP $.
    $( [24-Dec-97] $)

  $( Lemma used in study of orthoarguesian law. $)
  u1lem8 $p |- ( ( a ->1 b ) ^ ( a ' ->1 b ) ) =
               ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( wi1 wn wa df-i1 ax-a1 ax-r5 ax-r1 2an comor1 comcom2 coman1 coman2 com2an
    wo ax-r2 com2or comcom fh1r omlan lea leo letr df2le2 2or ax-a2 3tr ) ABCZA
    DZBCZEUJABEZPZAUJBEZPZEUJUOEZULUOEZPZULUNPZUIUMUKUOABFUKUJDZUNPZUOUJBFUOVAA
    UTUNAGHIQJUOUJULUOAAUNKLULUOULAUNABMZULUJBULAVBLABNORSTURUNULPUSUPUNUQULABU
    AULUOULAUOABUBAUNUCUDUEUFUNULUGQUH $.
    $( [27-Dec-98] $)

  $( Lemma used in study of orthoarguesian law.  Equation 4.11 of [MegPav2000]
     p. 23.  This is the first part of the inequality. $)
  u1lem9a $p |- ( a ' ->1 b ) ' =< a ' $=
    ( wn wi1 wa wo df-i1 ax-r4 anor1 ax-r1 ax-r2 lea bltr ) ACZBDZCZNNBEZCZEZNP
    NCQFZCZSOTNBGHSUANQIJKNRLM $.
    $( [28-Dec-98] $)

  $( Lemma used in study of orthoarguesian law.  Equation 4.11 of [MegPav2000]
     p. 23.  This is the second part of the inequality. $)
  u1lem9b $p |- a ' =< ( a ->1 b ) $=
    ( wn wa wo wi1 leo df-i1 ax-r1 lbtr ) ACZKABDZEZABFZKLGNMABHIJ $.
    $( [27-Dec-98] $)

  $( Lemma used in study of orthoarguesian law. $)
  u1lem9ab $p |- ( a ' ->1 b ) ' =< ( a ->1 b ) $=
    ( wn wi1 u1lem9a u1lem9b letr ) ACZBDCHABDABEABFG $.
    $( [27-Dec-98] $)

  $( Lemma used in study of orthoarguesian law. $)
  u1lem11 $p |- ( ( a ' ->1 b ) ->1 b ) = ( a ->1 b ) $=
    ( wn wi1 wa ud1lem0c ax-a1 ax-r1 ax-r5 lan 3tr comanr1 com2or comcom com2an
    wo ax-r2 wt lor df-i1 u1lemab ran 2or comcom3 comor1 comor2 comcom7 comcom2
    ax-a2 fh3r or32 ax-a3 orabs 3tr2 or12 anor2 df-t or1 2an an1 3tr1 ) ACZBDZC
    ZVCBEZPZVBABEZPZVCBDABDVFVBABCZPZEZVGVBBEZPZPVBVMPZVJVMPZEZVHVDVKVEVMVDVBVB
    CZVIPZEVKVBBFVRVJVBVQAVIAVQAGZHIJQVEVLVQBEZPVTVLPZVMVBBUAVLVTUIVMWAVGVTVLAV
    QBVSUBIHKUCVMVBVJVBVMVBVGVLAVGABLUDVBBLMNVJVMVJVGVLVJABAVIUEZVJBAVIUFUGZOVJ
    VBBVJAWBUHWCOMNUJVPVHREVHVNVHVORVHVLPVBVLPZVGPVNVHVBVGVLUKVBVGVLULWDVBVGVBB
    UMIUNVOVGVJVLPZPVGRPRVJVGVLUOWERVGWEVJVJCZPZRVLWFVJABUPSRWGVJUQHQSVGURKUSVH
    UTQKVCBTABTVA $.
    $( [28-Dec-98] $)

  $( Lemma used in study of orthoarguesian law.  Equation 4.12 of [MegPav2000]
     p. 23. $)
  u1lem12 $p |- ( ( a ->1 b ) ->1 b ) = ( a ' ->1 b ) $=
    ( wi1 wn ax-a1 ud1lem0b u1lem11 ax-r2 ) ABCZBCADZDZBCZBCJBCILBAKBAEFFJBGH
    $.
    $( [28-Dec-98] $)

  $( Lemma for unified implication study. $)
  u2lem8 $p |- ( a ' ->2 ( a ->2 ( a ' ->2 b ) ) ) =
               ( a ->2 ( a ' ->2 b ) ) $=
    ( wn wi2 wa wo df-i2 wf u2lem7 ax-a1 ax-r1 u2lem7n 2an an12 anass anor1 lan
    dff ax-r2 an0 2or or0 ) ACZAUCBDDZDUDUCCZUDCZEZFZUDUCUDGUHABCZEZUCUIEFBFZHF
    ZUDUDUKUGHABIZUGAABFZUCBFZEZUIEZEZHUEAUFUQAUEAJKABLMURUPUJEZHAUPUINUSUNUOUJ
    EZEZHUNUOUJOVAUNHEHUTHUNUTUOUOCZEZHUJVBUOABPQHVCUORKSQUNTSSSSUAULUKUDUKUBUD
    UKUMKSSS $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem8 $p |- ( a ' ->3 ( a ->3 ( a ' ->3 b ) ) ) = 1 $=
    ( wn wi3 wo wt comi31 comcom3 u3lemc4 wa ax-a1 ax-r1 u3lem7 2or ax-a3 ax-a2
    df-t lor or1 ax-r2 ) ACZAUABDZDZDUACZUCEZFUAUCAUCAUBGHIUEAUAABJABCJEZEZEZFU
    DAUCUGAUDAKLABMNUHAUAEZUFEZFUJUHAUAUFOLUJUFUIEZFUIUFPUKUFFEFUIFUFFUIAQLRUFS
    TTTTT $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem9 $p |- ( a ->3 ( a ->3 ( a ' ->3 b ) ) ) =
               ( a ->3 ( a ' ->3 b ) ) $=
    ( wn wi3 wo comi31 u3lemc4 wa u3lem7 lor ax-a3 ax-r1 oridm ax-r5 ax-r2 ) AA
    ACZBDZDZDPREZRARAQFGSPPABHABCHEZEZEZRRUAPABIZJUBPPEZTEZRUEUBPPTKLUEUARUDPTP
    MNRUAUCLOOOO $.
    $( [24-Dec-97] $)

  $( Lemma for unified implication study. $)
  u3lem10 $p |- ( a ->3 ( a ' ^ ( a v b ) ) ) = a ' $=
    ( wn wo wi3 df-i3 anass ax-r1 anidm ran ax-r2 anor3 lor oran1 lan omlan 2or
    wa wt orabs comanr1 comorr comcom3 fh4r df-t 2an an1 ancom ) AACZABDZRZEUIU
    KRZUIUKCZRZDZAUIUKDZRZDZUIAUKFURUIUIARZDUIUOUIUQUSUOUKUIBCZRZDZUIULUKUNVAUL
    UIUIRZUJRZUKVDULUIUIUJGHVCUIUJUIIJKUNUIAVADZRVAUMVEUIVEUMVEAUJCZDUMVAVFAABL
    ZMAUJNKHOAUTPKQVBUIVADZUJVADZRZUIUIVAUJUIUTUAAUJABUBUCUDVJUISRUIVHUIVISUIUT
    TVIUJVFDZSVAVFUJVGMSVKUJUEHKUFUIUGKKKUQAUIRUSUPUIAUIUJTOAUIUHKQUIATKK $.
    $( [17-Jan-98] $)

  $(
  u3lem10a $p |- ( a ->3 ( ( a ->3 b ) ->3 ( b ->3 a ) ) ' ) = a ' $=
?$.
  $)

  $( Lemma for unified implication study. $)
  u3lem11 $p |- ( a ->3 ( b ' ^ ( a v b ) ) ) = ( a ->3 b ' ) $=
    ( wn wo wa wi3 df-i3 lan lor ax-r5 wf anass ax-r1 ax-a2 ax-r2 ran 2or ancom
    3tr1 wt ax-a1 oran dff anor3 oran1 coman1 coman2 comcom7 fh2 anidm or0 df-t
    ax-a3 or1 3tr2 an1 comor1 comcom2 comor2 fh4 id ) ABCZABDZEZFACZVDEZVEVDCZE
    ZDZAVEVDDZEZDZAVBFZAVDGVEVBEZVEBEZDZAVEVBDZEZDVNVEVBCZEZDZVRDVLVMVPWAVRVOVT
    VNBVSVEBUAHIJVIVPVKVRVIKVPDZVPVFKVHVPVNVCEZVNVNCZEVFKVCWDVNABUBHWCVFVEVBVCL
    MVNUCSVHVEVNBDZEZVPVGWEVEWEVGWEBVCCZDZVGWEWGBDWHVNWGBABUDJWGBNOBVCUEOMHWFVE
    VNEZVODVPVNVEBVEVBUFVNBVEVBUGUHUIWIVNVOWIVEVEEZVBEZVNWKWIVEVEVBLMWJVEVBVEUJ
    POJOOQWBVPKDVPKVPNVPUKOOAVEVCDZVQEZEVRVKVRWMVQAWMTVQEZVQWLTVQVEADZBDTBDZWLT
    WOTBWOAVEDZTVEANTWQAULMOJVEABUMWPBTDTTBNBUNOUOPWNVQTEVQTVQRVQUPOOHVJWMAVJVE
    VCVBEZDWMVDWRVEVBVCRIVCVEVBVCAABUQURVCBABUSURUTOHVRVASQAVBGSO $.
    $( [18-Jan-98] $)

  $( Lemma for unified implication study. $)
  u3lem11a $p |- ( a ->3 ( ( b ->3 a ) ->3 ( a ->3 b ) ) ' ) =
              ( a ->3 b ' ) $=
    ( wi3 wn wo wa ud3lem1 ancom anor3 ax-r2 lor oran1 con2 ud3lem0a u3lem11 )
    ABACABCCZDZCABDZABEZFZCARCQTAPTPBRADZFZEZTDZBAGUCBSDZEUDUBUEBUBUARFUERUAHAB
    IJKBSLJJMNABOJ $.
    $( [18-Jan-98] $)

  $( Lemma for unified implication study. $)
  u3lem12 $p |- ( a ->3 ( a ->3 b ' ) ) ' = ( a ^ b ) $=
    ( wn wi3 wo wa lem4 ax-r4 df-a ax-r1 ax-r2 ) AABCZDDZCACLEZCZABFZMNALGHPOAB
    IJK $.
    $( [18-Jan-98] $)

  $( Lemma for unified implication study. $)
  u3lem13a $p |- ( a ->3 ( a ->3 b ' ) ' ) = ( a ->1 b ) $=
    ( wn wi3 wa wo ancom ax-r2 ax-a1 ax-r1 lan 2or comanr1 comorr ax-a2 lea lor
    wt comcom2 wf wi1 df-i3 u3lemnana u3lemana com2or com2an fh4r lel2or df-le2
    comcom3 anor2 anor3 oran3 df-t 2an an1 comid comi31 fh1 dff u3lemnaa df-i1
    or0 ) AABCZDZCZDACZVFEZVGVFCZEZFZAVGVFFEZFZABUAZAVFUBVMVGAVDCZEZFZVNVKVGVLV
    PVKVGAVDFZAVOFZEZEZVGVDEZVGVOEZFZFZVGVHWAVJWDVHVFVGEWAVGVFGAVDUCHVJVGVEEZWD
    VIVEVGVEVIVEIJKWFVEVGEWDVGVEGAVDUDHHLWEVGWDFZVTWDFZEZVGVGWDVTVGWBWCVGVDMVGV
    OMUEAVTAVRVSAVDNAVONUFUJUGWIVGREVGWGVGWHRWGWDVGFVGVGWDOWDVGWBVGWCVGVDPVGVOP
    UHUIHWHVTVTCZFZRWDWJVTWDVRCZVSCZFZWJWDWMWLFWNWBWMWCWLAVDUKAVDULLWMWLOHVRVSU
    MHQRWKVTUNJHUOVGUPHHHVLAVGEZAVFEZFZVPAVGVFAAAUQSAVEAVDURSUSWQTVPFZVPWOTWPVP
    TWOAUTJWPVFAEVPAVFGAVDVAHLWRVPTFVPTVPOVPVCHHHLVQVGABEZFZVNVPWSVGVOBABVOBIJK
    QVNWTABVBJHHH $.
    $( [18-Jan-98] $)

  $( Lemma for unified implication study. $)
  u3lem13b $p |- ( ( a ->3 b ' ) ->3 a ' ) = ( a ->1 b ) $=
    ( wn wa wo ax-r1 lan ax-r2 2or comanr1 comcom3 com2an com2or ax-a2 lea letr
    leo wf comcom wt wi3 wi1 df-i3 u3lemnana u3lemnaa comorr fh4r coman1 coman2
    ax-a1 comcom7 fh3r df-le2 2an u3lemnona comi31 fh2 u3lemana anandi u3lemanb
    id u3lemaa an4 ancom dff an0 or0 comanr2 comcom2 comorr2 lel2or anor3 anor2
    oran3 lor df-t an1 df-i1 ud1lem0a ) ABCZUAZACZUAWACZWBDZWCWBCZDZEZWAWCWBEZD
    ZEZABUBZWAWBUCWJWBAVTCZDZEZAVTEZAWLEZDZDZWBVTDZWBWLDZEZEZWKWGWRWIXAWGWBWQDZ
    WMEZWRWDXCWFWMAVTUDWFWCADWMWEAWCAWEAUJFGAVTUEHIXDWNWQWMEZDZWRWBWMWQAWMAWLJK
    ZAWQAWOWPAVTUFAWLUFLZKUGXFWNWOWMEZWPWMEZDZDZWRXEXKWNWMWOWPWMAVTAWLUHZWMVTAW
    LUIZUKMWMAWLXMXNMULGXLWRWRXKWQWNXKWQWQXIWOXJWPXIWMWOEWOWOWMNWMWOWMAWOAWLOZA
    VTQPUMHXJWMWPEWPWPWMNWMWPWMAWPXOAWLQPUMHUNWQVAHGWRVAHHHHWIWAWNDZXAWHWNWAAVT
    UOGXPWAWBDZWAWMDZEZXAWBWAWMAWAAVTUPKXGUQXSXAREXAXQXAXRRAVTURXRWAADZWAWLDZDZ
    RWAAWLUSYBAWBVTEZDZWTDZRXTYDYAWTAVTVBAVTUTUNYEAWBDZYCWLDZDZRAYCWBWLVCYHYGYF
    DZRYFYGVDYIYGRDRYFRYGRYFAVEFGYGVFHHHHHIXAVGHHHIXBWNXAEZWQXAEZDZWKWNXAWQXAWN
    XAWBWMWBXAWBWSWTWBVTJWBWLJMSZXAAWLXAAYMUKWLXAWLWSWTVTWSWBVTVHKWBWLVHMSLMSWQ
    WNWQWBWMWQAAWQXHSZVIWQAWLYNWLWQWLWOWPVTWOAVTVJKAWLVJLSLMSUGYLWNTDZWKYJWNYKT
    YJXAWNEZWNWNXANYPWNWNXAWNXAWBWNWSWBWTWBVTOWBWLOVKWBWMQPUMWNVAHHYKWQWQCZEZTX
    AYQWQXAWTWSEZYQWSWTNYSWOCZWPCZEYQWTYTWSUUAAVTVLAVTVMIWOWPVNHHVOTYRWQVPFHUNY
    OWNWKWNVQWNAWLUBZWKUUBWNAWLVRFWLBABWLBUJFVSHHHHHH $.
    $( [19-Jan-98] $)

  $( Lemma for unified implication study. $)
  u3lem14a $p |- ( a ->3 ( ( b ->3 a ' ) ->3 b ' ) ) =
          ( a ->3 ( b ->3 a ) ) $=
    ( wn wi3 u3lem13b ud3lem0a wa wo df-i3 ancom u1lemanb ax-r2 u1lemnanb ax-a2
    wi1 2or wt u1lemonb lan an1 u3lem3 ax-r1 id ) ABACZDBCZDZDABAOZDZABADDZUFUG
    ABAEFUHUDUGGZUDUGCZGZHZAUDUGHZGZHZUIAUGIUPUDBGZUDUEGZHZAHZUIUMUSUOAUMUEUDGZ
    BUDGZHZUSUJVAULVBUJUGUDGVAUDUGJBAKLULUKUDGVBUDUKJBAMLPVCVBVAHUSVAVBNVBUQVAU
    RBUDJUEUDJPLLUOAQGAUNQAUNUGUDHQUDUGNBARLSATLPUTAUSHZUIUSANVDUIUIUIVDABUAUBU
    IUCLLLLL $.
    $( [19-Jan-98] $)

  $( Used to prove ` ->1 ` "add antecedent" rule in ` ->3 ` system. $)
  u3lem14aa $p |- ( a ->3 ( a ->3 ( ( b ->3 a ' ) ->3 b ' ) ) ) = 1 $=
    ( wn wi3 wt u3lem14a ud3lem0a i3th1 ax-r2 ) AABACDBCDDZDAABADDZDEJKAABFGABH
    I $.
    $( [19-Jan-98] $)

  $( Used to prove ` ->1 ` "add antecedent" rule in ` ->3 ` system. $)
  u3lem14aa2 $p |- ( a ->3 ( a ->3 ( b ->3 ( b ->3 a ' ) ' ) ) ) = 1 $=
    ( wn wi3 wt wi1 u3lem13a u3lem13b ax-r1 ax-r2 ud3lem0a u3lem14aa ) AABBACDZ
    CDZDZDAAMBCDZDZDEOQANPANBAFZPBAGPRBAHIJKKABLJ $.
    $( [19-Jan-98] $)

  $( Used to prove ` ->1 ` modus ponens rule in ` ->3 ` system. $)
  u3lem14mp $p |- ( ( a ->3 b ' ) ' ->3 ( a ->3 ( a ->3 b ) ) ) = 1 $=
    ( wn wo wa lear ax-a1 ax-r1 lbtr lelor letr ud3lem0c u3lem5 le3tr1 u3lemle1
    wi3 ) ABCZPCZAABPPZAQCZDAQDEZACZATEZDZEZUBBDZRSUEUDUFUAUDFUCBUBUCTBATFBTBGH
    IJKAQLABMNO $.
    $( [19-Jan-98] $)

  $( Lemma for Kalmbach implication. $)
  u3lem15 $p |- ( ( a ->3 b ) ^ ( a v b ) )
                 = ( ( a ' v b ) ^ ( a v ( a ' ^ b ) ) ) $=
    ( wi3 wo wa wn dfi3b ran anass comor1 comcom2 comor2 com2an com2or fh1r lan
    wf ax-r2 2or 3tr leao4 lecom comcom anabs oran dff ax-r1 or0 df2le2 ) ABCZA
    BDZEAFZBDZAULBFZEZDZULBEZDZEZUKEUMURUKEZEUMAUQDZEUJUSUKABGHUMURUKIUTVAUMUTU
    PUKEZUQUKEZDVAUKUPUQUKAUOABJZUKULUNUKAVDKUKBABLKMZNUQUKUQUKBULAUAZUBUCOVBAV
    CUQVBAUKEZUOUKEZDAQDAUKAUOVDVEOVGAVHQABUDVHUOUOFZEZQUKVIUOABUEPQVJUOUFUGRSA
    UHTUQUKVFUISRPT $.
    $( [7-Aug-01] $)

  $( Possible axiom for Kalmbach implication system. $)
  u3lemax4 $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b ) ->3 ( ( b ->3 a )
      ->3 ( ( b ->3 a )
     ->3 ( ( c ->3 ( c ->3 a ) ) ->3 ( c ->3 ( c ->3 b ) ) ) ) ) ) ) = 1 $=
    ( wi3 wn wo wt lem4 2i3 lor ax-r2 tb wa u3lembi ax-r4 ax-r1 conb ancom bltr
    anor1 oran3 ax-r5 ax-a3 le1 ska4 2bi 2or lea lelor lebi 3tr2 ) ABDZULBADZUM
    CCADDZCCBDDZDZDDZDDULEZUQFZGULUQHUSURUMEZCEZAFZVABFZDZFZFZGUQVEURUQUTUPFVEU
    MUPHUPVDUTUNVBUOVCCAHCBHIJKJURUTFZVDFABLZEZVDFZVFGVGVIVDVGULUMMZEVIULUMUAVK
    VHABNOKUBURUTVDUCVJGVJUDGVIVBVCLZFZVJGAEZBEZLZEZVNCMZVOCMZLZFZVMWAGVNVOCUEP
    VMWAVIVQVLVTVHVPABQOVLVBEZVCEZLZVTVBVCQVTWDVRWBVSWCVRCVNMWBVNCRCATKVSCVOMWC
    VOCRCBTKUFPKUGPKVLVDVIVLVDVCVBDZMZVDWFVLVBVCNPVDWEUHSUISUJUKKK $.
    $( [21-Jan-98] $)


  $( Possible axiom for Kalmbach implication system. $)
  u3lemax5 $p |- ( ( a ->3 b ) ->3 ( ( a ->3 b )
      ->3 ( ( b ->3 a ) ->3 ( ( b ->3 a )
      ->3 ( ( b ->3 c ) ->3 ( ( b ->3 c )
      ->3 ( ( c ->3 b ) ->3 ( ( c ->3 b )
      ->3 ( a ->3 c ) ) ) ) ) ) ) ) ) = 1 $=
    ( wi3 wn wo wt lem4 tb lor ax-a3 ax-r1 oran3 u3lembi ax-r4 ax-r2 ax-r5 bltr
    wa lelor le1 ska2 lea lebi ) ABDZUEBADZUFBCDZUGCBDZUHACDZDDZDDZDDZDDUEEZULF
    ZGUEULHUNUMUFEZBCIZEZUIFZFZFZGULUSUMULUOUKFUSUFUKHUKURUOUKUGEZUJFZURUGUJHVB
    VAUHEZUIFZFZURUJVDVAUHUIHJVEVAVCFZUIFZURVGVEVAVCUIKLVFUQUIVFUGUHSZEUQUGUHMV
    HUPBCNOPQPPPJPJUTUMUOFZURFZGVJUTUMUOURKLVJABIZEZURFZGVIVLURVIUEUFSZEVLUEUFM
    VNVKABNOPQVMGVMUAGVLUQACIZFZFZVMVQGABCUBLVPURVLVOUIUQVOUICADZSZUIVSVOACNLUI
    VRUCRTTRUDPPPP $.
    $( [23-Jan-98] $)

  $( Equivalence to biconditional. $)
  bi1o1a $p |- ( a == b ) =
                 ( ( a ->1 ( a ^ b ) ) ^ ( ( a v b ) ->1 a ) ) $=
    ( wn wa wo tb wi1 lea leo letr ax-r1 leid ler2an lear lebi ax-r2 3tr1 df-i1
    wf 2or lecom comcom comor1 comcom7 fh1 dfb ax-a2 dff ancom ax-r5 or0r comid
    df2le2 comcom2 comanr1 fh1r 3tr lor anor3 2an ) ACZABDZEZVABCZDZDZVCADZEZVC
    VEAEZDZABFZAVBGZABEZAGZDVJVHVCVEAVEVCVEVCVEVAVCVAVDHVAVBIJZUAUBVCAVAVBUCUDU
    EKVKVBVEEVEVBEVHABUFVBVEUGVEVFVBVGVEVFVEVCVEVOVELMVCVENOSVBADZEZVAADZVPEVBV
    GSVRVPSAVADVRAUHAVAUIPUJVBVPVQVPVBVBAABHZUMKVQVPVPUKKPAVAVBAAAULUNABUOUPQTU
    QVLVCVNVIVLVAAVBDZEVCAVBRVTVBVAVTVBAVBNVBAVBVSVBLMOURPVNVMCZVMADZEVIVMARWAV
    EWBAVEWAABUSKWBAVMANAVMAABIALMOTPUTQ $.
    $( [5-Jul-00] $)

  $( Equivalence to biconditional. $)
  biao $p |- ( a == b ) = ( ( a ^ b ) == ( a v b ) ) $=
    ( wa wn wo tb leao1 df2le2 ax-r1 anor3 lecon df-le1 ler2an lear df-le2 lebi
    oridm ax-r2 2or dfb 3tr1 ) ABCZADBDCZEUBABEZCZUBDZUDDZCZEABFUBUDFUBUEUCUHUE
    UBUBUDABBGZHIUCUGUHABJUGUHUGUFUGUBUDUIKUGUGUGQLMUHUGUHUGUFUGNOLPRSABTUBUDTU
    A $.
    $( [8-Jul-00] $)

  $( Equivalence to ` ->2 ` . $)
  i2i1i1 $p |- ( a ->2 b ) =
               ( ( a ->1 ( a v b ) ) ^ ( ( a v b ) ->1 b ) ) $=
    ( wn wa wo wi2 wi1 an1r ax-r1 df-i2 anabs ax-a2 ax-r2 df-i1 df-t 3tr1 anor3
    wt lor leor leid ler2an lear lebi 2or 3tr 2an ) BACZBCDZEZRUJDZABFAABEZGZUL
    BGZDUKUJUJHIABJUMRUNUJUHAULDZEZAUHEZUMRUPUHAEUQUOAUHABKSUHALMAULNAOPUNULCZU
    LBDZEZUIBEZUJULBNVAUTUIURBUSABQBUSBULBBATBUAUBULBUCUDUEIUIBLUFUGP $.
    $( [5-Jul-00] $)

  $( An absorption law for ` ->1 ` . $)
  i1abs $p |- ( ( a ->1 b ) ' v ( a ^ b ) ) = a $=
    ( wi1 wn wa wo ud1lem0c ax-r5 comanr1 comorr comcom6 fh4r wt orabs df-a lor
    df-t ax-r1 ax-r2 2an an1 3tr ) ABCDZABEZFAADZBDZFZEZUDFAUDFZUGUDFZEZAUCUHUD
    ABGHAUDUGABIAUGUEUFJKLUKAMEAUIAUJMABNUJUGUGDZFZMUDULUGABOPMUMUGQRSTAUASUB
    $.
    $( [21-Feb-02] $)

  $( Part of an attempt to crack a potential Kalmbach axiom. $)
  test $p |- ( ( ( c v ( a ' v b ' ) ) ^ ( c ' ^ ( c v ( a ^ b ) ) ) )
             v ( ( c ' ^ ( a ^ b ) ) v ( c ^ ( c ' v ( a ^ b ) ) ) ) )
            = ( ( c v ( a ^ b ) ) ^ ( c ' v ( a ^
                                                   b ) ) ) $=
    ( wn wo wa oran3 lor ax-r5 comor1 comor2 com2an com2or wt ax-a3 ax-r1 ax-a2
    comcom7 ax-r2 2an ran comcom2 fh4r anor2 df-t or1 leor df-le2 coman1 comcom
    lelan fh3 oml or12 orabs ancom an1 ) CADBDEZEZCDZCABFZEZFZFZUTVAFZCUTVAEZFZ
    EZECVADZEZVCFZVHEZVBVFFZVDVKVHUSVJVCURVICABGHUAIVLVJVHEZVCVHEZFZVMVJVHVCVJV
    EVGVJUTVAVJCCVIJZUBZVJVACVIKRZLVJCVFVQVJUTVAVRVSMLMVJUTVBVRVJCVAVQVSMLUCVPN
    VMFZVMVNNVOVMVNVJVEEZVGEZNWBVNVJVEVGOPWBVGWAEZNWAVGQWCVGNENWANVGWAVJVJDZEZN
    VEWDVJCVAUDHNWEVJUEPSHVGUFSSSVOVCVEEZVGEZVMWGVOVCVEVGOPWGVCVGEZVMWFVCVGWFVE
    VCEVCVCVEQVEVCVAVBUTVACUGUKUHSIWHVCCEZVCVFEZFVMVCCVFVCCUTVBUIRVFVCVFUTVBUTV
    AJZVFCVAVFCWKRUTVAKMLUJULWIVBWJVFWICVCEVBVCCQCVAUMSWJUTVCVAEEZVFVCUTVAUNWLU
    TVCEZVAEZVFWNWLUTVCVAOPWMUTVAUTVBUOISSTSSSTVTVMNFVMNVMUPVMUQSSSS $.
    $( [29-Dec-97] $)

  $( Part of an attempt to crack a potential Kalmbach axiom. $)
  test2 $p |- ( a v b ) =<
           ( ( a == b ) ' v ( ( c v ( a ^ b ) ) ^ ( c ' v ( a ^
                                                   b ) ) ) ) $=
    ( wo tb wn wa dfnb anidm 2or comor1 comor2 com2an comcom2 com2or fh4r ax-r2
    wt ax-r1 leor ax-a2 lea leo letr df-le2 df-a lor df-t 2an le2an lelor bltr
    an1 ) ABDZABEFZABGZUPGZDZUOCUPDZCFZUPDZGZDURUNURUNAFZBFZDZGZUPDZUNUOVFUQUPA
    BHUPIJVGUNUPDZVEUPDZGZUNUNUPVEUNABABKZABLZMUNVCVDUNAVKNUNBVLNOPVJUNRGUNVHUN
    VIRVHUPUNDUNUNUPUAUPUNUPAUNABUBABUCUDUEQVIVEVEFZDZRUPVMVEABUFUGRVNVEUHSQUIU
    NUMQQQSUQVBUOUPUSUPVAUPCTUPUTTUJUKUL $.
    $( [29-Dec-97] $)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
                         Some 3-variable theorems
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( A 3-variable theorem.  Equivalent to OML. $)
  3vth1 $p |- ( ( a ->2 b ) ^ ( b v c ) ' ) =< ( a ->2 c ) $=
    ( wn wa wo wi2 anor3 lan ax-r1 anass ax-r2 ancom omlan lear bltr leran leor
    letr df-i2 lor ran le3tr1 ) BBDZADZEZFZBCFDZEZCUECDZEZFZABGZUHEACGUIUKULUIU
    GUDEZUJEZUKUIUGUDUJEZEZUOUQUIUPUHUGBCHIJUOUQUGUDUJKJLUNUEUJUNUFUEUNUDUGEUFU
    GUDMBUENLUDUEOPQPUKCRSUMUGUHUMBUEUDEZFUGABTURUFBUEUDMUALUBACTUC $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem.  Equivalent to OML. $)
  3vth2 $p |- ( ( a ->2 b ) ^ ( b v c ) ' ) =
              ( ( a ->2 c ) ^ ( b v c ) ' ) $=
    ( wi2 wo wn wa 3vth1 lear ler2an ax-a2 ax-r4 lan bltr lebi ) ABDZBCEZFZGZAC
    DZRGZSTRABCHPRIJUAPRUATCBEZFZGPRUCTQUBBCKLMACBHNTRIJO $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem.  Equivalent to OML. $)
  3vth3 $p |- ( ( a ->2 c ) v ( ( a ->2 b ) ^ ( b v c ) ' ) ) =
              ( a ->2 c ) $=
    ( wi2 wo wn wa ax-a2 3vth1 df-le2 ax-r2 ) ACDZABDBCEFGZEMLELLMHMLABCIJK $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem. $)
  3vth4 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) =
              ( ( a ->2 c ) ' ->2 ( b v c ) ) $=
    ( wo wi2 wn wa 3vth2 ax-a1 ran 3tr2 lor df-i2 3tr1 ) BCDZABEZFZFZOFZGZDOACE
    ZFZFZSGZDQOEUBOETUDOPSGUASGTUDABCHPRSPIJUAUCSUAIJKLQOMUBOMN $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem. $)
  3vth5 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) =
            ( c v ( ( a ->2 b ) ^ ( c ->2 b ) ) ) $=
    ( wo wn wi2 ax-a3 or12 comorr comcom2 fh3 ax-r1 oridm ax-r5 ax-r2 ancom lor
    wa 2an df-i2 anor3 ax-a1 ran 3tr1 ) BCDZBAEBEZRZDZUEEZRZDZCUHBCEZUFRZDZRZDZ
    ABFZEZUEFZCUQCBFZRZDUKBCUJDDZUPBCUJGVBCBUJDZDUPBCUJHVCUOCVCBUHDZBUIDZRUOBUH
    UIBUGIBUEBCIJKVDUHVEUNVDBBDZUGDZUHVGVDBBUGGLVFBUGBMNOUIUMBUMUIUMUFULRUIULUF
    PBCUAOLQSOQOOUSUEUREZUIRZDZUKURUETUKVJUJVIUEUHVHUIUHUQVHUQUHABTZLUQUBOUCQLO
    VAUOCUQUHUTUNVKCBTSQUD $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem. $)
  3vth6 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) =
            ( ( ( a ->2 b ) ^ ( c ->2 b ) ) v
              ( ( a ->2 c ) ^ ( b ->2 c ) ) ) $=
    ( wi2 wn wo wa oridm ax-r1 3vth4 3vth5 ax-a2 ax-r2 2or or4 leo df-i2 ler2an
    lbtr df-le2 lor ud2lem0a ax-r5 ) ABDZEBCFZDZUFUFFZUDCBDZGZACDZBCDZGZFZUGUFU
    FHIUGUFUJEZUEDZFZUMUFUOUFABCJUAUPCUIFZBULFZFZUMUFUQUOURABCKUOUNCBFZDURUEUTU
    NBCLUBACBKMNUSUTUMFZUMCUIBULOVAUEUMFZUMUTUEUMCBLUCVBBUIFZCULFZFUMBCUIULOVCU
    IVDULBUIBUDUHBBAEZBEZGZFZUDBVGPUDVHABQISBBCEZVFGZFZUHBVJPUHVKCBQISRTCULCUJU
    KCCVEVIGZFZUJCVLPUJVMACQISCCVFVIGZFZUKCVNPUKVOBCQISRTNMMMMMM $.
    $( [18-Oct-98] $)


  $( A 3-variable theorem. $)
  3vth7 $p |- ( ( a ->2 b ) ' ->2 ( b v c ) ) =
                ( a ->2 ( b v c ) ) $=
    ( wi2 wa wo wn df-i2 2an anass ax-r1 anor3 lan an32 3tr lor comanr2 comcom6
    3tr2 ax-r2 anidm an4 fh3 3vth5 ax-a3 or12 3tr1 ) CABDZCBDZEZFCBAGZBCFZGZEZF
    ZFZUHGULDAULDZUJUOCUJBUKBGZEZFZBCGZUREZFZEZUOUHUTUIVCABHCBHIUOVDUOBUSVBEZFV
    DUNVEBUNUKVAEZUREZVFURUREZEZVEUKURVAEZEZUSVAEZUNVGVLVKUKURVAJKVJUMUKBCLMUKU
    RVANSVIVGVHURVFURUAMKUKVAURURUBOPBUSVBBUSUKURQRBVBVAURQRUCTKTPABCUDUQULUNFB
    CUNFFUPAULHBCUNUEBCUNUFOUG $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem. $)
  3vth8 $p |- ( a ->2 ( b v c ) ) =
            ( ( ( a ->2 b ) ^ ( c ->2 b ) ) v
              ( ( a ->2 c ) ^ ( b ->2 c ) ) ) $=
    ( wo wi2 wn wa 3vth7 ax-r1 3vth6 ax-r2 ) ABCDZEZABEZFLEZNCBEGACEBCEGDOMABCH
    IABCJK $.
    $( [18-Oct-98] $)

  $( A 3-variable theorem. $)
  3vth9 $p |- ( ( a v b ) ->1 ( c ->2 b ) ) =
                ( ( b v c ) ->2 ( a ->2 b ) ) $=
    ( wo wn wi2 wa wi1 anor3 ax-r1 df-i2 lan 2or df-i1 ud2lem0c 2an ax-r2 ancom
    anandi lor anass or32 comanr1 comcom6 comorr2 or12 oridm ax-r5 ax-a2 3tr1
    fh3 ) ABDZEZULCBFZGZDAEBEZGZULBCEZUPGZDZGZDZULUNHBCDZABFZFZUMUQUOVAUQUMABIJ
    UNUTULCBKLMULUNNVEBUQDZUPURGZULGZDZVBVEVDVCEZVDEZGZDVIVCVDKVDVFVLVHABKVLVGU
    PULGZGZVHVJVGVKVMVGVJBCIJABOPVNUPURULGGZVHVOVNUPURULSJVHVOUPURULUAJQQMQVIBV
    HDZUQDZVBBUQVHUBVQVAUQDVBVPVAUQVPBVGDZBULDZGZVABVGULBVGUPURUCUDABUEUKVTUTUL
    GVAVRUTVSULVGUSBUPURRTVSABBDZDULBABUFWABABUGTQPUTULRQQUHVAUQUIQQQUJ $.
    $( [16-Nov-98] $)

  $( 3-variable commutation theorem. $)
  3vcom $p |- ( ( a ->1 c ) v ( b ->1 c ) ) C
              ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) $=
    ( wn wi1 wa wo oran3 ax-r1 u1lem9ab le2or lecom bctr comcom6 comcom ) ADCEZ
    BDCEZFZACEZBCEZGZRUARDZPDZQDZGZUAUEUBPQHIUEUAUCSUDTACJBCJKLMNO $.
    $( [19-Mar-99] $)

  ${
    3vded11.1 $e |- b =< ( c ->1 ( b ->1 a ) ) $.
    $( A 3-variable theorem.  Experiment with weak deduction theorem. $)
    3vded11 $p |- c =< ( b ->1 a ) $=
      ( wi1 wt le1 wn wa df-t ancom anor2 ax-r2 lor ax-r1 ax-a3 3tr df-i1 lbtr
      wo leo lelan lelor lel2or bltr lebi u1lemle2 ) CBAEZCUHEZFUIGFBCHZCBHZIZT
      ZTZUIFBUJTZUOHZTZUOULTZUNUOJURUQULUPUOULUKCIUPCUKKBCLMNOBUJULPQBUIUMDUMUJ
      CUHIZTZUIULUSUJUKUHCUKUKBAIZTZUHUKVAUAUHVBBAROSUBUCUIUTCUHROSUDUEUFUG $.
      $( [25-Oct-98] $)
  $}

  ${
    3vded12.1 $e |- ( a ^ ( c ->1 a ) ) =< ( c ->1 ( b ->1 a ) ) $.
    3vded12.2 $e |- c =< a $.
    $( A 3-variable theorem.  Experiment with weak deduction theorem. $)
    3vded12 $p |- c =< ( b ->1 a ) $=
      ( wi1 wt le1 wn wo df-t wa an1 ax-r1 u1lemle1 lan ax-r2 bltr lecon leo
      df-i1 lbtr letr lel2or lebi u1lemle2 ) CBAFZCUGFZGUHHGAAIZJUHAKAUHUIAACAF
      ZLZUHAAGLZUKULAAMNUKULUJGACAEOPNQDRUICIZUHCAESUMUMCUGLZJZUHUMUNTUHUOCUGUA
      NUBUCUDRUEUF $.
      $( [25-Oct-98] $)
  $}

  ${
    3vded13.1 $e |- ( b ^ ( c ->1 a ) ) =< ( c ->1 ( b ->1 a ) ) $.
    3vded13.2 $e |- c =< a $.
    $( A 3-variable theorem.  Experiment with weak deduction theorem. $)
    3vded13 $p |- c =< ( b ->1 a ) $=
      ( wi1 wa wt an1 ax-r1 u1lemle1 lan ax-r2 bltr 3vded11 ) ABCBBCAFZGZCBAFFB
      BHGZQRBBIJHPBPHCAEKJLMDNO $.
      $( [25-Oct-98] $)
  $}

  ${
    3vded21.1 $e |- c =< ( ( a ->0 b ) ->0 ( c ->2 b ) ) $.
    3vded21.2 $e |- c =< ( a ->0 b ) $.
    $( A 3-variable theorem.  Experiment with weak deduction theorem. $)
    3vded21 $p |- c =< b $=
      ( wf wo wa wn wi0 df-i0 lbtr lor ax-r2 2or ax-a2 3tr comor2 comcom2 anabs
      wi2 ax-r4 df-i2 anor3 ler2an leror ax-a3 oridm lecom comcom comid fh1 or0
      com2or ax-r1 dff ran ancom ax-r5 3tr2 leran com2an fh1r an32 anass le3tr2
      lan an0 ) CBFGZBCCBGZHBAIZBGZVJIZHZGZVJHZCVICVOVJCVLBVMGZVLIZGZHZVOCVLVSC
      ABJZVLEABKZLZCWACBUAZJZVSDWEWAIZWDGVRVQGVSWAWDKWFVRWDVQWAVLWBUBWDBCIBIHZG
      VQCBUCWGVMBCBUDMNOVRVQPQLUEVTVLVQHZVLVRHZGZVOVLVQVRVLBVMVKBRZVLVJVJVLVJVL
      VJVLBGZVLCVLBWCUFWLVKBBGZGVLVKBBUGWMBVKBUHMNLUIZUJSZUNVLVLVLUKSULVLBHZVNG
      ZFGWQWJVOWQUMWQWHFWIWHWQVLBVMWKWOULUOVLUPOWPBVNWPBVKGZBHBWRHBVLWRBVKBPUQW
      RBURBVKTQUSUTNLVACBTVPBVJHZVNVJHZGVIVJBVNCBRVJVLVMWNVJVJVJUKSVBVCWSBWTFWS
      BBCGZHBVJXABCBPVGBCTNWTVLVJHVMHVLVJVMHZHZFVLVMVJVDVLVJVMVEXCVLFHZFXDXCFXB
      VLVJUPVGUOVLVHNQONVFBUML $.
      $( [31-Oct-98] $)
  $}

  ${
    3vded22.1 $e |- c =< ( C ( a , b ) v C ( c , b ) ) $.
    3vded22.2 $e |- c =< a $.
    3vded22.3 $e |- c =< ( a ->0 b ) $.
    $( A 3-variable theorem.  Experiment with weak deduction theorem. $)
    3vded22 $p |- c =< b $=
      ( wn wa wo wi0 wcmtr df-cmtr or4 ax-r2 lear lel2or leran le2or bltr df-i0
      wi2 lecon lelor leror letr or12 ax-r4 anor1 ax-r1 df-i2 2or oridm 3vded21
      3tr1 lbtr ) ABCCBABGZHZCGZUPHZIZIZVAIZABJZCBUAZJZCABKZCBKZIVBDVFVAVGVAVFA
      BHZAGZBHZIZUQVIUPHZIZIZVAVFVHUQIVJVLIIVNABLVHUQVJVLMNVKBVMUTVHBVJABOVIBOP
      VLUSUQVIURUPCAEUBQUCRSVGCBHZURBHZIZCUPHZUSIZIZVAVGVOVRIVPUSIIVTCBLVOVRVPU
      SMNVQBVSUTVOBVPCBOURBOPVRUQUSCAUPEQUDRSRUEVEVBVEVCGZVDIZVBVCVDTUQBUSIZIVA
      WBVBUQBUSUFWAUQVDWCWAVIBIZGZUQVCWDABTUGUQWEABUHUINCBUJUKVAULUNNUIUOFUM $.
      $( [31-Oct-98] $)
  $}

  ${
    3vded3.1 $e |- ( c ->0 C ( a , c ) ) = 1 $.
    3vded3.2 $e |- ( c ->0 a ) = 1 $.
    3vded3.3 $e |- ( c ->0 ( a ->0 b ) ) = 1 $.
    $( A 3-variable theorem.  Experiment with weak deduction theorem. $)
    3vded3 $p |- ( c ->0 b ) = 1 $=
      ( wi0 wn wo wt df-i0 wa wcmtr lor 3tr1 ax-r2 ax-r1 wf ancom 3tr2 cmtrcom
      ax-a3 i0cmtrcom comcom4 comid comcom3 fh1 lan dff or0 an1 orabs ax-r5 3tr
      comcom ) CBGCHZBIZCABGZGZJCBKUPAHZIZBIZUPUTBIZIZUQUSUPUTBUBVBUQVAUPBVAUPU
      PUTLZIUPUTVEUPUTJLZUTUPLZUTVEUTUPAIZLVGUTALZIZVFVGUTUPAUPUTCACACCAMZGZCAC
      MZGZJUPVKIUPVMIVLVNVKVMUPCAUANCVKKCVMKODPUCUDUOAAAUEUFUGVHJUTVHCAGZJVOVHC
      AKQEPUHVJVGRIZVGVPVJRVIVGRAUTLVIAUIAUTSPNQVGUJPTUTUKUTUPSTNUPUTULPUMQUSUP
      URIVDCURKURVCUPABKNPOFUN $.
      $( [24-Jan-99] $)
  $}

  $( Orthoarguesian-like law with ` ->1 ` instead of ` ->0 ` but true in all
     OMLs. $)
  1oa $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
               =< ( a ->2 c ) $=
    ( wn wa wo wi2 lear an12 lerr lan ax-r1 coman1 bctr comcom2 df-i2 2an anass
    wf ax-r2 wi1 bltr leid letr df-i1 fh2c anor3 comid comcom3 comanr2 fh1r dff
    lel2or anidm 2or ax-a2 or0 3tr ran 3tr2 lea lecom fh3 coman2 oran cbtr 3tr1
    com2an le3tr1 ) ADZBDZCDZEZEZBCFZFZVNBVJVKEZFZFZEZVNCVJVLEZFZFZEZWBABGZVOWE
    ACGZEZUAZEZWFWDWCWBVTWCHVNWBWBVNVKWAEZWBVJVKVLIZWJWACVKWAHJZUBWBUCUMUDWIWEV
    ODZVOWGEZFZEWEWMEZWEWNEZFZWDWHWOWEVOWGUEKWNWEWMWNWEVOWFEZEZWEWTWNWEVOWFILWE
    WSMNWNVOVOWGMOUFWRVNVOVRWBEZEZFZWDWPVNWQXBWPVRVMEZVNWEVRWMVMABPZVMWMBCUGLQV
    RVKEZVLEVQVLEZXDVNXFVQVLXFBVKEZVQVKEZFSVQFZVQVKBVQBBBUHUIVJVKUJUKXHSXIVQSXH
    BULLXIVJVKVKEZEVQVJVKVKRXKVKVJVKUNKTUOXJVQSFVQSVQUPVQUQTURUSVRVKVLRVJVKVLRZ
    UTTWQVOWEWGEZEXBWEVOWGIXMXAVOXMWEWEEZWFEZXAXOXMWEWEWFRLXNVRWFWBXNWEVRWEUNXE
    TACPZQTKTUOVPVNXAFZEVPVSWCEZEXCWDXQXRVPVNVRWBVNXGVRXGVNXLLXGVRXGVQBVQVLVAJV
    BNZVNWJWBWKWJWBWLVBNZVCKVNVOXAVNVMDZVOVNVMVJVMVDOVOYABCVELVFVNVRWBXSXTVHVCV
    PVSWCRVGTURXPVI $.
    $( [1-Nov-98] $)

  $( Orthoarguesian-like OM law. $)
  1oai1 $p |- ( ( a ->1 c ) ^
              ( ( a ^ b ) ' ->1 ( ( a ->1 c ) ^ ( b ->1 c ) ) ) )
               =< ( b ->1 c ) $=
    ( wn wi2 wo wa wi1 1oa i1i2 oran3 ax-r1 2an ud1lem0ab le3tr1 ) CDZADZEZQBDZ
    FZRPSEZGZHZGUAACHZABGDZUDBCHZGZHZGUFPQSIUDRUHUCACJZUETUGUBTUEABKLUDRUFUAUIB
    CJZMNMUJO $.
    $( [30-Dec-98] $)

  $( Orthoarguesian-like OM law. $)
  2oai1u $p |- ( ( a ->1 c ) ^
  ( ( ( a ->1 c ) ^ ( b ->1 c ) ) ' ->2 ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) )
               =< ( b ->1 c ) $=
    ( wn wi1 wa wi2 1oai1 u1lem11 2an ax-r1 ud1lem0a i1i2con2 ax-r2 le3tr2 ) AD
    CEZCEZPBDCEZFZDZQRCEZFZEZFUAACEZUDBCEZFZDSGZFUEPRCHQUDUCUGACIZUCTUFEZUGUIUC
    UFUBTUBUFQUDUAUEUHBCIZJKLKSUFMNJUJO $.
    $( [28-Feb-99] $)

  $( OML analog to orthoarguesian law of Godowski/Greechie, Eq.  III with
     ` ->1 ` instead of ` ->0 ` . $)
  1oaiii $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
     ( ( a ->2 c ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $=
    ( wi2 wo wa wi1 anass anidm lan ax-r2 ax-r1 leran bltr ancom ud1lem0a ax-a2
    1oa ud1lem0b ran lebi ) ABDZBCEZUBACDZFZGZFZUDUFFZUGUGUFFZUHUIUGUIUBUFUFFZF
    UGUBUFUFHUJUFUBUFIZJKLUGUDUFABCRMNUHUDCBEZUDUBFZGZFZUFFZUGUPUHUPUDUNUFFZFUH
    UDUNUFHUQUFUDUQUJUFUNUFUFUNULUEGUFUMUEULUDUBOPULUCUECBQSKTUKKJKLUOUBUFACBRM
    NUA $.
    $( [1-Nov-98] $)

  $( OML analog to orthoarguesian law of Godowski/Greechie, Eq.  II with
     ` ->1 ` instead of ` ->0 ` . $)
  1oaii $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c )
                ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< a ' $=
    ( wn wi2 wo wi1 orabs 1oaiii lor df-i2 ancom ax-r2 3tr2 lan omlan lear bltr
    wa ) BDZABEZACEZBCFUAUBSGZSZFZSZTADZSZUGUFTBUHFZSUHUEUITUAUAUCSZFUAUEUIUAUC
    HUJUDUAABCIJUABUGTSZFUIABKUKUHBUGTLJMNOBUGPMTUGQR $.
    $( [1-Nov-98] $)

  $( Lemma for OA-like stuff with ` ->2 ` instead of ` ->0 ` . $)
  2oalem1 $p |- ( ( a ->2 b ) ' v ( ( b v c ) v ( ( a ->2 b ) ^
         ( a ->2 c ) ) ) ) = 1 $=
    ( wi2 wn wo wa wt or12 df-i2 2an lor or32 ax-a2 lan ax-r5 ax-r2 anor3 ax-r1
    3tr ud2lem0c 2or oml 3tr1 ax-a3 oran lear bltr leo letr lecom comcom le3tr2
    comcom6 fh3 df-t or1 anidm 3tr2 ) ABDZEZBCFZUTACDZGZFFVBVAVDFZFVBBEZABFZGZB
    AEZVFGZFZCVICEZGZFZGZFZFZHVAVBVDIVEVPVBVAVHVDVOABUAUTVKVCVNABJACJKUBLVBVHFZ
    VOFVGCFZVOFZVQHVRVSVOVRBVHFZCFVSBCVHMWAVGCBVFBAFZGZFWBWAVGBAUCVHWCBVGWBVFAB
    NZOLWDUDPQPVBVHVOUEVTVSVKFZVSVNFZGHHGHVSVKVNVKVSVKVSVKEZVSWGVGVSWGVHVGVHWGV
    HVFVJEZGWGVGWHVFABUFOBVJRQSVFVGUGUHVGCUIUJUKUNULVNVSVNVSVNEZVSVLACFZGZWJBFZ
    WIVSWKWJWLVLWJUGWJBUIUJWKVLVMEZGWIWJWMVLACUFOCVMRQACBMUMUKUNULUOWEHWFHWEBVS
    VJFZFBHFZHVSBVJIWNHBWNVGVJFZCFCWPFZHVGCVJMWPCNWQCHFZHWPHCWPVGVGEZFZHVJWSVGA
    BRLHWTVGUPSQLCUQZQTLBUQZTWFCVSVMFZFWRHVSCVMIXCHCXCBWJFZVMFBWJVMFZFZHVSXDVMV
    SWLXDABCMWJBNQPBWJVMUEXFWOHXEHBXEWJWJEZFZHVMXGWJACRLHXHWJUPSQLXBQTLXATKHURT
    UST $.
    $( [15-Nov-98] $)

  $( OA-like theorem with ` ->2 ` instead of ` ->0 ` . $)
  2oath1 $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
              ( ( a ->2 b ) ^ ( a ->2 c ) ) $=
    ( wi2 wo wa wn df-i2 lan coman1 comorr2 comcom2 anor3 ax-r1 fh2 anass ax-r2
    cbtr wf wt anidm ran oran lor 2oalem1 ax-r4 df-a df-f 3tr1 2or or0 3tr ) AB
    DZBCEZUMACDZFZDZFUMUPUNGUPGFZEZFUMUPFZUMURFZEZUPUQUSUMUNUPHIUPUMURUMUOJUPUN
    UPEZGZURUPVCUNUPKLURVDUNUPMNROVBUPSEUPUTUPVASUTUMUMFZUOFZUPVFUTUMUMUOPNVEUM
    UOUMUAUBQUMGZURGZEZGTGVASVITVIVGVCEZTVJVIVCVHVGUNUPUCUDNABCUEQUFUMURUGUHUIU
    JUPUKQUL $.
    $( [15-Nov-98] $)

  $( Orthoarguesian-like OM law. $)
  2oath1i1 $p |- ( ( a ->1 c ) ^
              ( ( a ^ b ) ' ->2 ( ( a ->1 c ) ^ ( b ->1 c ) ) ) )
               = ( ( a ->1 c ) ^ ( b ->1 c ) ) $=
    ( wn wi2 wo wa wi1 2oath1 i1i2 2an ud2lem0a oran3 ax-r1 ud2lem0b ax-r2 3tr1
    ) CDZADZEZSBDZFZTRUAEZGZEZGUDACHZABGDZUFBCHZGZEZGUIRSUAIUFTUJUEACJZUJUGUDEU
    EUIUDUGUFTUHUCUKBCJKZLUGUBUDUBUGABMNOPKULQ $.
    $( [30-Dec-98] $)

  $( Orthoarguesian-like OM law. $)
  1oath1i1u $p |- ( ( a ->1 c ) ^
  ( ( ( a ->1 c ) ^ ( b ->1 c ) ) ' ->1 ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) )
               = ( ( a ->1 c ) ^ ( b ->1 c ) ) $=
    ( wn wi1 wa wi2 2oath1i1 u1lem11 2an ud2lem0a i1i2con2 ax-r1 ax-r2 3tr2 ) A
    DCEZCEZPBDCEZFZDZQRCEZFZGZFUBACEZUDBCEZFZDSEZFUFPRCHQUDUCUGACIZUCTUFGZUGUBU
    FTQUDUAUEUHBCIJZKUGUIUFSLMNJUJO $.
    $( [28-Feb-99] $)

  $( Relation for studying OA. $)
  oale $p |- ( ( a ->2 b ) ^
      ( ( b v c ) v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ' ) =< ( a ->2 c ) $=
    ( wi2 wo wa wn df-i2 lan coman1 comanr2 comcom6 fh2 anass ax-r1 anidm ax-r2
    ran anor3 2or ax-a2 3tr 2oath1 df-le1 lear letr ) ABDZBCEZUGACDZFZEGZFZUJUI
    ULUJULUJEZUGUHUJDZFZUJUOUMUOUGUJUHGZUJGZFZEZFUGUJFZUGURFZEZUMUNUSUGUHUJHIUJ
    UGURUGUIJUJURUPUQKLMVBUJULEUMUTUJVAULUTUGUGFZUIFZUJVDUTUGUGUINOVCUGUIUGPRQU
    RUKUGUHUJSITUJULUAQUBOABCUCQUDUGUIUEUF $.
    $( [18-Nov-98] $)

  ${
    oaeqv.1 $e |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
               =< ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Weakened OA implies OA). $)
    oaeqv $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
               =< ( a ->2 c ) $=
      ( wi2 wo wn wa lea ler2an 2oath1 lbtr lear letr ) ABEZBCFZGOACEZHZFZHZRQT
      OPREZHRTOUAOSIDJABCKLOQMN $.
      $( [16-Nov-98] $)
  $}


  ${
    3vroa.1 $e |- ( ( a ->2 b ) ^
              ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) = 1 $.
    $( OA-like inference rule (requires OM only). $)
    3vroa $p |- ( a ->2 c ) = 1 $=
      ( wi2 wn wa wo wt df-i2 or12 oridm lor le1 wi0 ax-r1 lea bltr lebi ax-r2
      ran ancom an1 3tr lear df-i0 anor3 ax-r5 le3tr2 u2lemle2 lecon leran 3tr2
      leror ) ACEZCAFZCFZGZHZIACJZCURURHZHURUSHZUSICURURKVAURCURLMVBURABEZUOGZH
      ZIVEVBVDUSURVDUOIGZUOUSVDIUOGVFVCIUOVCIVCNIVCBCHZVDOZGZVCVIIDPVCVHQRSZUAI
      UOUBTUOUCUTUDMPVEIVENIBFZUQGZVDHZVEIVMVIVHIVMVCVHUEDVHVGFZVDHZVMVGVDUFVMV
      OVLVNVDBCUGUHPTUIVMNSVLURVDVKUPUQABABVJUJUKULUNRSTUMT $.
      $( [13-Nov-98] $)
  $}

  $( Lemma for Mladen's OML. $)
  mlalem $p |- ( ( a == b ) ^ ( b ->1 c ) ) =< ( a ->1 c ) $=
    ( wa wn wo tb wi1 comcom3 anass ax-r1 3tr bltr ax-r2 lear letr lel2or df-i1
    wf leo comanr2 comanr1 fh2 dff lan an0 le0 an12 an4 leor lea dfb 2an coman1
    lecom coman2 com2or oran3 cbtr comcom7 fh2rc le3tr1 ) ABDZBEZBCDZFZDZAEZVDD
    ZVFDZFZVHACDZFZABGZBCHZDZACHVGVMVJVGVCVDDZVCVEDZFVMVDVCVEBVCABUAIBVEBCUBIUC
    VQVMVRVQSVMVQABVDDZDASDSABVDJVSSASVSBUDKUEAUFLVMUGMVRBBDZVLDZVMVRABVEDDBAVE
    DDZWAABVEJABVEUHWBBADVEDZWAWCWBBAVEJKBABCUINLWAVLVMVTVLOVLVHUJPMQMVJVHVDVFD
    ZDZVMVHVDVFJWEVHVMVHWDUKVHVLTPMQVPVCVIFZVFDVKVNWFVOVFABULBCRUMVIVFVCVIVFVIV
    DVFVHVDOVDVETPUOVIVCVIVHVDFVCEVIVHVDVHVDUNVHVDUPUQABURUSUTVANACRVB $.
    $( [4-Nov-98] $)


  $( Mladen's OML. $)
  mlaoml $p |- ( ( a == b ) ^ ( b == c ) ) =< ( a == c ) $=
    ( wi1 wa tb u1lembi ran mlalem bltr ancom an32 3tr le2an an12 id 3tr1 anass
    anandi anandir 3tr2 2an le3tr2 ) ABDZBADZEZBCDZEZUECBDZEZUGEZEZACDZCADZEABF
    ZBCFZEZACFUHUMUKUNUHUOUGEUMUFUOUGABGZHABCIJUKCBFZUEEZUNUKUIUEEZUGEUIUGEZUEE
    UTUJVAUGUEUIKHUIUEUGLVBUSUECBGHMCBAIJNULUHUIEZUFUGUIEZEUQUFUJEZUGEUFUIEZUGE
    ULVCVEVFUGUEUDUIEEZUDUJEVEVFUEUDUIOVEUEUDEZUJEVEVGUFVHUJUDUEKHVEPUEUDUISQUD
    UEUIRQHUFUJUGTUFUIUGLUAUFUGUIRUFUOVDUPURBCGUBMACGUC $.
    $( [4-Nov-98] $)

  $( 4-variable transitive law for equivalence. $)
  eqtr4 $p |- ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) =< ( a == d ) $=
    ( tb wa mlaoml leran letr ) ABEBCEFZCDEZFACEZKFADEJLKABCGHACDGI $.
    $( [26-Jun-03] $)

  ${
    sac.1 $e |- ( a ->1 c ) = ( b ->1 c ) $.
    $( Theorem showing "Sasaki complement" is an operation. $)
    sac $p |- ( a ' ->1 c ) = ( b ' ->1 c ) $=
      ( wi1 wn ud1lem0b u1lem12 3tr2 ) ACEZCEBCEZCEAFCEBFCEJKCDGACHBCHI $.
      $( [3-Jan-99] $)
  $}

  ${
    sa5.1 $e |- ( a ->1 c ) =< ( b ->1 c ) $.
    $( Possible axiom for a "Sasaki algebra" for orthoarguesian lattices. $)
    sa5 $p |- ( b ' ->1 c ) =< ( ( a ' ->1 c ) v c ) $=
      ( wn wa wo wi1 leor ax-a2 lan ax-r5 oml6 ax-r1 ud1lem0c le3tr2 letr ax-a1
      3tr df-i1 lecon lea leror bltr orabs ancom 3tr2 ax-a3 ax-r2 lel2or le3tr1
      2or lear ) BEZEZUNCFZGAEZEZUQCFZGZCGZUNCHUQCHZCGUOVAUPBACGZUOVABCBGZVCBCI
      VDBUNCEZGZFZCGZVCVHVDVHBVEUNGZFZCGCVJGVDVGVJCVFVIBUNVEJKLVJCJCBMSNVGACVGA
      UQVEGZFZABCHZEACHZEVGVLVNVMDUABCOACOPAVKUBQUCUDQBRVCURUSCGZGZVAAURCVOARCC
      UQFZGVQCGCVOCVQJCUQUEVQUSCCUQUFLUGULVAVPURUSCUHNUIPUPCVAUNCUMCUTIQUJUNCTV
      BUTCUQCTLUK $.
      $( [3-Jan-99] $)
  $}


$(
lattice (((-xIy)vy)Iy)=(x2y)
lattice "((xIw)v(yIw))<((((-xIw)^(-yIw))Iw)vw)"
lattice "((((-xIw)vw)Iw)^(((-yIw)vw)Iw))<((((-xIw)v(-yIw))Iw)vw)"
lattice "(((-xIw)^(-yIw))Iw)<((xIw)v(yIw))"
lattice "(((-xIw)v(-yIw))Iw)<(((xIw)^(yIw))vw)"
a' v b' =< (a ^ b)' v 0
(a v 0)' ^ (b v 0)' =< (a ^ b)' v 0
(a ^ b)' =< a' v b'
(a v b)' =< (a' ^ b') v 0
$)
  $( Lemma for attempt at Sasaki algebra. $)
  salem1 $p |- ( ( ( a ' ->1 b ) v b ) ->1 b ) = ( a ->2 b ) $=
    ( wn wi1 wo wi2 u1lemob ax-r4 anor1 ax-r1 ax-r2 ran ax-a2 ancom anabs df-i1
    wa 3tr 2or df-i2 3tr1 ) ACZBDBEZCZUCBQZEZBUBBCQZEZUCBDABFUFUGBEUHUDUGUEBUDU
    BCZBEZCZUGUCUJUBBGZHUGUKUBBIJKUEUJBQZBBUIEZQZBUCUJBULLUMUNBQUOUJUNBUIBMLUNB
    NKBUIORSUGBMKUCBPABTUA $.
    $( [4-Jan-99] $)


  $( Weak DeMorgan's law for attempt at Sasaki algebra. $)
  sadm3 $p |- ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ->1 c ) =<
              ( ( a ->1 c ) v ( b ->1 c ) ) $=
    ( wn wi1 wa wo oran3 ax-r1 u1lem9a bltr an32 lea leo or32 lbtr u1lemab letr
    le2or df-i1 ax-a1 bile leran lel2or lelor 2or le3tr1 ) ADZCEZBDZCEZFZDZULCF
    ZGZUHACFZGZUJBCFZGZGZULCEACEZBCEZGUOUQUJGZUTUOUHUJGZUICFZGVCUMVDUNVEUMUIDZU
    KDZGZVDVHUMUIUKHIVFUHVGUJACJBCJSKUNVEUKFVEUIUKCLVEUKMKSVDVCVEVDVDUPGVCVDUPN
    UHUJUPOPVEUQVCVEUHCFZUHDZCFZGUQUHCQVIUHVKUPUHCMVJACVJAAVJAUAIUBUCSKUQUJNRUD
    RUJUSUQUJURNUERULCTVAUQVBUSACTBCTUFUG $.
    $( [4-Jan-99] $)

  $( Weak DeMorgan's law for attempt at Sasaki algebra. $)
$(
  sadm1 $p |- ( ( a ->1 c ) v ( b ->1 c ) ) =<
              ( ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ->1 c ) v c ) $=
?$.
$)

  $( Weak DeMorgan's law for attempt at Sasaki algebra. $)
$(
  sadm2 $p |- ( ( ( ( a ' ->1 c ) v c ) ->1 c ) ^
                  ( ( ( b ' ->1 c ) v c ) ->1 c ) ) =<
              ( ( ( ( a ' ->1 c ) v ( b ' ->1 c ) ) ->1 c ) v c ) $=
?$.
$)

  $( Weak DeMorgan's law for attempt at Sasaki algebra. $)
$(
  sadm4 $p |- ( ( ( a ' ->1 c ) v ( b ' ->1 c ) ) ->1 c ) =<
              ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v c ) $=
?$.
$)

  $( Chained biconditional. $)
  bi3 $p |- ( ( a == b ) ^ ( b == c ) ) =
            ( ( ( a ^ b ) ^ c ) v ( ( a ' ^ b ' ) ^ c ' ) ) $=
    ( tb wa wn wo ax-r1 lan leo letr lecom comcom7 wf anass 3tr ax-r2 ran ancom
    2or wi1 wi2 dfb u12lembi 2an df-i1 lear coman1 coman2 fh2rc comanr2 comcom3
    com2an comanr1 fh2 dff an0 anidm or0r comcom an4 an0r 3tr2 or0 df-i2 le3tr1
    an32 lea bltr oran lbtr fh2r u2lemab u2lemanb an12 ) ABDZBCDZEABEZAFZBFZEZG
    ZBCUAZCBUBZEZEZVRCEZWACFZEZGZVPWBVQWEABUCWEVQBCUDHUEWBWCEZWDEWGWAGZWDEZWFWJ
    WKWLWDWKWBVTBCEZGZEVRWOEZWAWOEZGWLWCWOWBBCUFIWAWOVRWAWOWAVTWOVSVTUGVTWNJKLW
    AABWAAVSVTUHMWABVSVTUIZMUMUJWPWGWQWAWPVRVTEZVRWNEZGNWGGWGVTVRWNBVRABUKULBWN
    BCUNULZUOWSNWTWGWSABVTEZEZANEZNABVTOXDXCNXBABUPZIHAUQPWTVRBEZCEZWGXGWTVRBCO
    HXFVRCXFABBEZEVRABBOXHBABURIQRQTWGUSPWQWAVTEZWAWNEZGWANGWAVTWAWNWAVTWRUTXAU
    OXIWAXJNXIVSVTVTEZEWAVSVTVTOXKVTVSVTURIQXJVSBEVTCEZEVSBXLEZEZNVSVTBCVAVSBXL
    OXNVSNENXMNVSXBCEZNCEZXMNXPXONXBCXERHBVTCOCVBVCIVSUQQPTWAVDPTPRWBWCWDOWMWGW
    DEZWAWDEZGWJWGWDWAWGWDACEZBEZBWHVTEZGZWGWDXTBYBXSBUGBYAJKABCVGCBVEVFLWGWAWG
    WAFZWGABGZYCWGAYDWGAWNEAABCOAWNVHVIABJKABVJVKLMVLXQWGXRWIXQVRCWDEEXSBWDEZEZ
    WGVRCWDOABCWDVAYFXTWGYEBXSYEWDBEBBWDSCBVMQIACBVGQPXRVSVTWDEZEVSYAEZWIVSVTWD
    OYGYAVSYGWDVTEYAVTWDSCBVNQIYHWHWAEWIVSWHVTVOWHWASQPTQVCQ $.
    $( [2-Mar-00] $)

  $( Chained biconditional. $)
  bi4 $p |- ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) =
            ( ( ( ( a ^ b ) ^ c ) ^ d ) v
            ( ( ( a ' ^ b ' ) ^ c ' ) ^ d ' ) ) $=
    ( tb wa wn wo ax-r1 lan lecom leao4 lbtr wf anass 3tr ax-r2 ran 2or ancom
    wi1 wi2 bi3 u12lembi df-i1 leao2 oran2 comcom comcom6 fh2rc comanr2 comcom3
    2an comanr1 fh2 dff an0 anidm or0r an4 an0r 3tr2 or0 u2lemab df2le1 comcom7
    an32 bltr fh2r u2lemanb an12 ) ABEBCEFZCDEZFABFZCFZAGBGFZCGZFZHZCDUAZDCUBZF
    ZFZVODFZVRDGZFZHZVLVSVMWBABCUCWBVMCDUDIUMVSVTFZWAFWDVRHZWAFZWCWGWHWIWAWHVSV
    QCDFZHZFVOWLFZVRWLFZHWIVTWLVSCDUEJVRWLVOVRWLVQVPWKUFKVRVOVOVRGZVOWOVOVPGZCH
    ZWOCVNWPLVPCUGZMKUHUIUJWMWDWNVRWMVOVQFZVOWKFZHNWDHWDVQVOWKCVOVNCUKULCWKCDUN
    ULZUOWSNWTWDWSVNCVQFZFZVNNFZNVNCVQOXDXCNXBVNCUPZJIVNUQPWTVOCFZDFZWDXGWTVOCD
    OIXFVODXFVNCCFZFVOVNCCOXHCVNCURJQRQSWDUSPWNVRVQFZVRWKFZHVRNHVRVQVRWKVPVQUKX
    AUOXIVRXJNXIVPVQVQFZFVRVPVQVQOXKVQVPVQURJQXJVPCFVQDFZFVPCXLFZFZNVPVQCDUTVPC
    XLOXNVPNFNXMNVPXBDFZNDFZXMNXPXONXBDXERICVQDODVAVBJVPUQQPSVRVCPSPRVSVTWAOWJW
    DWAFZVRWAFZHWGWDWAVRWDWAWDWAXQVODWAFFVNDFZCWAFZFZWDVODWAOVNCDWAUTYAXSCFZWDX
    TCXSXTWACFCCWATDCVDQJVNDCVGQPZVEKWDVRWDWOWDWQWOWDYBWQVNCDVGCXSWPLVHWRMKVFVI
    XQWDXRWFYCXRVPVQWAFZFVPWEVQFZFZWFVPVQWAOYDYEVPYDWAVQFYEVQWATDCVJQJYFWEVRFWF
    VPWEVQVKWEVRTQPSQVBQ $.
    $( [25-Jun-03] $)

  $( Implicational product with 3 variables.  Theorem 3.20 of "Equations,
     states, and lattices..." paper. $)
  imp3 $p |- ( ( a ->2 b ) ^ ( b ->1 c ) ) =
             ( ( a ' ^ b ' ) v ( b ^ c ) ) $=
    ( wi2 wi1 wa wn wo df-i1 lan u2lemc1 comcom3 comanr1 fh2 u2lemanb ancom lea
    u2lem3 u2lemle2 letr df2le2 ax-r2 2or 3tr ) ABDZBCEZFUEBGZBCFZHZFUEUGFZUEUH
    FZHAGUGFZUHHUFUIUEBCIJUGUEUHBUEABKLBUHBCMLNUJULUKUHABOUKUHUEFUHUEUHPUHUEUHB
    UEBCQBUEBARSTUAUBUCUD $.
    $( [3-Mar-00] $)

  $( Disjunction of biconditionals. $)
  orbi $p |- ( ( a == c ) v ( b == c ) ) =
      ( ( ( a ->2 c ) v ( b ->2 c ) ) ^ ( ( c ->1 a ) v ( c ->1 b ) ) ) $=
    ( tb wo wa wn wi2 2or ax-a2 ax-a3 lor ax-r2 ax-r5 leo letr lecom comcom 3tr
    bctr wi1 dfb ancom imp3 ax-r1 df-i1 lear comi12 fh4rc df-le2 lan 3tr2 df-i2
    lea anor1 cbtr comcom7 fh4 orordi 3tr1 or12 2an ) ACDZBCDZEACFZAGZCGZFZEZBC
    FZBGVGFZEZEVLVIEZACHZBCHZEZCAUAZCBUAZEZFZVCVIVDVLACUBBCUBIVIVLJVMVJVKVIEZEV
    JVOVHEZVGCAFZEZFZEZVTVJVKVIKWAWEVJVKVEEZVHEVOVQFZVHEZWAWEWGWHVHWGVKWCEZWHVE
    WCVKACUCLWHWJBCAUDUEMNVKVEVHKWIWBVQVHEZFWEVQVHVOVQWDVHCAUFZVHWDVHWDVHVGWDVF
    VGUGVGWCOPZQRTCABUHUIWKWDWBWKWDVHEVHWDEWDVQWDVHWLNWDVHJVHWDWMUJSUKMULLWFVJW
    BEZVJWDEZFVTWBVJWDWBCVKVHEZEZVJWBCVKEZVHEZWQVOWRVHBCUMZNCVKVHKZMZVJWQVJWQVJ
    CWQBCUGZCWPOZPQRTWBWQWDXBWQWDWQCWCGZFZWDGXFWQXFWQXFCWQCXEUNXDPQRCWCUOUPUQTU
    RWNVPWOVSVJVOEZVHEWSWNVPXGWRVHXGVJWREWRVOWRVJWTLVJWRVJCWRXCCVKOPUJMNVJVOVHK
    WSWQVPXAWRCVHEZEXHWREWQVPWRXHJCVKVHUSVNXHVOWRACUMWTIUTMULWOVGVJWCEEZVSVJVGW
    CVAVGVJEZWDEWDXJEXIVSXJWDJVGVJWCUSVQWDVRXJWLVRVGCBFZEXJCBUFXKVJVGCBUCLMIUTM
    VBMSS $.
    $( [5-Jul-00] $)

  $( Disjunction of biconditionals. $)
  orbile $p |- ( ( a == c ) v ( b == c ) ) =<
      ( ( ( a ^ b ) ->2 c ) ^ ( c ->1 ( a v b ) ) ) $=
    ( tb wo wi2 wi1 wa orbi i2or i1or le2an bltr ) ACDBCDEACFBCFEZCAGCBGEZHABHC
    FZCABEGZHABCINPOQABCJABCKLM $.
    $( [5-Jul-00] $)

  ${
    mlaconj4.1 $e |- ( ( d == e ) ^ ( ( e ' ^ c ' ) v ( d ^ c ) ) ) =<
                     ( d == c ) $.
    mlaconj4.2 $e |- d = ( a v b ) $.
    mlaconj4.3 $e |- e = ( a ^ b ) $.
    $( For 4GO proof of Mladen's conjecture, that it follows from Eq.  (3.30)
       in OA-GO paper. $)
    mlaconj4 $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =<
                   ( a == c ) $=
      ( tb wo wa wn ax-r2 lbtr ran 2or ax-r1 anass comcom7 wf biao bile wi2 wi1
      bicom orbile imp3 le2an 2bi ax-r4 lan 2an lea 3tr1 rbi ler2an coman1 bctr
      ancom an32 coman2 com2an com2or fh2c anor3 comanr1 fh2rc leao1 df2le2 dff
      comcom3 oran an0r 3tr2 or0 3tr an4 anidm or0r dfb lor mlaoml bltr letr
      bi3 ) ABIZACIZBCIZJZKABJZABKZIZWKLZCLZKZCWJKZJZKZWGWFWLWIWQWFWLWFWKWJIZWL
      ABUAZWKWJUEMUBWIWKCUCCWJUDKWQABCUFWKCWJUGNUHWRDEIZELZWNKZDCKZJZKZWGXFWRXA
      WLXEWQDWJEWKGHUIZXCWOXDWPXBWMWNEWKHUJOXDCDKWPDCUSDWJCGUKMPULQXFWFWJCIZKZW
      GXFWFXHXFXAWFXAXEUMWLWSXAWFWJWKUEXGWTUNNXFDCIXHFDWJCGUONUPXIWFWHKZWGWKALZ
      BLZKZJZWJCKZXMWNKZJZKZWKCKZXPJZXIXJXRXNXOKZXNXPKZJXTXPXNXOXPWKXMXPABXPXKX
      LWNKZKZAXKXLWNRYDAXKYCUQSURZXPXKWNKZXLKZBXKXLWNUTYGBYFXLVASURZVBXMWNUQVCX
      PWJCXPABYEYHVCXPCXMWNVASVBVDYAXSYBXPYAWKXOKZXMXOKZJXSTJXSXMXOWKXMWJLZXOAB
      VEZWJXOWJCVFVKURXMABXMAXKXLUQSXMBXKXLVASVBZVGYIXSYJTYIWKWJKZCKZXSYOYIWKWJ
      CRQYNWKCWKWJABBVHVIOMXMWJKZCKZTCKZYJTYRYQTYPCTXMXMLZKZYPXMVJYPYTWJYSXMABV
      LUKQMOQXMWJCRCVMVNPXSVOVPYBWKXPKZXMXPKZJTXPJXPXMXPWKXMWNVFYMVGUUATUUBXPUU
      AAXMKZBWNKZKZTUUDKZTABXMWNVQUUFUUETUUCUUDTXLKAXKKZXLKTUUCTUUGXLAVJOXLVMAX
      KXLRVNOQUUDVMVPUUBXMXMKZWNKZXPUUIUUBXMXMWNRQUUHXMWNXMVROMPXPVSVPPMWFXNXHX
      QABVTXHXOYKWNKZJZXQWJCVTXQUUKXPUUJXOXMYKWNYLOWAQMULABCWEUNABCWBWCWDWCWD
      $.
      $( [8-Jul-00] $)
  $}


  $( For 5GO proof of Mladen's conjecture. $)
  mlaconj $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =<
     ( ( ( ( a ->1 ( a ^ b ) ) ^ ( ( a ^ b ) ->1 ( ( a ^ b ) v c ) ) ) ^
              ( ( ( ( a ^ b ) v c ) ->1 c ) ^ ( c ->1 ( a v b ) ) ) ) ^
                ( ( a v b ) ->1 a ) ) $=
    ( tb wo wa wi2 wi1 orbile lelan ancom ran anass ax-r2 3tr lan bi1o1a i2i1i1
    id 3tr1 2an lbtr ) ABDZACDBCDEZFUCABFZCGZCABEZHZFZFZAUEHZUEUECEZHZFZULCHZUH
    FZFUGAHZFZUDUIUCABCIJUKUQFZUMUOFZUHFZFZUNUPUQFZFZUJURUKUQVAFZFUKUMVCFZFVBVD
    VEVFUKVEVAUQFUMUPFZUQFVFUQVAKVAVGUQVAVAVGUTUTUHUTSLUMUOUHMNLUMUPUQMOPUKUQVA
    MUKUMVCMTUCUSUIVAABQUFUTUHUECRLUAUNUPUQMTUB $.
    $( [20-Jan-02] $)

  ${
    mlaconj2.1 $e |- ( ( ( ( a ->1 ( a ^ b ) ) ^
                    ( ( a ^ b ) ->1 ( ( a ^ b ) v c ) ) ) ^
              ( ( ( ( a ^ b ) v c ) ->1 c ) ^ ( c ->1 ( a v b ) ) ) ) ^
                ( ( a v b ) ->1 a ) ) =< ( a == c ) $.
    $( For 5GO proof of Mladen's conjecture.  Hypothesis is 5GO law
       consequence. $)
    mlaconj2 $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =<
                   ( a == c ) $=
      ( tb wo wa wi1 mlaconj letr ) ABEACEZBCEFGAABGZHLLCFZHGMCHCABFZHGGNAHGKAB
      CIDJ $.
      $( [6-Jul-00] $)
  $}

  $( Equivalence to chained biconditional. $)
  $( [Appears not to be a theorem.]
  bi3eq $p |- ( ( a == b ) ^ ( ( a ^ c ) v ( b ' ^ c ' ) ) ) =
              ( ( a == c ) ^ ( b == c ) ) $=
    ( u1lembi ran ax-r1 anass wn lea wa leo df-i1 lbtr letr lecom lear lecon
    comcom7 fh2c u1lemab id ax-r2 u1lemana 2or lan bi3 bicom ) ??????????DEF???
    ???GZ?????????????????BHZCHZI???UIBAJK????LFMNO???????UIUJP??ACPQNORS??????
    ??????UHFZ????????TE?UAZUBUB???UK????????UCEULUBUBUDULUBUBUE???????????UB??
    ???UFFUB?????UGUEUBUBUBUB $.
  $)
    $( [3-Mar-00] $)

  $( Complemented antecedent lemma. $)
  i1orni1 $p |- ( ( a ->1 b ) v ( a ' ->1 b ) ) = 1 $=
    ( wi1 wn wo wa wt df-i1 ax-a1 ax-r5 ax-r1 ax-r2 lor orordi u1lemoa or1r ) A
    BCZADZBCZEQARBFZEZEZGSUAQSRDZTEZUARBHUAUDAUCTAIJKLMUBQAEZQTEZEZGQATNUGGUFEG
    UEGUFABOJUFPLLL $.
    $( [6-Aug-01] $)

  ${
    negant.1 $e |- ( a ->1 c ) = ( b ->1 c ) $.
    $( Lemma for negated antecedent identity. $)
    negantlem1 $p |- a C ( b ->1 c ) $=
      ( wi1 wn wa wo leo df-i1 ax-r1 ax-r2 lbtr lecom comcom6 ) ABCEZAFZPQQACGZ
      HZPQRISACEZPTSACJKDLMNO $.
      $( [6-Aug-01] $)

    $( Lemma for negated antecedent identity. $)
    negantlem2 $p |- a =< ( b ' ->1 c ) $=
      ( wn wi1 wo leo wa wt i1orni1 lan ax-r1 an1 u1lemc6 negantlem1 ancom lear
      bltr letr comcom fh4rc 3tr1 u1lemaa 3tr2 ler2an ax-a1 leror u1lemab ax-r2
      lea lbtr df-i1 le3tr1 leid lel2or ) AABEZCFZGZURAURHUSABCFZIZURGZURUSJIZU
      SUTURGZIZUSVBVEVCVDJUSBCKLMVCUSUSNMUTURABCOAUTABCDPUAUBUCVAURURVACUTIZURV
      ACUTVAACIZCAACFZIVHAIVAVGAVHQVHUTADLACUDUEACRSAUTRUFBCIZUQCIZGZUQEZVJGVFU
      RVIVLVJVIBVLBCUKBUGULUHVFUTCIVKCUTQBCUIUJUQCUMUNTURUOUPST $.
      $( [6-Aug-01] $)

    $( Lemma for negated antecedent identity. $)
    negantlem3 $p |- ( a ' ^ c ) =< ( b ' ->1 c ) $=
      ( wn wa wi1 wo leo df-i1 ax-r1 ax-r2 lbtr leran leror u1lemab ax-a1 ax-r5
      lea le3tr1 letr ) AEZCFBCGZCFZBEZCGZUBUCCUBUBACFZHZUCUBUGIUHACGZUCUIUHACJ
      KDLMNBCFZUECFZHBUKHZUDUFUJBUKBCSOBCPUFUEEZUKHZULUECJULUNBUMUKBQRKLTUA $.
      $( [6-Aug-01] $)

    $( Lemma for negated antecedent identity. $)
    negantlem4 $p |- ( a ' ->1 c ) =< ( b ' ->1 c ) $=
      ( wn wi1 wa wo df-i1 ax-a1 ax-r5 ax-r1 ax-r2 negantlem2 negantlem3 lel2or
      bltr ) AEZCFZARCGZHZBECFZSREZTHZUARCIUAUDAUCTAJKLMAUBTABCDNABCDOPQ $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negant $p |- ( a ' ->1 c ) = ( b ' ->1 c ) $=
      ( wn wi1 negantlem4 ax-r1 lebi ) AECFBECFABCDGBACACFBCFDHGI $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negantlem5 $p |- ( a ' ^ c ' ) = ( b ' ^ c ' ) $=
      ( wi1 wn wa ran u1lemanb 3tr2 ) ACEZCFZGBCEZLGAFLGBFLGKMLDHACIBCIJ $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negantlem6 $p |- ( a ^ c ' ) = ( b ^ c ' ) $=
      ( wn wa negant negantlem5 ax-a1 ran 3tr1 ) AEZEZCEZFBEZEZNFANFBNFLOCABCDG
      HAMNAIJBPNBIJK $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negantlem7 $p |- ( a v c ) = ( b v c ) $=
      ( wo wn wa negantlem5 anor3 3tr2 con1 ) ACEZBCEZAFCFZGBFNGLFMFABCDHACIBCI
      JK $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negantlem8 $p |- ( a ' v c ) = ( b ' v c ) $=
      ( wn wa wo negantlem6 ax-r4 oran2 3tr1 ) ACEZFZEBLFZEAECGBECGMNABCDHIACJB
      CJK $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negant0 $p |- ( a ' ->0 c ) = ( b ' ->0 c ) $=
      ( wn wo wi0 negantlem7 ax-a1 ax-r5 3tr2 df-i0 3tr1 ) AEZEZCFZBEZEZCFZNCGQ
      CGACFBCFPSABCDHAOCAIJBRCBIJKNCLQCLM $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negant2 $p |- ( a ' ->2 c ) = ( b ' ->2 c ) $=
      ( wn wa wo wi2 negantlem6 ax-a1 ran 3tr2 lor df-i2 3tr1 ) CAEZEZCEZFZGCBE
      ZEZRFZGPCHTCHSUBCARFBRFSUBABCDIAQRAJKBUARBJKLMPCNTCNO $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negantlem9 $p |- ( a ->3 c ) =< ( b ->3 c ) $=
      ( wn wa wo wi3 leor wi1 df-i1 ax-a1 ax-r5 ax-r1 leo bltr letr ler2an lbtr
      ax-r2 leao4 sac 3tr2 leror leao1 negantlem8 negantlem5 ler lear lel df-i3
      lel2or dfi3b le3tr1 ) AEZCFZUOCEZFZGZAUOCGZFZGBEZCGZBVBUQFZGZVBCFZGZFZACH
      BCHUSVHVAUPVHURUPVCVGCUOVBUAUPAUPGZVGUPAIVIBVFGZVGUOCJZVBCJZVIVJABCDUBVKU
      OEZUPGZVIUOCKVIVNAVMUPALMNTVLVBEZVFGZVJVBCKVJVPBVOVFBLMNTUCZBVEVFBVDOUDZP
      QRURVCVGURUTVCUOUQCUEABCDUFZSURVDVGABCDUGVDVEVFVDBIUHPRULVAVCVGVAUTVCAUTU
      IVSSAVGUTAVJVGAVIVJAUPOVQSVRQUJRULACUKBCUMUN $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negant3 $p |- ( a ' ->3 c ) = ( b ' ->3 c ) $=
      ( wn wi3 sac negantlem9 wi1 ax-r1 lebi ) AEZCFBEZCFLMCABCDGZHMLCLCIMCINJH
      K $.
      $( [6-Aug-01] $)

    $( Lemma for negated antecedent identity. $)
    negantlem10 $p |- ( a ->4 c ) =< ( b ->4 c ) $=
      ( wa wn wo wi4 leao4 wi1 leor df-i1 ax-r1 lbtr lear ler2an ran ancom bltr
      ax-r2 u1lemab 2or ax-a2 lor ax-a3 letr negant ax-a1 lel2or lea negantlem8
      leao2 ler df-i4 dfi4b le3tr1 ) ACEZAFZCEZGZURCGZCFZEZGBFZCGZVBCVDEZGZCBEZ
      GZEZACHBCHUTVJVCUQVJUSUQVEVICAVDIUQACJZCEZVIUQVKCUQURUQGZVKUQURKVKVMACLMN
      ACOPVLBCJZCEZVIVKVNCDQVOBCEZVDCEZGZVIBCUAVRVBVRGZVIVRVBKVSVBVFVHGZGZVIVRV
      TVBVRVHVFGVTVPVHVQVFBCRVDCRUBVHVFUCTUDVIWAVBVFVHUEMZTNSSUFPUSVEVICURVDIUS
      URCJZCEZVIUSWCCUSURFZUSGZWCUSWEKWCWFURCLMNURCOPWDVDCJZCEZVIWCWGCABCDUGQWH
      VQVDFZCEZGZVIVDCUAWKVBWKGZVIWKVBKWLWAVIWAWLVTWKVBVFVQVHWJCVDRVHVPWJCBRBWI
      CBUHQTUBUDMWBTNSSUFPUIVCVEVIVCVAVEVAVBUJABCDUKNVCVGVHVBVAVFULUMPUIACUNBCU
      OUP $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negant4 $p |- ( a ' ->4 c ) = ( b ' ->4 c ) $=
      ( wn wi4 sac negantlem10 wi1 ax-r1 lebi ) AEZCFBEZCFLMCABCDGZHMLCLCIMCINJ
      HK $.
      $( [6-Aug-01] $)

    $( Negated antecedent identity. $)
    negant5 $p |- ( a ' ->5 c ) = ( b ' ->5 c ) $=
      ( wn wi2 wi4 wa wi5 negant2 negant4 2an u24lem 3tr2 ) AEZCFZOCGZHBEZCFZRC
      GZHOCIRCIPSQTABCDJABCDKLOCMRCMN $.
      $( [6-Aug-01] $)
  $}

  ${
    neg3ant.1 $e |- ( a ->3 c ) = ( b ->3 c ) $.
    $( Lemma for negated antecedent identity. $)
    neg3antlem1 $p |- ( a ^ c ) =< ( b ->1 c ) $=
      ( wa wi1 wn wo leo wi3 ran u3lemab 3tr2 u1lemab ax-r1 ax-r2 lbtr lea letr
      ) ACEZBCFZCEZUATTAGCEZHZUBTUCIUDBCEBGCEHZUBACJZCEBCJZCEUDUEUFUGCDKACLBCLM
      UBUEBCNOPQUACRS $.
      $( [7-Aug-01] $)

    $( Lemma for negated antecedent identity. $)
    neg3antlem2 $p |- a ' =< ( b ->1 c ) $=
      ( wn wa wo leor wi3 u3lemab 3tr2 lbtr leao1 lel2or letr ax-r2 ax-r1 wf wt
      ran wi1 df-i3 u3lemanb anor3 con1 ler2an u3lem15 lear oran2 lan anor1 lor
      anor2 oran1 le3tr2 lecon1 leo ax-r5 u3lemob comor1 comcom7 comor2 comcom2
      lel com2an fh1r anabs dff 2or or0 3tr ler id ax-a2 orabs 3tr1 df-t coman1
      2an an1 coman2 com2or fh3 df-i1 le3tr1 ) AEZCFZWFACEZGZFZGZBEZBCFZGZWFBCU
      AWGWNWJWGWMWLCFZGZWNWGACFZWGGZWPWGWQHACIZCFBCIZCFWRWPWSWTCDTACJBCJKLWMWNW
      OWMWLHWLCWMMNOWJWLWMWJWLBWHFZGZWLCGZFZWLWJXBXCXBWJBXCFZAWGGZXBEZWJEZXEWFC
      GZXFFZXFXEWSACGZFXJXEWSXKXEWOWLWHFZGZXEGZWSXEXMHWSXNWSWTXNDBCUBPQLXEBCGZX
      KBXCCMXKXOXKXOWFWHFZXLXKEXOEWSWHFWTWHFXPXLWSWTWHDTACUCBCUCKACUDBCUDKUEQLU
      FACUGLXIXFUHOXEBXAEZFXGXCXQBBCUIZUJBXAUKPXFAWIEZGXHWGXSAACUMULAWIUNPUOUPW
      FXCWIWFXIXCWFCUQWSCGWTCGXIXCWSWTCDURACUSBCUSKLVDUFXDWLXCFZXAXCFZGWLRGWLXC
      WLXAWLCUTZXCBWHXCBYBVAXCCWLCVBVCVEVFXTWLYARWLCVGYAXAXQFZRXCXQXAXRUJRYCXAV
      HQPVIWLVJVKLVLNWFSFZWGWFGZWGWIGZFWFWKWFYESYFWFWFWFYEWFVMZYGYEWFWGGWFWGWFV
      NWFCVOPVPSWGWGEZGZYFWGVQYFYIWIYHWGACUNULQPVSYDWFWFVTQWGWFWIWFCVRZWGAWHWGA
      YJVAWGCWFCWAVCWBWCVPBCWDWE $.
      $( [7-Aug-01] $)

    $( Lemma for negated antecedent identity. $)
    neg3ant1 $p |- ( a ->1 c ) = ( b ->1 c ) $=
      ( wn wa wi1 neg3antlem2 neg3antlem1 lel2or df-i1 lbtr wi3 ax-r1 lebi 3tr1
      wo ) AEZACFZQZBEZBCFZQZACGZBCGZTUCTUEUCRUESABCDHABCDIJBCKZLUCUDTUAUDUBBAC
      ACMBCMDNZHBACUGIJACKZLOUHUFP $.
      $( [7-Aug-01] $)
  $}

  ${
    elimcons.1 $e |- ( a ->1 c ) = ( b ->1 c ) $.
    elimcons.2 $e |- ( a ^ c ) =< ( b v c ' ) $.
    $( Lemma for consequent elimination law. $)
    elimconslem $p |- a =< ( b v c ' ) $=
      ( wn wo wa wt df-t lecon oran3 ax-r1 lbtr bltr df-a wi1 df-i1 3tr2 lor
      lelor lelan an1 comor1 comcom7 lecom comcom6 fh2c le3tr2 ax-r4 3tr1 leror
      lear letr ax-a2 leao1 df-le2 ax-r2 ) ABCFZGZBBFZUSGZHZGZUTAAUTHZVCGZVDAVE
      AAFZUSGZHZGZVFAIHAUTVHGZHAVJIVKAIUTUTFZGVKUTJVLVHUTVLACHZFZVHVMUTEKVHVNAC
      LMNUAOUBAUCVHAUTVHAVGUSUDUEVHUTVHFZUTVOVMUTVMVOACPZMEOUFUGUHUIVIVCVEVGVOG
      ZFVAVBFZGZFVIVCVQVSVGVMGZVABCHZGZVQVSACQBCQVTWBDACRBCRSVMVOVGVPTWAVRVABCP
      TSUJAVHPBVBPUKTNVEUTVCAUTUMULUNVDVCUTGUTUTVCUOVCUTBVBUSUPUQURN $.
      $( [3-Mar-02] $)

    $( Consequent elimination law. $)
    elimcons $p |- a =< b $=
      ( wn wo wa df-t elimconslem leror bltr wi1 df-i1 3tr2 anor2 lor df-a lbtr
      wt lelan an1 comor1 comcom2 lecom comcom3 comcom le3tr2 negant ax-r1 3tr1
      fh2 ax-r4 ax-r5 lear lelor letr lea df-le2 lecon1 ) BABFZAFZACFZGZHZVBGZV
      BVAVEVAVBHZGZVFVAVABVCGZHZVGGZVHVATHVAVIVBGZHVAVKTVLVATAVBGVLAIAVIVBABCDE
      JZKLUAVAUBVIVAVBVIBBVCUCUDVBVIAVIAVIVMUEUFUGULUHVJVEVGVAFZVIFZGZFVBFZVDFZ
      GZFVJVEVPVSVSVPVQVBCHZGZVNVACHZGZVSVPVBCMVACMWAWCABCDUIVBCNVACNOVTVRVQACP
      QWBVOVNBCPQOUJUMVAVIRVBVDRUKUNSVGVBVEVAVBUOUPUQVEVBVBVDURUSSUT $.
      $( [3-Mar-02] $)
  $}

  ${
    elimcons2.1 $e |- ( a ->1 c ) = ( b ->1 c ) $.
    elimcons2.2 $e |- ( a ^ ( c ^ ( b ->1 c ) ) ) =<
                   ( b v ( c ' v ( a ->1 c ) ' ) ) $.
    $( Consequent elimination law. $)
    elimcons2 $p |- a =< b $=
      ( wi1 wa wn ax-r1 df-i1 ax-r2 lan anass leor df2le2 3tr ax-r4 lor ax-a2
      wo ud1lem0c ax-a3 lea df-le2 ax-r5 le3tr2 elimcons ) ABCDACBCFZGZGZBCHZAC
      FZHZTZTZACGZBUKTZEUJACAHZUPTZGZGZUPUSGZUPUIUTAUHUSCUHULUSULUHDIACJKLLVBVA
      ACUSMIUPUSUPURNOPUOBBBHUKTZGZUKTZTZBVDTZUKTZUQUNVEBUNUKVDTVEUMVDUKUMUHHVD
      ULUHDQBCUAKRUKVDSKRVHVFBVDUKUBIVGBUKVGVDBTBBVDSVDBBVCUCUDKUEPUFUG $.
      $( [12-Mar-02] $)
  $}

  $( Lemma for biconditional commutation law. $)
  comanblem1 $p |- ( ( a == c ) ^ ( b == c ) ) =
                ( ( ( a v c ) ' v ( ( a ^ b ) ^ c ) ) ^ ( b ->1 c ) ) $=
    ( wi1 wa tb wo wn u1lembi 2an df-i1 comanr1 comcom3 ax-r1 ax-r2 lan ran 3tr
    ancom wf an4 an32 fh3 lea leor bltr letr lecom com2an comcom coman2 comcom2
    fh2c coman1 fh2rc anass dff an0 lor or0 anor3 bctr anandi leran df2le2 lear
    2or df-le2 3tr2 ) ACDZCADZEZBCDZCBDZEZEVJVMEVKVNEZEZACFZBCFZEACGHZABEZCEZGZ
    VMEZVJVKVMVNUAVLVRVOVSACIBCIJVQVJVPEZVMEWDVJVMVPUBWEWCVMWEVJCHZCAEZCBEZEZGZ
    EAHZACEZGZWJEZWCVPWJVJVPWFWGGZWFWHGZEZWJVKWOVNWPCAKCBKJWJWQWFWGWHCWGCALMZCW
    HCBLMZUCNOPVJWMWJACKQWNWMWFEZWMWIEZGWCWIWMWFWIWMWIWGWMWGWHUDWGWLWMCASWLWKUE
    UFUGUHWFWIWFWGWHWRWSUIUJUMWTVTXAWBWTWKWFEZWLWFEZGXBTGZVTWLWFWKWLCACUKULWLAA
    CUNULZUOXCTXBXCACWFEZEZATEZTACWFUPXHXGTXFACUQPNAURRUSXDXBVTXBUTACVAORXAWKWI
    EZWLWIEZGWKWBEZWBGWBWLWIWKWLWGWIACSWGWHLVBXEUOXIXKXJWBWIWBWKWICWAEZWBXLWICA
    BVCNCWASOZPXJWLWBEWBWLEWBWIWBWLXMPWLWBSWBWLWAACABUDVDVERVGXKWBWKWBVFVHRVGOR
    QOVI $.
    $( [1-Dec-99] $)

  $( Lemma for biconditional commutation law. $)
  comanblem2 $p |- ( ( a ^ b ) ^ ( ( a == c ) ^ ( b == c ) ) ) =
                   ( ( a ^ b ) ^ c ) $=
    ( wa tb wn wo dfb 2an wf comanr1 comcom6 fh1 anass ax-r1 anidm ran dff 3tr2
    ax-r2 lan an0r 2or or0 3tr an4 anandir 3tr1 ) ABDZACEZBCEZDZDUIACDZAFZCFZDZ
    GZBCDZBFZUODZGZDZDZUICDZULVBUIUJUQUKVAACHBCHIUAAUQDZBVADZDUMURDVCVDVEUMVFUR
    VEAUMDZAUPDZGUMJGUMAUMUPACKAUPUNUOKLMVGUMVHJVGAADZCDZUMVJVGAACNOVIACAPQTAUN
    DZUODZJUODZVHJVMVLJVKUOARQOAUNUONUOUBZSUCUMUDUEVFBURDZBUTDZGURJGURBURUTBCKB
    UTUSUOKLMVOURVPJVOBBDZCDZURVRVOBBCNOVQBCBPQTBUSDZUODZVMVPJVMVTJVSUOBRQOBUSU
    ONVNSUCURUDUEIABUQVAUFABCUGUHT $.
    $( [1-Dec-99] $)

  $( Biconditional commutation law. $)
  comanb $p |- ( a ^ b ) C ( ( a == c ) ^ ( b == c ) ) $=
    ( wa tb wo wn wi1 lea leo lecon leror comanblem1 df-i1 comanblem2 lor ax-r2
    letr le3tr1 i1com ) ABDZACEBCEDZACFZGZUACDZFZBCHZDZUAGZUEFZUBUAUBHZUHUFUJUF
    UGIUDUIUEUAUCUAAUCABIACJRKLRABCMUKUIUAUBDZFUJUAUBNULUEUIABCOPQST $.
    $( [1-Dec-99] $)

  $( Biconditional commutation law. $)
  comanbn $p |- ( a ' ^ b ' ) C ( ( a == c ) ^ ( b == c ) ) $=
    ( wn wa tb comanb conb 2an ax-r1 cbtr ) ADZBDZELCDZFZMNFZEZACFZBCFZEZLMNGTQ
    ROSPACHBCHIJK $.
    $( [1-Dec-99] $)

  ${
    mhlem.1 $e |- ( a v b ) =< ( c v d ) ' $.
    $( Lemma for Lemma 7.1 of Kalmbach, p. 91. $)
    mhlemlem1 $p |- ( ( ( a v b ) v c ) ^ ( a v ( c v d ) ) ) = ( a v c ) $=
      ( wo wa leo ler lecom wn letr comcom7 fh2 ancom ax-a3 anabs 3tr wf 2or
      lan comor1 lecon3 fh1rc ortha or0r ax-r2 ) ABFZCFZACDFZFGUIAGZUIUJGZFACFA
      UIUJAUIAUHCABHZIJAUJAUJKZAUHUNUMELJMNUKAULCUKAUIGAABCFZFZGAUIAOUIUPAABCPU
      AAUOQRULUHUJGZCUJGZFSCFCUJCUHCDUBUJUHUJUHKUHUJEUCJMUDUQSURCUHUJEUECDQTCUF
      RTUG $.
      $( [10-Mar-02] $)

    $( Lemma for Lemma 7.1 of Kalmbach, p. 91. $)
    mhlemlem2 $p |- ( ( ( a v b ) v d ) ^ ( b v ( c v d ) ) ) = ( b v d ) $=
      ( wo wa ax-a2 ax-r5 lor 2an wn ax-r4 le3tr1 mhlemlem1 ax-r2 ) ABFZDFZBCDF
      ZFZGBAFZDFZBDCFZFZGBDFRUBTUDQUADABHISUCBCDHJKBADCQSLUAUCLEBAHUCSDCHMNOP
      $.
      $( [10-Mar-02] $)

    $( Lemma 7.1 of Kalmbach, p. 91. $)
    mhlem $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( a ^ b ) v ( c ^ d ) ) $=
      ( wo wa comor1 comor2 com2an wn lecom comcom7 leao1 letr comcom 3tr ax-r2
      3tr1 wf fh1r fh2rc 2or lerr fh3 id mhlemlem1 mhlemlem2 ancom ax-a2 df-le2
      2an an4 lor ax-r1 or12 lan leor fh3r lecon3 com2or ax-a3 ax-r5 le2an lbtr
      leo fh2 ortha or0 df2le2 lear leid ler2an lebi ) ACFZBDFZGZABGZABFZGZCDFZ
      VSGZVRCDGZGZFZFZWAWCGZFZVRWCFVQVTWBFZWDFZWGFZWHVRWAFZVSGZWLWCGZFZWIWDWGFZ
      FVQWKWMWIWNWPVSVRWAVSABABHABIJZVSWAVSWAKZELMZUAWAWCVRWACDCDHCDIJVRWAVRWAV
      RWRVRVSWRABBNZEOLMZPUBUCVQWLVSWCFZGZWOVRWAWCVSFZGFZWLVRXDFZGZVQXCVRWAXDXA
      VRXDVRVSWCWTUDLUEZVQVSCFZAWAFZGZVSDFZBWAFZGZGZXEVQVQVQXOVQUFZXPXKVOXNVPAB
      CDEUGABCDEUHULSXOXIXLGZXJXMGZGXRXQGZXEXIXJXLXMUMXQXRUIXCXGXSXEXBXFWLXBXDW
      CVRVSFZFZXFVSWCUJYAXDXTVSWCVRVSWTUKUNUOWCVRVSUPQUQZXCXSWLXRXBXQWAABAWAAWA
      AWRAVSWRABVFEOLMPBWABWABWRBVSWRBAUREOLMPUSVSCDCVSCVSCVSKZCWAYCCDVFVSWAEUT
      ZOLMPDVSDVSDYCDWAYCDCURYDOLMPUEULUOXHSQRYBSVSWLWCVSVRWAWQWSVAWCVSWCVSWCYC
      WCWAYCCDDNZYDOLMPVGRWIWDWGVBSWJWFWGVTWBWDVBVCRWFVRWGWCWFVTTFVTVRWETVTWEVS
      WAGZTWDWBFWBWEYFWDWBWDYFWBVRVSWCWAWTYEVDVSWAUIZVEUKWBWDUJYGSVSWAEVHRUNVTV
      IVRVSWTVJQWGWCWAWCVKWCWAWCYEWCVLVMVNUCR $.
      $( [10-Mar-02] $)
  $}

  ${
    mhlem1.1 $e |- a C b $.
    mhlem1.2 $e |- c C b $.
    $( Lemma for Marsden-Herman distributive law. $)
    mhlem1 $p |- ( ( a v b ) ^ ( b ' v c ) ) = ( ( a ^ b ' ) v ( b ^ c ) ) $=
      ( wo wn wa wt lan comcom2 fh1 ax-a2 wf comcom lor ax-r1 3tr comcom6 ax-r5
      df-t an1 comor2 comid comcom3 fh1r dff or0 ancom anabs 2or comorr comanr2
      3tr2 ran fh2rc leao2 df2le2 ax-r2 or0r ) ABFZBGZCFZHAVBHZBFZVCHZVDBVCHZFZ
      VDBCHZFVAVEVCVAIHVABVBFZHZVAVEIVJVABUAJVAUBVKVABHZVAVBHZFVMVLFVEVABVBABUC
      ZVABVNKLVLVMMVMVDVLBVMVDBVBHZFZVDNFZVDVBABAVBABDKOBBBUDZUEUFVQVPNVOVDBUGZ
      PQVDUHRVLBVAHBBAFZHBVABUIVAVTBABMJBAUJRUKRUNUOVFVDVCHZVGFVHBVCVDBVCVBCULS
      BVDAVBUMSUPWAVDVGVDVCVBACUQURTUSVGVIVDVGVOVIFZNVIFZVIBVBCBBVRKCBEOLWCWBNV
      OVIVSTQVIUTRPR $.
      $( [10-Mar-02] $)
  $}

  ${
    mh.1 $e |- a C c $.
    mh.2 $e |- a C d $.
    mh.3 $e |- b C c $.
    mh.4 $e |- b C d $.
    $( Lemma for Marsden-Herman distributive law. $)
    mhlem2 $p |- ( ( ( a v c ) ^ ( c ' v b ' ) ) ^
                     ( ( b v d ) ^ ( a ' v d ' ) ) ) =
                 ( ( ( a ^ c ' ) ^ ( b ^ d ' ) ) v
                     ( ( c ^ b ' ) ^ ( d ^ a ' ) ) ) $=
      ( wo wn wa comcom3 mhlem1 ax-a2 ax-r2 2an leao2 leao3 ler2an oran2 lel2or
      lan anor3 lbtr mhlem ) ACICJZBJZIKZBDIZAJZDJZIZKZKAUFKZCUGKZIZBUKKZDUJKZI
      ZKUNUQKUOURKIUHUPUMUSACUGEBCGLMUMUIUKUJIZKUSULUTUIUJUKNUBBDUJHADFLMOPUNUQ
      UOURUNUQIUFBIZUKAIZKZUOURIJZUNVCUQUNVAVBUFABQAUFUKRSUQVAVBBUKUFRUKBAQSUAV
      CUOJZURJZKVDVAVEVBVFCBTDATPUOURUCOUDUEO $.
      $( [10-Mar-02] $)

    $( Marsden-Herman distributive law.  Lemma 7.2 of Kalmbach, p. 91. $)
    mh $p |- ( ( a v c ) ^ ( b v d ) )
               = ( ( ( a ^ b ) v ( a ^ d ) ) v ( ( c ^ b ) v ( c ^ d ) ) ) $=
      ( wa wo leao1 leao2 ler2an leao4 lel2or wn ax-r1 ax-r2 lea ax-a3 leao3 wf
      anass an4 mhlem2 le2an leo letr leor bltr leran anor3 ax-a2 or12 3tr 3tr1
      lor ax-r4 oran3 2an ran lan dff le3tr1 le0 lebi oml3 ) ABIZADIZJZCBIZCDIZ
      JZJZACJZBDJZIZVNVQVJVQVMVHVQVIVHVOVPABCKBADLMVIVOVPADCKDABNMOVKVQVLVKVOVP
      CBAUABCDLMVLVOVPCDAUADCBNMOOVQVNPZIZUBVQCPZBPZJZAPZDPZJZIZVHVLJZPZIZIZWGW
      HIZVSUBWJVQWFIZWHIZWKWMWJVQWFWHUCQWLWGWHWLAVTIZBWDIZIZCWAIZDWCIZIZJZWGWLV
      OWBIVPWEIIWTVOVPWBWEUDABCDEFGHUERWPWGWSWPVHWGWNAWOBAVTSBWDSUFVHVLUGUHWSVL
      WGWQCWRDCWASDWCSUFVLVHUIUHOUJUKUJVRWIVQVKVIJZWGJZPZXAPZWHIZVRWIXEXCXAWGUL
      QVNXBVNVMVJJZXBVJVMUMVKVLVJJZJVKVIWGJZJXFXBXGXHVKXGVHVLVIJJZWGVIJZXHVLVHV
      IUNXJXIVHVLVITQWGVIUMUOUQVKVLVJTVKVIWGTUPRURWFXDWHWFVKPZVIPZIXDWBXKWEXLCB
      USADUSUTVKVIULRVAUPVBWGVCVDVSVEVFVGQ $.
      $( [10-Mar-02] $)
  $}

  ${
    marsden.1 $e |- a C b $.
    marsden.2 $e |- b C c $.
    marsden.3 $e |- c C d $.
    marsden.4 $e |- d C a $.
    $( Lemma for Marsden-Herman distributive law. $)
    marsdenlem1 $p |- ( ( a v b ) ^ ( a ' v d ' ) )
                      = ( ( a ' ^ ( a v b ) ) v ( d ' ^ ( a v b ) ) ) $=
      ( wo wn wa ancom comorr comcom3 comcom4 comcom fh2r ax-r2 ) ABIZAJZDJZIZK
      UBSKTSKUASKISUBLTSUAASABMNUATDAHOPQR $.
      $( [26-Feb-02] $)

    $( Lemma for Marsden-Herman distributive law. $)
    marsdenlem2 $p |- ( ( c v d ) ^ ( b ' v c ' ) )
                      = ( ( ( b ' ^ c ) v ( c ' ^ d ) ) v ( b ' ^ d ) ) $=
      ( wo wn wa ancom comorr comcom3 comcom4 comcom fh2 wf ax-r2 3tr fh2rc dff
      comcom6 comid comcom2 ax-r5 ax-r1 or0r 2or or32 ) CDIZBJZCJZIZKUNUKKULUKK
      ZUMUKKZIZULCKZUMDKZIULDKZIZUKUNLUMUKULCUKCDMNULUMBCFOPZUAUQURUTIZUSIVAUOV
      CUPUSCULDCULVBUCGQUPUMCKZUSIZRUSIZUSCUMDCCCUDUEGQVFVERVDUSRCUMKVDCUBCUMLS
      UFUGUSUHTUIURUTUSUJST $.
      $( [26-Feb-02] $)

    $( Lemma for Marsden-Herman distributive law. $)
    marsdenlem3 $p |- ( ( ( b ' ^ c ) v ( c ' ^ d ) ) ^ ( b ^ d ' ) ) = 0 $=
      ( wn wa wo wf lea lecom comcom7 comcom an4 dff ax-r1 3tr lecon lear oran2
      lel lerr lbtr fh1r ancom ax-r2 ran an0r lan an0 2or or0 ) BIZCJZCIZDJZKBD
      IZJZJUQVAJZUSVAJZKLLKLVAUQUSUQVAUQVAUQVAIZUPVDCVABBUTMUAUDNOPUSVAUSVAUSVD
      USUPDKVDUSDUPURDUBUEBDUCUFNOPUGVBLVCLVBUPBJZCUTJZJLVFJLUPCBUTQVELVFVEBUPJ
      ZLUPBUHLVGBRSUIUJVFUKTVCURBJZDUTJZJVHLJLURDBUTQVILVHLVIDRSULVHUMTUNLUOT
      $.
      $( [26-Feb-02] $)

    $( Lemma for Marsden-Herman distributive law. $)
    marsdenlem4 $p |- ( ( ( a ' ^ b ) v ( a ^ d ' ) ) ^ ( b ' ^ d ) ) = 0 $=
      ( wn wa wo wf lbtr lecom comcom7 ancom lan an4 dff 3tr leao3 fh1r an0 2or
      oran1 leao4 oran2 ax-r1 ax-r2 or0 ) AIZBJZADIZJZKBIZDJZJULUPJZUNUPJZKLLKL
      UPULUNUPULUPULIZUPAUOKUSUODAUAABUEMNOUPUNUPUNIZUPUKDKUTDUOUKUFADUGMNOUBUQ
      LURLUQULDUOJZJUKDJZBUOJZJZLUPVAULUODPQUKBDUORVDVBLJZLVEVDLVCVBBSQUHVBUCUI
      TURAUOJZUMDJZJVFLJLAUMUODRVGLVFVGDUMJZLUMDPLVHDSUHUIQVFUCTUDLUJT $.
      $( [26-Feb-02] $)

    $( Marsden-Herman distributive law.  Corollary 3.3 of Beran, p. 259. $)
    mh2 $p |- ( ( a v b ) ^ ( c v d ) )
               = ( ( ( a ^ c ) v ( a ^ d ) ) v ( ( b ^ c ) v ( b ^ d ) ) ) $=
      ( comcom mh ) ACBDEDAHIBCFIGJ $.
      $( [10-Mar-02] $)
  $}

  $( Lemma for OML proof of Mladen's conjecture, $)
  mlaconjolem $p |- ( ( a == c ) v ( b == c ) ) =<
                   ( ( c ^ ( a v b ) ) v ( c ' ^ ( a ' v b ' ) ) ) $=
    ( tb wo wa wi2 wi1 wn orbile df-i2 oran3 ran lor ax-r1 ax-r2 df-i1 2an 3tr
    ancom comor1 comcom2 leao1 lecom comcom fh1 omlan df2le2 2or ax-a2 lbtr ) A
    CDBCDEABFZCGZCABEZHZFZCUNFZCIZAIBIEZFZEZABCJUPCUSURFZEZURUQEZFVCURFZVCUQFZE
    ZVAUMVCUOVDUMCULIZURFZEZVCULCKVCVJVBVICUSVHURABLMNOPCUNQRVCURUQVCCCVBUAUBUQ
    VCUQVCCUNVBUCZUDUEUFVGUTUQEVAVEUTVFUQVECUTEZURFURVLFUTVCVLURVBUTCUSURTNMVLU
    RTCUSUGSVFUQVCFUQVCUQTUQVCVKUHPUIUTUQUJPSUK $.
    $( [10-Mar-02] $)

  $( OML proof of Mladen's conjecture. $)
  mlaconjo $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =<
                   ( a == c ) $=
    ( tb wo wa wn dfb le2an lea leao1 lbtr lecom comcom7 lor ax-r2 an12 lan dff
    wf bile mlaconjolem le2or oran leor df-a oran1 lear oran3 ax-r1 an0 3tr or0
    mh ax-r5 or0r 2or le3tr1 letr ) ABDZACDZBCDEZFABFZAGZBGZFZEZCABEZFZCGZVDVEE
    ZFZEZFZVAUTVGVBVMUTVGABHUAABCUBIVCVIFZVFVLFZEZACFZVDVJFZEVNVAVOVRVPVSVCAVIC
    ABJCVHJIVFVDVLVJVDVEJVJVKJIUCVNVOVCVLFZEZVFVIFZVPEZEVQVCVIVFVLVCVFVCVFGZVCV
    HWDABBKABUDZLMNVCVLVCVLGZVCCVCEZWFVCCUEWGCVKGZEZWFVCWHCABUFOCVKUGZPLMNVIVFV
    IWDVIVHWDCVHUHWELMNVIVLVIWFVIWIWFCVHWHKWJLMNUNWAVOWCVPWAVOTEVOVTTVOVTVJVCVK
    FZFVJTFTVCVJVKQWKTVJWKVCVCGZFZTVKWLVCABUIRTWMVCSUJPRVJUKULOVOUMPWCTVPEVPWBT
    VPWBCVFVHFZFCTFTVFCVHQWNTCWNVFWDFZTVHWDVFWERTWOVFSUJPRCUKULUOVPUPPUQPACHURU
    S $.
    $( [10-Mar-02] $)

  $( Distributive law for identity. $)
  distid $p |- ( ( a == b ) ^ ( ( a == c ) v ( b == c ) ) ) =
             ( ( ( a == b ) ^ ( a == c ) ) v ( ( a == b ) ^ ( b == c ) ) ) $=
    ( tb wo wa lea mlaconjo ler2an bicom ax-a2 2an bltr ler2or ledi lebi ) ABDZ
    ACDZBCDZEZFZQRFZQSFZEUAUBUCUAQRQTGZABCHIUAQSUDUABADZSREZFSQUETUFABJRSKLBACH
    MINQRSOP $.
    $( [17-Mar-02] $)

  $( Corollary of Marsden-Herman Lemma. $)
  mhcor1 $p |- ( ( ( ( a ->1 b ) ^ ( b ->2 c ) ) ^
                    ( c ->1 d ) ) ^ ( d ->2 a ) ) =
       ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) $=
    ( wa wn wo tb anass ancom ax-r2 lbtr lecom comcom7 wf ran lan 3tr ax-r1 2or
    wi2 wi1 imp3 2an leao3 oran comcom leao2 mh2 an4 3tr1 dff an0r 3tr2 an0 or0
    or0r ax-a2 bi4 ) BCUAZCDUBZEZABUBZEZDAUAZEZABEZCEDEZAFZBFZEZCFZEDFZEZGZVCUT
    EVAEZVEEABHBCHECDHEVFVBVCVEEZEVJVLEZCDEZGZVMVIEZVGGZEZVOVBVCVEIVBVTVQWBBCDU
    CVQVEVCEWBVCVEJDABUCKUDWCVRWAEZVRVGEZGZVSWAEZVSVGEZGZGVNVHGVOVRVSWAVGVSVRVS
    VRVSVRFZVSBCGZWJCDBUEBCUFZLMNUGVSWAVSWAFZVSDAGZWMDCAUHDAUFZLMNVGWAVGWAVGWMV
    GWNWMABDUEWOLMNUGVGVRVGWJVGWKWJBACUHWLLMNUIWFVNWIVHWFVNOGVNWDVNWEOVLVMEZVKE
    ZVKWPEWDVNWPVKJWDVLVJEZWAEWPVJVIEZEWQVRWRWAVJVLJPVLVJVMVIUJWSVKWPVJVIJQRVKV
    LVMIUKWEVGVREABVREZEZOVRVGJABVRIXAAOEOWTOABVJEZVLEZOVLEZWTOXDXCOXBVLBULPSBV
    JVLIVLUMUNQAUOKRTVNUPKWIOVHGVHWGOWHVHWGCDWAEZECOEOCDWAIXEOCXEDVMEZVIEZOXGXE
    DVMVIISOXGOOVIEZXGXHOVIUMSOXFVIDULPKSKQCUORWHVGVSEZVHVSVGJVHXIVGCDISKTVHUQK
    TVNVHURRRVPVDVEVPVCVBEVDVCUTVAIVCVBJKPABCDUSUK $.
    $( [26-Jun-03] $)

  $( Equation (3.29) of "Equations, states, and lattices..." paper.  This shows
     that it holds in all OMLs, not just 4GO. $)
  oago3.29 $p |- ( ( a ->1 b ) ^ ( ( b ->2 c ) ^ ( c ->1 a ) ) )
                 =< ( a == c ) $=
    ( wi1 wi2 wa tb anass i2id 2an ax-r1 an1 mhcor1 3tr2 lear bicom lbtr bltr
    wt ) ABDZBCEZCADZFFZABGBCGFZCAGZFZACGZUCSFZTUAFUBFZAAEZFZUCUFUKUHUIUCUJSTUA
    UBHAIJKUCLABCAMNUFUEUGUDUEOCAPQR $.
    $( [22-Jun-03] $)

  $( 4-variable extension of Equation (3.21) of "Equations, states, and
     lattices..." paper.  This shows that it holds in all OMLs, not just
     4GO. $)
  oago3.21x $p |- ( ( ( ( a ->5 b ) ^ ( b ->5 c ) ) ^
                    ( c ->5 d ) ) ^ ( d ->5 a ) ) =
       ( ( ( a == b ) ^ ( b == c ) ) ^ ( c == d ) ) $=
    ( wi5 wa tb wi1 wi2 i5lei1 i5lei2 le2an mhcor1 lbtr eqtr4 u5lembi ax-r1 lea
    leid bltr bicom ler2an letr lebi ) ABEZBCEZFZCDEZFZDAEZFZABGZBCGZFZCDGZFZUK
    ABHZBCIZFZCDHZFZDAIZFUPUIVAUJVBUGUSUHUTUEUQUFURABJBCKLCDJLDAKLABCDMNUPUPDAG
    ZFUKUPUPVCUPSUPADGVCABCDOADUANUBUPUIVCUJUNUGUOUHULUEUMUFULUEBAEZFZUEVEULABP
    QUEVDRTUMUFCBEZFZUFVGUMBCPQUFVFRTLUOUHDCEZFZUHVIUOCDPQUHVHRTLVCUJADEZFZUJVK
    VCDAPQUJVJRTLUCUD $.
    $( [26-Jun-03] $)

  ${
    cancel.1 $e |- ( ( d v ( a ->1 c ) ) ->1 c ) = ( ( d v ( b ->1 c ) ) ->1 c
        ) $.
    $( Lemma for cancellation law eliminating ` ->1 ` consequent. $)
    cancellem $p |- ( d v ( a ->1 c ) ) =< ( d v ( b ->1 c ) ) $=
      ( wi1 wo wn i1abs ax-r1 leo df-i1 ax-r2 lbtr lecon2 ran 3tr lel2or bltr
      wa leor lear ler2an coman2 coman1 comcom2 fh2rc 3tr1 leao4 lerr lor ax-r4
      id an12 anor1 lan anor3 ancom anass le3tr1 lea lel letr ) DACFGZVDCFZHZVD
      CTZGZDBCFZGZVHVDVDCIJVFVJVGVJVEVJHZVKVJCTZGZVEVKVLKVEVMVEVJCFZVMEVJCLZMJN
      OVGVNCTZVJVGVNCVGVDHZVGGZVNVGVQUAVRVEVNVEVRVDCLJEMNVDCUBUCVPVKCTZVLCTZGZV
      JVMCTWAVPWAVLCVKVJCUDVLVJVJCUEUFUGVNVMCVOPWAUMUHVSVJVTDHZBCTZHZTZWCTZDBHZ
      WCGZGZVSVJWFWHDWCWEWGUIUJVSWEBTZCTWFVKWJCVKWIHZBWETZWJVJWIVIWHDBCLUKZULWL
      WKWLWBBWDTZTWBWHHZTWKBWBWDUNWNWOWBBWCUOUPDWHUQQJBWEURQPWEBCUSMWMUTVLVJCVJ
      CVAVBRSVCRS $.
      $( [21-Feb-02] $)

    $( Cancellation law eliminating ` ->1 ` consequent. $)
    cancel $p |- ( d v ( a ->1 c ) ) = ( d v ( b ->1 c ) ) $=
      ( wi1 wo cancellem ax-r1 lebi ) DACFGZDBCFGZABCDEHBACDKCFLCFEIHJ $.
      $( [21-Feb-02] $)
  $}

  ${
    kb10iii.1 $e |- b ' =< ( a ->1 c ) $.
    $( Exercise 10(iii) of Kalmbach p. 30 (in a rewritten form). $)
    kb10iii $p |- c ' =< ( a ->1 b ) $=
      ( wi1 wn wo wa ud1lem0c omln u1lem9b lel2or bltr lelan ancom lbtr u1lemaa
      womaon le3tr2 lear letr lecon2 ) ABEZCUCFAAFZBFZGZHZCABIUGACHZCAUDUGGZHZA
      CEZAHZUGUHUJAUKHULUIUKAUIUFUKAUEJUDUKUEACKDLMNAUKOPAUERACQSACTUAMUB $.
      $( [9-Jan-04] $)
  $}

  ${
    e2ast2.1 $e |- a =< b ' $.
    e2ast2.2 $e |- c =< d ' $.
    e2ast2.3 $e |- a =< c ' $.
    $( Show that the E*_2 derivative on p. 23 of Mayet, "Equations holding in
       Hilbert lattices" IJTP 2006, holds in all OMLs. $)
    e2ast2 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( ( b v d ) v ( a v c ) ' ) $=
      ( wo wa wn leror lecon3 lecom comcom df-le2 ax-r2 ax-r1 lor ax-a3 ax-r5
      le2an comcom2 fh4c lan anor3 leao4 com2or fh4 or32 lear 3tr2 df2le2 ax-a2
      2an ancom 3tr 3tr1 lbtr ) ABHZCDHZICJZBHZAJZDHZIZBDHACHJZHZUSVBUTVDAVABGK
      CVCDACGLKUABDVCHZVAIZHZBDVFHZHVEVGVIVKBVIDVCVAIZHZVKVMVIVMVHDVAHZIVIVADVC
      DVADVACDFLZMNZVAAAVAAVAGMNUBZUCVNVAVHDVAVOOUDPQVLVFDACUERPRVEBVCIZVIHZVJV
      SVEVSVRVHHZVRVAHZIVDVBIVEVHVRVAVRVHVRVHVCBDUFMNVAVHVADVCVPVQUGNUHVTVDWAVB
      VRDHVCHVRVCHZDHVTVDVRDVCUIVRDVCSWBVCDVRVCBVCUJOTUKWABVAHVBVRBVABVCABELULZ
      TBVAUMPUNVDVBUOUPQVRBVIWCTPBDVFSUQUR $.
      $( [24-Jun-2006] $)
  $}

  ${
    e2ast.1 $e |- a =< b ' $.
    e2ast.2 $e |- c =< d ' $.
    e2ast.3 $e |- r =< a ' $.
    e2ast.4 $e |- a =< c ' $.
    e2ast.5 $e |- c =< r ' $.
    $( Lemma towards a possible proof that E*_2 on p. 23 of Mayet, "Equations
       holding in Hilbert lattices" IJTP 2006, holds in all OMLs. $)
    e2astlem1 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( ( a v c ) v r ) ) =
                   ( ( a v ( b ^ ( c v r ) ) ) ^ ( c v ( d ^ ( a v r ) ) ) ) $=
      ( wo wa ler lecom wn comcom7 fh2r df2le2 wf ax-r2 leo ax-a3 comcom com2or
      anandir lan fh2 lecon3 ortha ax-r5 or0r 3tr 2or leor or32 fh2c lor or0
      2an ) ABKZCDKZLACKZEKZLUTVCLZVAVCLZLABCEKZLZKZCDAEKZLZKZLUTVAVCUEVDVHVEVK
      VDAVCLZBVCLZKVHAVCBAVCAVBEACUAMZNABABOFNPZQVLAVMVGAVCVNRVMBAVFKZLZSVGKZVG
      VCVPBACEUBUFVQBALZVGKVRABVFVOACEACACOINPZEAEAEAOHNPUCUDUGVSSVGBAABFUHUIUJ
      TVGUKULUMTVECVCLZDVCLZKVKCVCDCVCCVBECAUNMZNCDCDOGNPZQWACWBVJCVCWCRWBDVICK
      ZLVJDCLZKZVJVCWEDACEUOUFCDVIWDCAEACVTUCCECEOJNPUDUPWGVJSKVJWFSVJDCCDGUHUI
      UQVJURTULUMTUST $.
      $( [25-Jun-2006] $)

    $( Show that E*_2 on p. 23 of Mayet, "Equations holding in Hilbert
       lattices" IJTP 2006, holds in all OMLs. $)
$(
    e2ast $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( ( a v c ) v r ) ) =<
                ( ( b v d ) v r ) $=
      ( wo wa wn ax-a3 comor1 bctr comcom3 comcom7 comorr2 comcom6 com2an mh2
      ax-r2 lbtr wf anass ax-r1 anor3 ran ancom dff lan an0 an0r le0 bltr
      lel2or letr ) ABKCDKLACKEKLZBEKZCKZMZDEBMZKZLZLZVBCEAKMZLZLZKZBVELZBVHLZK
      ZKZBDKEKZUS?VN??VBBKVEVHKLVN?VBBVEVHVABVABECKZKBBECNBVPOPQBDVDBD?RBVDEVCS
      TUA??UBUCUDVJVOVMVFVOVI?VIUEVOVIVBCLZVGLZUEVRVIVBCVGUFUGVRUEVGLUEVQUEVGVQ
      UTMZCMZLZCLZUEWBVQWAVBCUTCUHUIUGWBVSVTCLZLZUEVSVTCUFWDVSUELUEWCUEVSWCCVTL
      ZUEVTCUJUEWECUKUGUCULVSUMUCUCUCUIVGUNUCUCVOUOUPUQVKVOVL??UQUQUR $.
$)
      $( [25-Jun-2006] $)
  $}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
   OML Lemmas for studying Godowski equations.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    govar.1 $e |- a =< b ' $.
    govar.2 $e |- b =< c ' $.
    $( Lemma for converting n-variable Godowski equations to 2n-variable
       equations. $)
    govar $p |- ( ( a v b ) ^ ( a ->2 c ) ) =< ( b v c ) $=
      ( wo wi2 wa wn df-i2 lan ax-a2 ran lecom comcom7 comcom comcom2 lor 3tr
      wf com2an com2or fh2r ax-r2 coman1 fh2c dff ax-r1 anass an0r 3tr2 or0 lea
      coman2 lear le2or bltr ) ABFZACGZHZBCAIZCIZHZFZHZACHZFZBCFUTURVDHZVEAVDHZ
      FZVGUSVDURACJKVHBAFZVDHVJURVKVDABLMBVDABCVCBCBVBENZOBVAVBBAABABABIDNOPZQV
      LUAUBVMUCUDVIVFVEVIVFAVCHZFVFTFVFVCACVCAVAVBUEOVCCVAVBUNOUFVNTVFAVAHZVBHZ
      TVBHZVNTVQVPTVOVBAUGMUHAVAVBUIVBUJUKRVFULSRSVEBVFCBVDUMACUOUPUQ $.
      $( [19-Nov-99] $)

    $( Lemma for converting n-variable to 2n-variable Godowski equations. $)
    govar2 $p |- ( a v b ) =< ( c ->2 a ) $=
      ( wo wn wa wi2 lecon3 ler2an lelor df-i2 ax-r1 lbtr ) ABFACGZAGZHZFZCAIZB
      RABPQEABDJKLTSCAMNO $.
      $( [19-Nov-99] $)

    ${
      gon2n.3 $e |- ( ( c ->2 a ) ^ d ) =< ( a ->2 c ) $.
      gon2n.4 $e |- e =< d $.
      $( Lemma for converting n-variable to 2n-variable Godowski equations. $)
      gon2n $p |- ( ( a v b ) ^ e ) =< ( b v c ) $=
        ( wo wa wi2 lea govar2 le2an letr ler2an govar ) ABJZEKZSACLZKBCJTSUASE
        MTCALZDKUASUBEDABCFGNIOHPQABCFGRP $.
        $( [19-Nov-99] $)
    $}
  $}

  ${
    go2n4.1 $e |- a =< b ' $.
    go2n4.2 $e |- b =< c ' $.
    go2n4.3 $e |- c =< d ' $.
    go2n4.4 $e |- d =< e ' $.
    go2n4.5 $e |- e =< f ' $.
    go2n4.6 $e |- f =< g ' $.
    go2n4.7 $e |- g =< h ' $.
    go2n4.8 $e |- h =< a ' $.
    ${
      go2n4.9 $e |- ( ( ( c ->2 a ) ^ ( a ->2 g ) ) ^
                  ( ( g ->2 e ) ^ ( e ->2 c ) ) ) =< ( a ->2 c ) $.
      $( 8-variable Godowski equation derived from 4-variable one.  The last
         hypothesis is the 4-variable Godowski equation. $)
      go2n4 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^
                ( ( e v f ) ^ ( g v h ) ) ) =< ( b v c ) $=
        ( wo wa wi2 anass ancom lan ax-r2 an32 ax-r1 bltr govar2 le2an gon2n )
        ABRZCDRZSEFRZGHRZSZSZUKUOULSZSZBCRUPUKULUOSZSURUKULUOUAUSUQUKULUOUBUCUD
        ABCGETZAGTZSZECTZSZUQIJCATZVDSZVEVASUTVCSZSZACTVHVFVHVEVAVGSZSVFVEVAVGU
        AVIVDVEVIVGVASVDVAVGUBUTVCVAUEUDUCUDUFQUGUOVBULVCUMUTUNVAEFGMNUHGHAOPUH
        UICDEKLUHUIUJUG $.
        $( [19-Nov-99] $)
    $}

    ${
      gomaex4.9 $e |- ( ( ( a ->2 g ) ^ ( g ->2 e ) ) ^ ( (
                        e ->2 c ) ^ ( c ->2 a ) ) ) =< ( g ->2 a ) $.
      gomaex4.10 $e |- ( ( ( e ->2 c ) ^ ( c ->2 a ) ) ^ ( (
                        a ->2 g ) ^ ( g ->2 e ) ) ) =< ( c ->2 e ) $.
      $( Proof of Mayet Example 4 from 4-variable Godowski equation.  R. Mayet,
         "Equational bases for some varieties of orthomodular lattices related
         to states," Algebra Universalis 23 (1986), 167-195. $)
      gomaex4 $p |- ( ( ( ( a v b ) ^ ( c v d ) ) ^
 ( ( e v f ) ^ ( g v h ) ) ) ^ ( ( a v h ) ->1 ( d v e ) ' ) ) = 0 $=
        ( wo wa wn wi1 wf go2n4 an4 ancom ran ax-r2 3tr ax-a2 le3tr1 lan ler2an
        2an bltr leran go1 lbtr le0 lebi ) ABSZCDSZTZEFSZGHSZTZTZAHSZDESZUAUBZT
        ZUCVKVHVITZVJTUCVGVLVJVGVHVIVEVATZVBVDTZTZHASVGVHGHABCDEFOPIJKLMNQUDVGV
        AVDTZVBVETZTZVEVBTZVPTZVOVAVBVDVEUEVRVQVPTVTVPVQUFVQVSVPVBVEUFUGUHVEVBV
        AVDUEUIAHUJUKVGVNVMTZVIVGVAVETZVDVBTZTZVOWAVGVCVEVDTZTWBVNTWDVFWEVCVDVE
        UFULVAVBVEVDUEVNWCWBVBVDUFULUIWBVMWCVNVAVEUFVDVBUFUNVMVNUFUICDEFGHABKLM
        NOPIJRUDUOUMUPVHVIUQURVKUSUT $.
        $( [19-Nov-99] $)
    $}
  $}

  ${
    go2n6.1 $e |- g =< h ' $.
    go2n6.2 $e |- h =< i ' $.
    go2n6.3 $e |- i =< j ' $.
    go2n6.4 $e |- j =< k ' $.
    go2n6.5 $e |- k =< m ' $.
    go2n6.6 $e |- m =< n ' $.
    go2n6.7 $e |- n =< u ' $.
    go2n6.8 $e |- u =< w ' $.
    go2n6.9 $e |- w =< x ' $.
    go2n6.10 $e |- x =< y ' $.
    go2n6.11 $e |- y =< z ' $.
    go2n6.12 $e |- z =< g ' $.
    go2n6.13 $e |- ( ( ( i ->2 g ) ^ ( g ->2 y ) ) ^
                     ( ( ( y ->2 w ) ^ ( w ->2 n ) ) ^
                       ( ( n ->2 k ) ^ ( k ->2 i ) ) ) ) =< ( g ->2 i ) $.
    $( 12-variable Godowski equation derived from 6-variable one.  The last
       hypothesis is the 6-variable Godowski equation. $)
    go2n6 $p |- ( ( ( g v h ) ^ ( i v j ) ) ^
                  ( ( ( k v m ) ^ ( n v u ) ) ^
                    ( ( w v x ) ^ ( y v z ) ) ) ) =< ( h v i ) $=
      ( wo anass ancom lan 3tr ran ax-r2 ax-r1 3tr2 3tr1 wi2 govar2 le2an gon2n
      wa bltr ) ABUFZECUFZUTDFUFZGHUFZUTZIJUFZKLUFZUTZUTZUTZVBVHVGVEUTZVDVCUTZU
      TZUTZUTZBEUFVKVBVHUTVNUTZVPVBVCVJUTZUTVPVKVQVRVOVBVCVFUTZVIUTZVNVHUTZVRVO
      WAVTWAVSVGUTZVHUTVTVNWBVHVNVGVEVMUTZUTVGVSUTWBVGVEVMUGWCVSVGWCVEVCVDUTZUT
      WDVEUTVSVMWDVEVDVCUHUIVEWDUHVCVDVEUGUJUIVGVSUHUJUKVSVGVHUGULUMVCVFVIUGVNV
      HUHUNUIVBVCVJUGVBVHVNUGZUOWEULABEAKUPZKIUPZIGUPZUTZGDUPZDEUPZUTZUTZUTZVOM
      NEAUPZWNUTZWOWFUTWMUTZAEUPWQWPWOWFWMUGUMUEVAVHWFVNWMKLAUCUDUQVLWIVMWLVGWG
      VEWHIJKUAUBUQGHISTUQURVDWJVCWKDFGQRUQECDOPUQURURURUSVA $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h1.1 $e |- a =< b ' $.
    gomaex3h1.12 $e |- g = a $.
    gomaex3h1.13 $e |- h = b $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h1 $p |- g =< h ' $=
      ( wn ax-r4 le3tr1 ) ABHCDHEFDBGIJ $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h2.2 $e |- b =< c ' $.
    gomaex3h2.13 $e |- h = b $.
    gomaex3h2.14 $e |- i = c $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h2 $p |- h =< i ' $=
      ( wn ax-r4 le3tr1 ) ABHCDHEFDBGIJ $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h3.14 $e |- i = c $.
    gomaex3h3.15 $e |- j = ( c v d ) ' $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h3 $p |- i =< j ' $=
      ( wo wn leo ax-a1 lbtr ax-r4 le3tr1 ) AABGZHZHZDCHANPABINJKECOFLM $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h4.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $.
    gomaex3h4.15 $e |- j = ( c v d ) ' $.
    gomaex3h4.16 $e |- k = r $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h4 $p |- j =< k ' $=
      ( wo wn wi1 wa lear bltr lecon ax-r4 le3tr1 ) ABKZLGLCDLGTGELFMLZTNTHUATO
      PQIDGJRS $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h5.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $.
    gomaex3h5.16 $e |- k = r $.
    gomaex3h5.17 $e |- m = ( p ' ->1 q ) $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h5 $p |- k =< m ' $=
      ( wn wi1 wo wa lea bltr ax-r4 le3tr1 ) GEKFLZKZCDKGTABMZNTHTUAOPIDSJQR $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h6.17 $e |- m = ( p ' ->1 q ) $.
    gomaex3h6.18 $e |- n = ( p ' ->1 q ) ' $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h6 $p |- m =< n ' $=
      ( wn wi1 leid ax-a1 lbtr ax-r4 le3tr1 ) CGDHZNGZGZABGNNPNINJKEBOFLM $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h7.18 $e |- n = ( p ' ->1 q ) ' $.
    gomaex3h7.19 $e |- u = ( p ' ^ q ) $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h7 $p |- n =< u ' $=
      ( wn wi1 wa wo leor df-i1 ax-r1 lbtr lecon ax-r4 le3tr1 ) BGZCHZGRCIZGADG
      TSTRGZTJZSTUAKSUBRCLMNOEDTFPQ $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h8.19 $e |- u = ( p ' ^ q ) $.
    gomaex3h8.20 $e |- w = q ' $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h8 $p |- u =< w ' $=
      ( wn wa lear ax-a1 lbtr ax-r4 le3tr1 ) AGZBHZBGZGZCDGOBQNBIBJKEDPFLM $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h9.20 $e |- w = q ' $.
    gomaex3h9.21 $e |- x = q $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h9 $p |- w =< x ' $=
      ( wn leid ax-r4 le3tr1 ) AFZJBCFJGDCAEHI $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h10.10 $e |- q = ( ( e v f ) ->1 ( b v c ) ' ) ' $.
    gomaex3h10.21 $e |- x = q $.
    gomaex3h10.22 $e |- y = ( e v f ) ' $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h10 $p |- x =< y ' $=
      ( wo wn wa lea wi1 df-i1 ax-r4 ax-r1 ax-r2 le3tr1 anor1 ax-a1 ) ECDKZLZLZ
      FGLUCUCABKLZMZLZMZUCEUEUCUHNEUCUFOZLZUIHUKUDUGKZLZUIUJULUCUFPQUIUMUCUGUAR
      SSUCUEUCUBRTIGUDJQT $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h11.22 $e |- y = ( e v f ) ' $.
    gomaex3h11.23 $e |- z = f $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h11 $p |- y =< z ' $=
      ( wo wn leor lecon ax-r4 le3tr1 ) ABGZHBHCDHBMBAIJEDBFKL $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3h12.6 $e |- f =< a ' $.
    gomaex3h12.12 $e |- g = a $.
    gomaex3h12.23 $e |- z = f $.
    $( Hypothesis for Godowski 6-var -> Mayet Example 3. $)
    gomaex3h12 $p |- z =< g ' $=
      ( wn ax-r4 le3tr1 ) BAHDCHEGCAFIJ $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3lem1.3 $e |- c =< d ' $.
    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem1 $p |- ( c v ( c v d ) ' ) = d ' $=
      ( wn wa wo comid comcom2 lecom fh3 anor3 lor wt ancom df-le2 df-t 2an an1
      ax-r1 3tr 3tr2 ) AADZBDZEZFAUBFZAUCFZEZAABFDZFUCAUBUCAAAGHAUCCIJUDUHAABKL
      UGUFUEEZUCMEZUCUEUFNUJUIUCUFMUEUFUCAUCCOSAPQSUCRTUA $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3lem2.5 $e |- e =< f ' $.
    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem2 $p |- ( ( e v f ) ' v f ) = e ' $=
      ( wo wn wt lecon3 lecom comid comcom2 fh3r anor3 ax-r5 ax-r1 anabs df2le1
      wa leid lel2or ax-r2 lebi df-t ax-a2 2an 3tr1 an1 ) ABDEZBDZAEZFQZUIUIBEZ
      QZBDZUIBDZUKBDZQUHUJBUIUKBUIABCGZHBBBIJKUMUHULUGBABLMNUIUNFUOUIUNUIUNUIBO
      PUIUIBUIRUPSUAFBUKDUOBUBBUKUCTUDUEUIUFT $.
      $( [29-Nov-99] $)
  $}

  $( Lemma for Godowski 6-var -> Mayet Example 3. $)
  gomaex3lem3 $p |- ( ( p ' ->1 q ) ' v ( p ' ^ q ) ) = p ' $=
    ( wn wi1 wa wo anor1 ax-r1 df-i1 ax-r4 3tr1 ax-r5 coman1 comid comcom2 fh3r
    id wt orabs ax-r2 ax-a2 df-t 2an an1 3tr ) ACZBDZCZUFBEZFUFUICZEZUIFUFUIFZU
    JUIFZEZUFUHUKUIUFCUIFZCZUKUHUKUKUPUFUIGHUGUOUFBIJUKQKLUIUFUJUFBMUIUIUINOPUN
    UFREUFULUFUMRUFBSUMUIUJFZRUJUIUARUQUIUBHTUCUFUDTUE $.
    $( [29-Nov-99] $)

  ${
    gomaex3lem4.9 $e |- p = ( ( a v b ) ->1 ( d v e ) ' ) ' $.
    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem4 $p |- ( ( a v b ) ^ ( d v e ) ' ) =< p ' $=
      ( wo wn wa leor wi1 ax-a1 df-i1 ax-r1 ax-r4 3tr1 lbtr ) ABGZCDGHZIZRHZTGZ
      EHZTUAJRSKZUDHZHUBUCUDLUDUBRSMNEUEFOPQ $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3lem5.1 $e |- a =< b ' $.
    gomaex3lem5.2 $e |- b =< c ' $.
    gomaex3lem5.3 $e |- c =< d ' $.
    gomaex3lem5.5 $e |- e =< f ' $.
    gomaex3lem5.6 $e |- f =< a ' $.
    gomaex3lem5.8 $e |- ( ( ( i ->2 g ) ^ ( g ->2 y ) ) ^
                     ( ( ( y ->2 w ) ^ ( w ->2 n ) ) ^
                       ( ( n ->2 k ) ^ ( k ->2 i ) ) ) ) =< ( g ->2 i ) $.
    gomaex3lem5.9 $e |- p = ( ( a v b ) ->1 ( d v e ) ' ) ' $.
    gomaex3lem5.10 $e |- q = ( ( e v f ) ->1 ( b v c ) ' ) ' $.
    gomaex3lem5.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $.
    gomaex3lem5.12 $e |- g = a $.
    gomaex3lem5.13 $e |- h = b $.
    gomaex3lem5.14 $e |- i = c $.
    gomaex3lem5.15 $e |- j = ( c v d ) ' $.
    gomaex3lem5.16 $e |- k = r $.
    gomaex3lem5.17 $e |- m = ( p ' ->1 q ) $.
    gomaex3lem5.18 $e |- n = ( p ' ->1 q ) ' $.
    gomaex3lem5.19 $e |- u = ( p ' ^ q ) $.
    gomaex3lem5.20 $e |- w = q ' $.
    gomaex3lem5.21 $e |- x = q $.
    gomaex3lem5.22 $e |- y = ( e v f ) ' $.
    gomaex3lem5.23 $e |- z = f $.
    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem5 $p |- ( ( ( g v h ) ^ ( i v j ) ) ^
                  ( ( ( k v m ) ^ ( n v u ) ) ^
                    ( ( w v x ) ^ ( y v z ) ) ) ) =< ( h v i ) $=
      ( gomaex3h1 gomaex3h2 gomaex3h3 gomaex3h4 gomaex3h5 gomaex3h10 gomaex3h11
      gomaex3h6 gomaex3h7 gomaex3h8 gomaex3h9 gomaex3h12 go2n6 ) GHIJKLMQRSTUAA
      BGHUBUKULVCBCHKUCULUMVDCDIKUMUNVECDIJNOPUJUNUOVFCDJLNOPUJUOUPVGLMNOUPUQVJ
      MNOQUQURVKNOQRURUSVLORSUSUTVMBCEFOSTUIUTVAVHEFTUAVAVBVIAFGUAUFUKVBVNUGVO
      $.
      $( [29-Nov-99] $)

    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem6 $p |- ( ( ( a v b ) ^ ( c v ( c v d ) ' ) ) ^
                  ( ( ( r v ( p ' ->1 q ) ) ^ ( ( p ' ->1 q ) '
                     v ( p ' ^ q ) ) ) ^
                    ( ( q ' v q ) ^ ( ( e v f ) ' v f ) ) ) ) =< ( b v c ) $=
      ( wo wa wn wi1 gomaex3lem5 2or 2an le3tr2 ) GHVCZKIVCZVDZJLVCZMQVCZVDZRSV
      CZTUAVCZVDZVDZVDHKVCABVCZCCDVCVEZVCZVDZPNVEZOVFZVCZWFVEZWEOVDZVCZVDZOVEZO
      VCZEFVCVEZFVCZVDZVDZVDBCVCABCDEFGHIJKLMNOPQRSTUAUBUCUDUEUFUGUHUIUJUKULUMU
      NUOUPUQURUSUTVAVBVGVMWDVTWQVKWAVLWCGAHBUKULVHKCIWBUMUNVHVIVPWKVSWPVNWGVOW
      JJPLWFUOUPVHMWHQWIUQURVHVIVQWMVRWORWLSOUSUTVHTWNUAFVAVBVHVIVIVIHBKCULUMVH
      VJ $.
      $( [29-Nov-99] $)

    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem7 $p |- ( ( ( a v b ) ^ d ' ) ^
                  ( ( ( r v ( p ' ->1 q ) ) ^ p ' ) ^ e ' ) ) =< ( b v c ) $=
      ( wo wn wa wi1 gomaex3lem1 gomaex3lem3 ancom gomaex3lem2 ax-a2 df-t ax-r1
      lan wt ax-r2 2an an1 3tr gomaex3lem6 bltr ) ABVCZDVDZVEZPNVDZOVFZVCZWEVEZ
      EVDZVEZVEZWBCCDVCVDVCZVEZWGWFVDWEOVEVCZVEZOVDZOVCZEFVCVDFVCZVEZVEZVEZBCVC
      XAWKWMWDWTWJWLWCWBCDUDVGVNWOWHWSWIWNWEWGNOVHVNWSWRWQVEWIVOVEWIWQWRVIWRWIW
      QVOEFUEVJWQOWPVCZVOWPOVKVOXBOVLVMVPVQWIVRVSVQVQVMABCDEFGHIJKLMNOPQRSTUAUB
      UCUDUEUFUGUHUIUJUKULUMUNUOUPUQURUSUTVAVBVTWA $.
      $( [29-Nov-99] $)

    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem8 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^
                  ( ( r v ( p ' ->1 q ) ) ^ p ' ) ) =< ( b v c ) $=
      ( wo wn wa wi1 an32 anor3 lan ran an4 3tr2 gomaex3lem7 bltr ) ABVCZDEVCVD
      ZVEZPNVDZOVFVCVRVEZVEZVODVDZVEVSEVDZVEVEZBCVCVOWAWBVEZVEZVSVEVOVSVEWDVEVT
      WCVOWDVSVGWEVQVSWDVPVODEVHVIVJVOVSWAWBVKVLABCDEFGHIJKLMNOPQRSTUAUBUCUDUEU
      FUGUHUIUJUKULUMUNUOUPUQURUSUTVAVBVMVN $.
      $( [29-Nov-99] $)

    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem9 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^
                  ( r v ( p ' ->1 q ) ) ) =< ( b v c ) $=
      ( wo wn wi1 ancom gomaex3lem4 df2le2 ax-r1 lan an12 3tr gomaex3lem8 bltr
      wa ) ABVCDEVCVDVOZPNVDZOVEVCZVOZVPVRVQVOVOZBCVCVSVRVPVOVRVPVQVOZVOVTVPVRV
      FVPWAVRWAVPVPVQABDENUHVGVHVIVJVRVPVQVKVLABCDEFGHIJKLMNOPQRSTUAUBUCUDUEUFU
      GUHUIUJUKULUMUNUOUPUQURUSUTVAVBVMVN $.
      $( [29-Nov-99] $)

    $( Lemma for Godowski 6-var -> Mayet Example 3. $)
    gomaex3lem10 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^
                  ( r v ( p ' ->1 q ) ) ) =< ( ( b v c ) v ( e v f ) ' ) $=
      ( wo wn wa wi1 gomaex3lem9 leo letr ) ABVCDEVCVDVEPNVDOVFVCVEBCVCZVJEFVCV
      DZVCABCDEFGHIJKLMNOPQRSTUAUBUCUDUEUFUGUHUIUJUKULUMUNUOUPUQURUSUTVAVBVGVJV
      KVHVI $.
      $( [29-Nov-99] $)
  $}

  ${
    gomaex3.1 $e |- a =< b ' $.
    gomaex3.2 $e |- b =< c ' $.
    gomaex3.3 $e |- c =< d ' $.
    gomaex3.5 $e |- e =< f ' $.
    gomaex3.6 $e |- f =< a ' $.
    gomaex3.8 $e |- ( ( ( i ->2 g ) ^ ( g ->2 y ) ) ^
                     ( ( ( y ->2 w ) ^ ( w ->2 n ) ) ^
                       ( ( n ->2 k ) ^ ( k ->2 i ) ) ) ) =< ( g ->2 i ) $.
    gomaex3.9 $e |- p = ( ( a v b ) ->1 ( d v e ) ' ) ' $.
    gomaex3.10 $e |- q = ( ( e v f ) ->1 ( b v c ) ' ) ' $.
    gomaex3.11 $e |- r = ( ( p ' ->1 q ) ' ^ ( c v d ) ) $.
    gomaex3.12 $e |- g = a $.
    gomaex3.14 $e |- i = c $.
    gomaex3.16 $e |- k = r $.
    gomaex3.18 $e |- n = ( p ' ->1 q ) ' $.
    gomaex3.20 $e |- w = q ' $.
    gomaex3.22 $e |- y = ( e v f ) ' $.
    $( Proof of Mayet Example 3 from 6-variable Godowski equation.  R. Mayet,
       "Equational bases for some varieties of orthomodular lattices related to
       states," Algebra Universalis 23 (1986), 167-195. $)
    gomaex3 $p |- ( ( ( a v b ) ^ ( d v e ) ' ) ^
                  ( ( ( ( a v b ) ->1 ( d v e ) ' ) ->1
                      ( ( e v f ) ->1 ( b v c ) ' ) ' ) ' ->1 ( c v d ) ) )
                   =< ( ( b v c ) v ( e v f ) ' ) $=
      ( wo wn wa wi1 df-i1 ax-a2 con2 ud1lem0ab ax-a1 ax-r2 ax-r4 ran 2or ax-r1
      lan id gomaex3lem10 bltr ) ABUKZDEUKULZUMZVIVJUNZEFUKZBCUKZULUNULZUNZULZC
      DUKZUNZUMVKMKULZLUNZUKZUMVNVMULUKVSWBVKVSVQULZVQVRUMZUKZWBVQVRUOWBWEWBWAM
      UKWEMWAUPWAWCMWDWAVPWCVTVLLVOKVLUBUQUCURZVPUSUTMWAULZVRUMWDUDWGVQVRWAVPWF
      VAVBUTVCUTVDUTVEABCDEFGBVRULZHIWAJKLMVTLUMZNLOFPQRSTUAUBUCUDUEBVFUFWHVFUG
      WAVFUHWIVFUILVFUJFVFVGVH $.
      $( [27-May-00] $)
  $}

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
   OML Lemmas for studying orthoarguesian laws
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)


  ${
    oas.1 $e |- ( a ' ^ ( a v b ) ) =< c $.
    $( "Strengthening" lemma for studying the orthoarguesian law. $)
    oas $p |- ( ( a ->1 c ) ^ ( a v b ) ) =< c $=
      ( wi1 wo wa oml ax-r1 lea ler2an lelor bltr lelan u1lemc1 lbtr letr ax-r2
      wn lear comanr1 comcom6 fh2 u1lemaa ancom leo df-i1 df2le2 2or lel2or ) A
      CEZABFZGZACGZASZCGZFZCUMUKAUPFZGZUQULURUKULAUOULGZFZURVAULABHIUTUPAUTUOCU
      OULJDKLMNUSUKAGZUKUPGZFUQAUKUPACOAUPUOCUAUBUCVBUNVCUPACUDVCUPUKGUPUKUPUEU
      PUKUPUOUKUOCJUOUOUNFZUKUOUNUFUKVDACUGIPQUHRUIRPUNCUPACTUOCTUJQ $.
      $( [25-Dec-98] $)
  $}

  ${
    oasr.1 $e |- ( ( a ->1 c ) ^ ( a v b ) ) =< c $.
    $( Reverse of ~ oas lemma for studying the orthoarguesian law. $)
    oasr $p |- ( a ' ^ ( a v b ) ) =< c $=
      ( wn wo wa wi1 u1lem9b leran letr ) AEZABFZGACHZMGCLNMACIJDK $.
      $( [28-Dec-98] $)
  $}

  ${
    oat.1 $e |- ( a ' ^ ( a v b ) ) =< c $.
    $( Transformation lemma for studying the orthoarguesian law. $)
    oat $p |- b =< ( a ' ->1 c ) $=
      ( wn wa wo wi1 leor oml ax-r1 lea lelor bltr letr ax-a1 ax-r5 df-i1 ax-r2
      ler2an lbtr ) BAAEZCFZGZUBCHZBABGZUDBAIUFAUBUFFZGZUDUHUFABJKUGUCAUGUBCUBU
      FLDTMNOUDUBEZUCGZUEAUIUCAPQUEUJUBCRKSUA $.
      $( [26-Dec-98] $)
  $}

  ${
    oatr.1 $e |- b =< ( a ' ->1 c ) $.
    $( Reverse transformation lemma for studying the orthoarguesian law. $)
    oatr $p |- ( a ' ^ ( a v b ) ) =< c $=
      ( wn wo wa leo df-i1 ax-a1 ax-r5 ax-r1 ax-r2 lbtr lel2or lelan omlan lear
      wi1 letr ) AEZABFZGZUACGZCUCUAAUDFZGUDUBUEUAAUEBAUDHBUACSZUEDUFUAEZUDFZUE
      UACIUEUHAUGUDAJKLMNOPACQNUACRT $.
      $( [26-Dec-98] $)
  $}

  ${
    oau.1 $e |- ( a ^ ( ( a ->1 c ) v b ) ) =< c $.
    $( Transformation lemma for studying the orthoarguesian law. $)
    oau $p |- b =< ( a ->1 c ) $=
      ( wi1 wo ax-a2 wa lea ler2an u1lemaa ax-r1 lelor wt u1lemc1 comcom comorr
      lbtr fh3 ax-r2 u1lemoa ax-a3 oridm ax-r5 2an ancom an1 3tr orabs leo lebi
      le3tr2 df-le1 ) BACEZBUNFUNBFZUNBUNGUOUNUNAUOHZFZUNUNAHZFUOUNUPURUNUPACHZ
      URUPACAUOIDJURUSACKLRMUQUNAFZUNUOFZHNUOHZUOUNAUOAUNACOPUNBQSUTNVAUOACUAVA
      UNUNFZBFZUOVDVAUNUNBUBLVCUNBUNUCUDTUEVBUONHUONUOUFUOUGTUHUNAUIULUNBUJUKTU
      M $.
      $( [28-Dec-98] $)
  $}

  ${
    oaur.1 $e |- b =< ( a ->1 c ) $.
    $( Transformation lemma for studying the orthoarguesian law. $)
    oaur $p |- ( a ^ ( ( a ->1 c ) v b ) ) =< c $=
      ( wi1 wo wa leid lel2or lelan ancom u1lemaa ax-r2 lbtr lear letr ) AACEZB
      FZGZACGZCSAQGZTRQAQQBQHDIJUAQAGTAQKACLMNACOP $.
      $( [28-Dec-98] $)
  $}

  ${
    oaidlem2.1 $e |- ( ( d v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ' v
              ( ( a ->1 c ) ->1 ( b ->1 c ) ) ) = 1 $.
    $( Lemma for identity-like OA law. $)
    oaidlem2 $p |- ( ( a ->1 c ) ^
              ( d v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) )
               =< ( b ->1 c ) $=
      ( wi1 wa wo anidm ax-r1 ran anass ax-r2 leor lelan bltr df-le2 wn ax-a3
      wt ax-a2 oran3 ax-r5 df-i1 lor 3tr2 lem3.1 bile lear letr ) ACFZDUKBCFZGZ
      HZGZUMULUOUMUMUOUMUOUMUOUMUKUMGZUOUMUKUKGZULGUPUKUQULUQUKUKIJKUKUKULLMUMU
      NUKUMDNOPQUNRZUKRZHZUMHURUSUMHZHZUORZUMHTURUSUMSUTVCUMUTUSURHVCURUSUAUKUN
      UBMUCVBURUKULFZHZTVEVBVDVAURUKULUDUEJEMUFUGJUHUKULUIUJ $.
      $( [22-Jan-99] $)
  $}

  ${
    oaidlem2g.1 $e |- ( ( c v ( a ^ b ) ) ' v
              ( a ->1 b ) ) = 1 $.
    $( Lemma for identity-like OA law (generalized). $)
    oaidlem2g $p |- ( a ^
              ( c v ( a ^ b ) ) )
               =< b $=
      ( wa wo anidm ax-r1 ran anass ax-r2 leor lelan bltr df-le2 wn ax-a3 ax-a2
      wt oran3 ax-r5 wi1 df-i1 lor 3tr2 lem3.1 bile lear letr ) ACABEZFZEZUJBUL
      UJUJULUJULUJULUJAUJEZULUJAAEZBEUMAUNBUNAAGHIAABJKUJUKAUJCLMNOUKPZAPZFZUJF
      UOUPUJFZFZULPZUJFSUOUPUJQUQUTUJUQUPUOFUTUOUPRAUKTKUAUSUOABUBZFZSVBUSVAURU
      OABUCUDHDKUEUFHUGABUHUI $.
      $( [18-Feb-02] $)
  $}

  ${
    oa6v4v.1 $e |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =<
                   ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^
   ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $.
    oa6v4v.2 $e |- e = 0 $.
    oa6v4v.3 $e |- f = 1 $.
    $( 6-variable OA to 4-variable OA. $)
    oa6v4v $p |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v
                   ( ( a v c ) ^ ( b v d ) ) ) ) ) $=
      ( wo wa wt wf 2or ax-r2 lan an1 lor or0 or1 or0r 2an an32 anidm le3tr2
      ran ) ABJCDJKZEFJZKZBACACJZBDJZKZAEJZBFJZKZCEJZDFJZKZJZKZJZKZJUGBACULJZKZ
      JGUIUGLKUGUHLUGUHMLJLEMFLHINLUAOPUGQOVBVDBVAVCAUTULCUTULUJKZULUSUJULUOAUR
      CUOALKAUMAUNLUMAMJAEMAHRASOUNBLJLFLBIRBTOUBAQOURCLKCUPCUQLUPCMJCEMCHRCSOU
      QDLJLFLDIRDTOUBCQONPVEUJUJKZUKKULUJUKUJUCVFUJUKUJUDUFOORPRUE $.
      $( [29-Nov-98] $)
  $}

  ${
    oa4v3v.1 $e |- d =< b ' $.
    oa4v3v.2 $e |- e =< c ' $.
    oa4v3v.3 $e |- ( ( d v b ) ^ ( e v c ) ) =< ( b v ( d ^ ( e v
                   ( ( d v e ) ^ ( b v c ) ) ) ) ) $.
    oa4v3v.4 $e |- d = ( a ->2 b ) ' $.
    oa4v3v.5 $e |- e = ( a ->2 c ) ' $.
    $( 4-variable OA to 3-variable OA (Godowski/Greechie Eq.  IV). $)
    oa4v3v $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =<
              ( ( b ' ^ ( a ->2 b ) ) v ( c ' ^ ( a ->2 c ) ) ) $=
      ( wn wi2 wa wo ax-a2 lor oran1 3tr 2an ax-r2 anor3 ancom 2or oran3 le3tr2
      lan anor1 lecon1 ) BKZABLZMZCKACLZMZNZUIUJULBCNZKUJULMZNZMZNZMZDBNZECNZMZ
      BDEDENZUOMZNZMZNZUNKZUTKZHVCUKKZUMKZMVIVAVKVBVLVABDNBUJKZNVKDBODVMBIPBUJQ
      RVBCENCULKZNVLECOEVNCJPCULQRSUKUMUATVHBUSKZNVJVGVOBVGVMURKZMVODVMVFVPIVFV
      NUQKZNVPEVNVEVQJVEUOVDMUOUPKZMVQVDUOUBVDVRUOVDVMVNNVRDVMEVNIJUCUJULUDTUFU
      OUPUGRUCULUQUDTSUJURUATPBUSQTUEUH $.
      $( [28-Nov-98] $)
  $}

  ${
    oal42.1 $e |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =<
              ( ( b ' ^ ( a ->2 b ) ) v ( c ' ^ ( a ->2 c ) ) ) $.
    $( Derivation of Godowski/Greechie Eq.  II from Eq.  IV. $)
    oal42 $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< a ' $=
      ( wn wi2 wo wa ancom u2lemanb ax-r2 2or lbtr lea lel2or letr ) BEZABFZACF
      ZBCGERSHGHGHZAEZQHZUACEZHZGZUATQRHZUCSHZGUEDUFUBUGUDUFRQHUBQRIABJKUGSUCHU
      DUCSIACJKLMUBUAUDUAQNUAUCNOP $.
      $( [25-Nov-98] $)
  $}

  ${
    oa23.1 $e |- ( c ' ^ ( ( a ->2 c ) v ( ( a ->2 b ) ^ ( ( c v b ) '
                v ( ( a ->2 c ) ^ ( a ->2 b ) ) ) ) ) ) =< a ' $.
    $( Derivation of OA from Godowski/Greechie Eq.  II. $)
    oa23 $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
               =< ( a ->2 c ) $=
      ( wi2 wo wn wa ax-a2 ax-r4 ancom 2or lan ax-r5 wt ax-a3 ax-r1 oridm ax-r2
      u2lemonb 2an an1 comorr u2lemc1 comcom comcom2 fh3 3tr1 lea ler2an le3tr1
      u2lemanb lelor orabs lbtr bltr leo lebi 3tr df-le1 ) ABEZBCFZGZVAACEZHZFZ
      HZVDVGVDFVACBFZGZVDVAHZFZHZVDFVDVLFZVDVGVLVDVFVKVAVCVIVEVJVBVHBCIJVAVDKLM
      NVLVDIVMVDVMVDVMCGZHZFZVDVMOHZVDVMFZVDVNFZHZVMVPVTVQVRVMVSOVRVDVDFZVLFZVM
      WBVRVDVDVLPQWAVDVLVDRNSACTUAQVQVMVMUBQVDVMVNVDVLUCVDCCVDACUDUEUFUGUHVPVDV
      DVNHZFVDVOWCVDVNVMHZAGZVNHVOWCWDWEVNDVNVMUIUJVMVNKACULUKUMVDVNUNUOUPVDVLU
      QURUSUT $.
      $( [25-Nov-98] $)
  $}

  ${
    oa4lem1.1 $e |- a =< b ' $.
    oa4lem1.2 $e |- c =< d ' $.
    $( Lemma for 3-var to 4-var OA. $)
    oa4lem1 $p |- ( a v b ) =< ( ( a v c ) ' ->2 b ) $=
      ( wo wn wa wi2 leo ax-a1 lbtr ler2an lelor ax-a2 df-i2 le3tr1 ) BAGBACGZH
      ZHZBHZIZGABGTBJAUCBAUAUBASUAACKSLMENOABPTBQR $.
      $( [27-Nov-98] $)

    $( Lemma for 3-var to 4-var OA. $)
    oa4lem2 $p |- ( c v d ) =< ( ( a v c ) ' ->2 d ) $=
      ( wo wn wa wi2 leor ax-a1 lbtr ler2an lelor ax-a2 df-i2 le3tr1 ) DCGDACGZ
      HZHZDHZIZGCDGTDJCUCDCUAUBCSUACAKSLMFNOCDPTDQR $.
      $( [27-Nov-98] $)

    $( Lemma for 3-var to 4-var OA. $)
    oa4lem3 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( ( b v d ) ' v
            ( ( ( a v c ) ' ->2 b ) ^ ( ( a v c ) ' ->2 d ) ) ) $=
      ( wo wa wn wi2 oa4lem1 oa4lem2 le2an leor letr ) ABGZCDGZHACGIZBJZRDJZHZB
      DGIZUAGPSQTABCDEFKABCDEFLMUAUBNO $.
      $( [27-Nov-98] $)
  $}


  ${
    $( Substitutions into OA distributive law. $)
    distoa.1 $e |- d = ( a ->2 b ) $.
    distoa.2 $e |- e = ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    distoa.3 $e |- f = ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Satisfaction of distributive law hypothesis. $)
    distoah1 $p |- d =< ( a ->2 b ) $=
      ( wi2 bile ) DABJGK $.
      $( [29-Nov-98] $)

    $( Satisfaction of distributive law hypothesis. $)
    distoah2 $p |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $=
      ( wo wi2 wa wi1 wi0 leo ax-r1 u12lem le3tr2 ) BCJZABKACKLZMZUASTKZJESTNUA
      UBOEUAHPSTQR $.
      $( [29-Nov-98] $)

    $( Satisfaction of distributive law hypothesis. $)
    distoah3 $p |- f =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $=
      ( wo wi2 wa wi1 wi0 leor ax-r1 u12lem le3tr2 ) BCJZABKACKLZKZSTMZUAJFSTNU
      AUBOFUAIPSTQR $.
      $( [29-Nov-98] $)

    $( Satisfaction of distributive law hypothesis. $)
    distoah4 $p |- ( d ^ ( a ->2 c ) ) =< f $=
      ( wi2 wa wo wn leo ran df-i2 ax-r2 le3tr1 ) ABJZACJZKZUABCLZMUAMKZLZDTKFU
      AUCNDSTGOFUBUAJUDIUBUAPQR $.
      $( [29-Nov-98] $)

    ${

      $( OA distributive law as hypothesis. $)
      distoa.4 $e |- ( d ^ ( e v f ) ) = ( ( d ^ e ) v ( d ^ f ) ) $.
      $( Derivation in OM of OA, assuming OA distributive law ~ oadistd . $)
      distoa $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
               =< ( a ->2 c ) $=
        ( wi2 wo wa wi1 wn 1oa 2oath1 2or 2an ax-r2 lear bltr le2or 3tr2 u12lem
        ax-r1 wi0 df-i0 lan oridm le3tr2 ) ABKZBCLZULACKZMZNZMZULUMUOKZMZLZUNUN
        LULUMOUOLZMZUNUQUNUSUNABCPUSUOUNABCQULUNUAUBUCUTULUPURLZMZVBVDUTDEFLZMD
        EMZDFMZLVDUTJDULVEVCGEUPFURHIRSVFUQVGUSDULEUPGHSDULFURGISRUDUFVCVAULVCU
        MUOUGVAUMUOUEUMUOUHTUITUNUJUK $.
        $( [29-Nov-98] $)
    $}
  $}


  ${
    oa3to4lem.1 $e |- a ' =< b $.
    oa3to4lem.2 $e |- c ' =< d $.
    oa3to4lem.3 $e |- g = ( ( a ^ b ) v ( c ^ d ) ) $.
    $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
       proof). $)
    oa3to4lem1 $p |- b =< ( a ->1 g ) $=
      ( wn wa wo wi1 leor comid comcom3 wt ax-r2 ran ax-r1 lbtr lecom fh3 ancom
      df-t ax-a2 an1 3tr2 anidm anass lor leo lelan lelor letr ud1lem0a df-i1 )
      BAIZAABJZCDJZKZJZKZAELZBUQAURJZKZVBBUQBKZVEBUQMVFUQURKZVEVGVFVGUQAKZVFJZV
      FUQABAAANOUQBFUAUBPVFJVFPJVIVFPVFUCPVHVFPAUQKVHAUDAUQUEQRVFUFUGQSURVDUQUR
      AAJZBJZVDVKURVJABAUHRSAABUIQUJQTVDVAUQURUTAURUSUKULUMUNVCVBVCAUTLVBEUTAHU
      OAUTUPQST $.
      $( [19-Dec-98] $)

    $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
       proof). $)
    oa3to4lem2 $p |- d =< ( c ->1 g ) $=
      ( wn wa wo wi1 leor comid comcom3 wt ax-r2 ran ax-r1 lbtr lecom fh3 ancom
      df-t ax-a2 an1 3tr2 anidm anass lor lelan lelor letr ud1lem0a df-i1 ) DCI
      ZCABJZCDJZKZJZKZCELZDUPCURJZKZVADUPDKZVDDUPMVEUPURKZVDVFVEVFUPCKZVEJZVEUP
      CDCCCNOUPDGUAUBPVEJVEPJVHVEPVEUCPVGVEPCUPKVGCUDCUPUEQRVEUFUGQSURVCUPURCCJ
      ZDJZVCVJURVICDCUHRSCCDUIQUJQTVCUTUPURUSCURUQMUKULUMVBVAVBCUSLVAEUSCHUNCUS
      UOQST $.
      $( [19-Dec-98] $)

    $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
       proof). $)
    oa3to4lem3 $p |- ( a ^ ( b v ( d ^ ( ( a ^ c ) v ( b ^ d ) ) ) ) )
                      =< ( a ^ ( ( a ->1 g ) v ( ( c ->1 g ) ^ ( ( a ^ c ) v
                        ( ( a ->1 g ) ^ ( c ->1 g ) ) ) ) ) ) $=
      ( wa wo wi1 oa3to4lem1 oa3to4lem2 le2an lelor le2or lelan ) BDACIZBDIZJZI
      ZJAEKZCEKZRUBUCIZJZIZJABUBUAUFABCDEFGHLZDUCTUEABCDEFGHMZSUDRBUBDUCUGUHNON
      PQ $.
      $( [19-Dec-98] $)

    ${
      $( Godowski/Greechie 3-variable OA as hypothesis $)
      oa3to4lem.oa3 $e |- ( a ^ ( ( a ->1 g ) v ( ( c ->1 g ) ^ ( ( a ^ c ) v
                        ( ( a ->1 g ) ^ ( c ->1 g ) ) ) ) ) )
                          =< ( ( a ^ g ) v ( c ^ g ) ) $.
      $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to
         4-variable proof). $)
      oa3to4lem4 $p |- ( a ^ ( b v ( d ^ ( ( a ^ c ) v ( b ^ d ) ) ) ) )
               =< g $=
        ( wa wo wi1 oa3to4lem3 lear lel2or letr ) ABDACJZBDJKJKJAAELZCELZQRSJKJ
        KJZEABCDEFGHMTAEJZCEJZKEIUAEUBAENCENOPP $.
        $( [19-Dec-98] $)
    $}
  $}

  ${
    oa3to4lem5.1 $e |- ( ( a v b ) ^ ( c v d ) ) =< ( a v ( b ^ ( d v
                   ( ( a v c ) ^ ( b v d ) ) ) ) ) $.
    $( Lemma for orthoarguesian law (Godowski/Greechie 3-variable to 4-variable
       proof). $)
    oa3to4lem5 $p |- ( ( b v a ) ^ ( d v c ) ) =< ( a v ( b ^ ( d v
                   ( ( b v d ) ^ ( a v c ) ) ) ) ) $=
      ( wo wa ax-a2 2an ancom lor lan le3tr1 ) ABFZCDFZGABDACFZBDFZGZFZGZFBAFZD
      CFZGABDQPGZFZGZFEUANUBOBAHDCHIUETAUDSBUCRDQPJKLKM $.
      $( [19-Dec-98] $)
  $}

  ${
    oa3to4lem6.oa4.1 $e |- a =< b ' $.
    oa3to4lem6.oa4.2 $e |- c =< d ' $.
    $( Variable substitutions to make into the 4-variable OA. $)
    oa3to4lem6.3 $e |- g = ( ( a ' ^ b ' ) v ( c ' ^ d ' ) ) $.
    oa3to4lem6.4 $e |- e = a ' $.
    oa3to4lem6.5 $e |- f = c ' $.
    $( Godowski/Greechie 3-variable OA as hypothesis $)
    oa3to4lem6.oa3 $e |- ( e ^ ( ( e ->1 g ) v ( ( f ->1 g ) ^ ( ( e ^ f ) v
                        ( ( e ->1 g ) ^ ( f ->1 g ) ) ) ) ) )
                          =< ( ( e ^ g ) v ( f ^ g ) ) $.
    $( Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable).  The
       first 2 hypotheses are those for 4-OA. The next 3 are variable
       substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic
       only. $)
    oa3to4lem6 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( a v ( b ^ ( d v
                   ( ( a v c ) ^ ( b v d ) ) ) ) ) $=
      ( wo wa wn 2an 2or anor3 ax-r2 lecon3 lecon id wi1 ud1lem0ab le3tr2 oran3
      oa3to4lem4 lan lor lecon1 ) ABDACNZBDNZOZNZOZNZABNZCDNZOZAPZBPZDPZVACPZOZ
      VBVCOZNZOZNZOZVAVBOZVDVCOZNZUQPZUTPZVAVBVDVCVMBVAABHUAUBDVDCDIUAUBVMUCEEG
      UDZFGUDZEFOZVPVQOZNZOZNZOEGOZFGOZNVAVAVMUDZVDVMUDZVEWEWFOZNZOZNZOVAVMOZVD
      VMOZNMEVAWBWJKVPWEWAWIEVAGVMKJUEZVQWFVTWHFVDGVMLJUEZVRVEVSWGEVAFVDKLQVPWE
      VQWFWMWNQRQRQWCWKWDWLEVAGVMKJQFVDGVMLJQRUFUHVJVAUPPZOVNVIWOVAVIVBUOPZNWOV
      HWPVBVHVCUNPZOWPVGWQVCVGULPZUMPZNWQVEWRVFWSACSBDSRULUMUGTUIDUNSTUJBUOUGTU
      IAUPSTVMURPZUSPZNVOVKWTVLXAABSCDSRURUSUGTUFUK $.
      $( [19-Dec-98] $)
  $}

  ${
    oa3to4.oa4.1 $e |- a =< b ' $.
    oa3to4.oa4.2 $e |- c =< d ' $.
    $( Variable substitutions to make into the 4-variable OA. $)
    oa3to4.3 $e |- g = ( ( b ' ^ a ' ) v ( d ' ^ c ' ) ) $.
    oa3to4.4 $e |- e = b ' $.
    oa3to4.5 $e |- f = d ' $.
    $( Godowski/Greechie 3-variable OA as hypothesis $)
    oa3to4.oa3 $e |- ( e ^ ( ( e ->1 g ) v ( ( f ->1 g ) ^ ( ( e ^ f ) v
                        ( ( e ->1 g ) ^ ( f ->1 g ) ) ) ) ) )
                          =< ( ( e ^ g ) v ( f ^ g ) ) $.
    $( Orthoarguesian law (Godowski/Greechie 3-variable to 4-variable).  The
       first 2 hypotheses are those for 4-OA. The next 3 are variable
       substitutions into 3-OA. The last is the 3-OA. The proof uses OM logic
       only. $)
    oa3to4 $p |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v
                   ( ( a v c ) ^ ( b v d ) ) ) ) ) $=
      ( lecon3 oa3to4lem6 oa3to4lem5 ) BADCBADCEFGABHNCDINJKLMOP $.
      $( [19-Dec-98] $)
  $}

  ${
    oa6todual.1 $e |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^ ( e ' v f ' ) )
             =< ( b ' v ( a ' ^ ( c ' v ( ( ( a ' v c ' ) ^ ( b ' v d ' )
             ) ^ ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) v ( ( c ' v e ' ) ^
             ( d ' v f ' ) ) ) ) ) ) ) $.
    $( Conventional to dual 6-variable OA law. $)
    oa6todual $p |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v
   ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) )
      =< ( ( ( a ^ b ) v ( c ^ d ) ) v ( e ^ f ) ) $=
      ( wn wo wa lecon ax-a1 df-a 2or oran3 ax-r2 2an anor3 le3tr1 ) BHZAHZCHZU
      AUBIZTDHZIZJZUAEHZIZTFHZIZJZUBUGIZUDUIIZJZIZJZIZJZIZHZUATIZUBUDIZJZUGUIIZ
      JZHZBACACJZBDJZIZAEJZBFJZIZCEJZDFJZIZJZIZJZIZJZABJZCDJZIZEFJZIZVEUSGKVTTH
      ZURHZJUTBWFVSWGBLVSUAHZUQHZIWGAWHVRWIALVRUBHZUPHZJWICWJVQWKCLVQUFHZUOHZIW
      KVIWLVPWMVIUCHZUEHZIWLVGWNVHWOACMBDMNUCUEOPVPUKHZUNHZJWMVLWPVOWQVLUHHZUJH
      ZIWPVJWRVKWSAEMBFMNUHUJOPVOULHZUMHZIWQVMWTVNXACEMDFMNULUMOPQUKUNRPNUFUOOP
      QUBUPRPNUAUQOPQTURRPWEVCHZVDHZIVFWCXBWDXCWCVAHZVBHZIXBWAXDWBXEABMCDMNVAVB
      OPEFMNVCVDOPS $.
      $( [22-Dec-98] $)
  $}

  ${
    oa6fromdual.1 $e |- ( b ' ^ ( a ' v ( c ' ^ ( ( ( a ' ^ c ' ) v ( b '
                    ^ d ' ) ) v ( ( ( a ' ^ e ' ) v ( b ' ^ f ' ) ) ^ (
                    ( c ' ^ e ' ) v ( d ' ^ f ' ) ) ) ) ) ) )
            =< ( ( ( a ' ^ b ' ) v ( c ' ^ d ' ) ) v ( e ' ^ f ' ) ) $.
    $( Dual to conventional 6-variable OA law. $)
    oa6fromdual $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =<
                   ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^
   ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $=
      ( wn wa wo lecon oran 2an anor3 ax-r2 ax-a1 2or oran3 le3tr1 ) AHZBHZIZCH
      ZDHZIZJZEHZFHZIZJZHZUATUCTUCIZUAUDIZJZTUGIZUAUHIZJZUCUGIZUDUHIZJZIZJZIZJZ
      IZHZABJZCDJZIZEFJZIZBACACJZBDJZIZAEJZBFJZIZCEJZDFJZIZJZIZJZIZJZVEUJGKVKUF
      HZUIHZIUKVIWFVJWGVIUBHZUEHZIWFVGWHVHWIABLCDLMUBUENOEFLMUFUINOWEUAHZVDHZJV
      FBWJWDWKBPWDTHZVCHZIWKAWLWCWMAPWCUCHZVBHZJWMCWNWBWOCPWBUNHZVAHZIWOVNWPWAW
      QVNULHZUMHZIWPVLWRVMWSACLBDLMULUMNOWAUQHZUTHZJWQVQWTVTXAVQUOHZUPHZIWTVOXB
      VPXCAELBFLMUOUPNOVTURHZUSHZIXAVRXDVSXECELDFLMURUSNOQUQUTROMUNVANOQUCVBROM
      TVCNOQUAVDROS $.
      $( [22-Dec-98] $)
  $}

  ${
    oa6fromdualn.1 $e |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v
   ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) )
      =< ( ( ( a ^ b ) v ( c ^ d ) ) v ( e ^ f ) ) $.
    $( Dual to conventional 6-variable OA law. $)
    oa6fromdualn $p |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^ ( e ' v f ' ) )
             =< ( b ' v ( a ' ^ ( c ' v ( ( ( a ' v c ' ) ^ ( b ' v d ' )
             ) ^ ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) v ( ( c ' v e ' ) ^
             ( d ' v f ' ) ) ) ) ) ) ) $=
      ( wn wa wo ax-a1 2an 2or le3tr2 oa6fromdual ) AHZBHZCHZDHZEHZFHZBACACIZBD
      IZJZAEIZBFIZJZCEIZDFIZJZIZJZIZJZIABIZCDIZJZEFIZJQHZPHZRHZUTVAIZUSSHZIZJZU
      TTHZIZUSUAHZIZJZVAVFIZVCVHIZJZIZJZIZJZIUTUSIZVAVCIZJZVFVHIZJGBUSUNVQBKZAU
      TUMVPAKZCVAULVOCKZUDVEUKVNUBVBUCVDAUTCVAWCWDLBUSDVCWBDKZLMUGVJUJVMUEVGUFV
      IAUTEVFWCEKZLBUSFVHWBFKZLMUHVKUIVLCVAEVFWDWFLDVCFVHWEWGLMLMLMLUQVTURWAUOV
      RUPVSAUTBUSWCWBLCVADVCWDWELMEVFFVHWFWGLMNO $.
      $( [24-Dec-98] $)
  $}

  ${
    $( Substitutions into 6-variable OA law. $)
    oa6to4.1 $e |- b ' = ( a ->1 g ) ' $.
    oa6to4.2 $e |- d ' = ( c ->1 g ) ' $.
    oa6to4.3 $e |- f ' = ( e ->1 g ) ' $.
    $( Satisfaction of 6-variable OA law hypothesis. $)
    oa6to4h1 $p |- a ' =< b ' ' $=
      ( wn wa wo leo wi1 df-i1 ax-r4 ax-r2 ax-r1 con3 lbtr ) AKZUBAGLZMZBKZKUBU
      CNUDUEUEUDKZUEAGOZKUFHUGUDAGPQRSTUA $.
      $( [22-Dec-98] $)

    $( Satisfaction of 6-variable OA law hypothesis. $)
    oa6to4h2 $p |- c ' =< d ' ' $=
      ( wn wa wo leo wi1 df-i1 ax-r4 ax-r2 ax-r1 con3 lbtr ) CKZUBCGLZMZDKZKUBU
      CNUDUEUEUDKZUECGOZKUFIUGUDCGPQRSTUA $.
      $( [22-Dec-98] $)

    $( Satisfaction of 6-variable OA law hypothesis. $)
    oa6to4h3 $p |- e ' =< f ' ' $=
      ( wn wa wo leo wi1 df-i1 ax-r4 ax-r2 ax-r1 con3 lbtr ) EKZUBEGLZMZFKZKUBU
      CNUDUEUEUDKZUEEGOZKUFJUGUDEGPQRSTUA $.
      $( [22-Dec-98] $)

    ${
      $( 6-variable OA law as hypothesis. $)
      oa6to4.oa6 $e |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) )
                  ^ ( e ' v f ' ) )
             =< ( b ' v ( a ' ^ ( c ' v ( ( ( a ' v c ' ) ^ ( b ' v d ' )
             ) ^ ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) v ( ( c ' v e ' ) ^
             ( d ' v f ' ) ) ) ) ) ) ) $.
      $( Derivation of 4-variable proper OA law, assuming 6-variable OA law. $)
      oa6to4 $p |- ( ( a ->1 g ) ^ ( a v ( c ^ ( (
                     ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
                 ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                   ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
               =< ( ( ( a ^ g ) v ( c ^ g ) ) v ( e ^ g ) ) $=
        ( wa wo wi1 con1 2an lor 2or lan ancom oa6todual u1lemaa 3tr le3tr2 ) B
        ACACLZBDLZMZAELZBFLZMZCELZDFLZMZLZMZLZMZLABLZCDLZMZEFLZMAGNZACUEVBCGNZL
        ZMZUHVBEGNZLZMZUKVCVFLZMZLZMZLZMZLAGLZCGLZMZEGLZMABCDEFKUABVBUQVNBVBHOZ
        UPVMAUOVLCUGVEUNVKUFVDUEBVBDVCVSDVCIOZPQUJVHUMVJUIVGUHBVBFVFVSFVFJOZPQU
        LVIUKDVCFVFVTWAPQPRSQPUTVQVAVRURVOUSVPURAVBLVBALVOBVBAVSSAVBTAGUBUCUSCV
        CLVCCLVPDVCCVTSCVCTCGUBUCRVAEVFLVFELVRFVFEWASEVFTEGUBUCRUD $.
        $( [22-Dec-98] $)
    $}
  $}

  ${
    oa4b.1 $e |- ( ( a ->1 g ) ^ ( a v ( c ^ ( (
                   ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
               ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                 ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
             =< ( ( ( a ^ g ) v ( c ^ g ) ) v ( e ^ g ) ) $.
    $( Derivation of 4-OA law variant. $)
    oa4b $p |- ( ( a ->1 g ) ^ ( a v ( c ^ ( (
                   ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
               ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                 ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
             =< g $=
      ( wi1 wa wo lear lel2or letr ) ADFZABABGLBDFZGHACGLCDFZGHBCGMNGHGHGHGADGZ
      BDGZHZCDGZHDEQDRODPADIBDIJCDIJK $.
      $( [22-Dec-98] $)
  $}


  ${
    oa4to6lem.1 $e |- a ' =< b $.
    oa4to6lem.2 $e |- c ' =< d $.
    oa4to6lem.3 $e |- e ' =< f $.
    oa4to6lem.4 $e |- g = ( ( ( a ^ b ) v ( c ^ d ) ) v ( e ^ f ) ) $.
    $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $)
    oa4to6lem1 $p |- b =< ( a ->1 g ) $=
      ( wn wa wo wi1 wt ax-r2 ran ax-r1 lbtr leor comid comcom3 lecom fh3 ancom
      df-t ax-a2 an1 3tr2 anidm anass lor ax-a3 lelan lelor letr ud1lem0a df-i1
      leo ) BALZAABMZCDMZNEFMZNZMZNZAGOZBVAAVBMZNZVGBVABNZVJBVAUAVKVAVBNZVJVLVK
      VLVAANZVKMZVKVAABAAAUBUCVABHUDUEPVKMVKPMVNVKPVKUFPVMVKPAVANVMAUGAVAUHQRVK
      UIUJQSVBVIVAVBAAMZBMZVIVPVBVOABAUKRSAABULQUMQTVIVFVAVBVEAVBVBVCVDNZNZVEVB
      VQUTVEVRVBVCVDUNSTUOUPUQVHVGVHAVEOVGGVEAKURAVEUSQST $.
      $( [18-Dec-98] $)

    $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $)
    oa4to6lem2 $p |- d =< ( c ->1 g ) $=
      ( wa wo wi1 leor wt ax-r2 ran ax-r1 lbtr wn comid comcom3 lecom fh3 ancom
      df-t ax-a2 an1 3tr2 anidm anass lor or32 lelan lelor letr ud1lem0a df-i1
      ) DCUAZCABLZCDLZMEFLZMZLZMZCGNZDUTCVBLZMZVFDUTDMZVIDUTOVJUTVBMZVIVKVJVKUT
      CMZVJLZVJUTCDCCCUBUCUTDIUDUEPVJLVJPLVMVJPVJUFPVLVJPCUTMVLCUGCUTUHQRVJUIUJ
      QSVBVHUTVBCCLZDLZVHVOVBVNCDCUKRSCCDULQUMQTVHVEUTVBVDCVBVAVCMZVBMVDVBVPOVA
      VCVBUNTUOUPUQVGVFVGCVDNVFGVDCKURCVDUSQST $.
      $( [18-Dec-98] $)

    $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $)
    oa4to6lem3 $p |- f =< ( e ->1 g ) $=
      ( wa wo wi1 leor wt ax-r2 ran ax-r1 lbtr wn comid comcom3 lecom fh3 ancom
      df-t ax-a2 an1 3tr2 anidm anass lor lelan lelor letr ud1lem0a df-i1 ) FEU
      AZEABLCDLMZEFLZMZLZMZEGNZFUSEVALZMZVDFUSFMZVGFUSOVHUSVAMZVGVIVHVIUSEMZVHL
      ZVHUSEFEEEUBUCUSFJUDUEPVHLVHPLVKVHPVHUFPVJVHPEUSMVJEUGEUSUHQRVHUIUJQSVAVF
      USVAEELZFLZVFVMVAVLEFEUKRSEEFULQUMQTVFVCUSVAVBEVAUTOUNUOUPVEVDVEEVBNVDGVB
      EKUQEVBURQST $.
      $( [18-Dec-98] $)

    $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $)
    oa4to6lem4 $p |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v
   ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) )
     =< ( ( a ->1 g ) ^ ( a v ( c ^ (
         ( ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
       ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
         ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) ) $=
      ( wi1 wa wo oa4to6lem1 oa4to6lem2 le2an lelor oa4to6lem3 le2or lelan ) BA
      GLZACACMZBDMZNZAEMZBFMZNZCEMZDFMZNZMZNZMZNACUCUBCGLZMZNZUFUBEGLZMZNZUIUOU
      RMZNZMZNZMZNABCDEFGHIJKOZUNVEAUMVDCUEUQULVCUDUPUCBUBDUOVFABCDEFGHIJKPZQRU
      HUTUKVBUGUSUFBUBFURVFABCDEFGHIJKSZQRUJVAUIDUOFURVGVHQRQTUARQ $.
      $( [18-Dec-98] $)

    ${
      $( Proper 4-variable OA as hypothesis $)
      oa4to6lem.oa4 $e |- ( ( a ->1 g ) ^ ( a v ( c ^ ( (
                       ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
                   ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                     ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
                 =< g $.
      $( Lemma for orthoarguesian law (4-variable to 6-variable proof). $)
      oa4to6dual $p |- ( b ^ ( a v ( c ^ ( ( ( a ^ c ) v ( b ^ d ) ) v
      ( ( ( a ^ e ) v ( b ^ f ) ) ^ ( ( c ^ e ) v ( d ^ f ) ) ) ) ) ) )
               =< g $=
        ( wa wo wi1 oa4to6lem4 letr ) BACACMZBDMNAEMZBFMNCEMZDFMNMNMNMAGOZACRUA
        CGOZMNSUAEGOZMNTUBUCMNMNMNMGABCDEFGHIJKPLQ $.
        $( [19-Dec-98] $)
    $}
  $}

  ${
    oa4to6.oa6.1 $e |- a =< b ' $.
    oa4to6.oa6.2 $e |- c =< d ' $.
    oa4to6.oa6.3 $e |- e =< f ' $.
    $( Variable substitutions to make into the 4-variable OA. $)
    oa4to6.4 $e |- g =
                ( ( ( a ' ^ b ' ) v ( c ' ^ d ' ) ) v ( e ' ^ f ' ) ) $.
    oa4to6.5 $e |- h = a ' $.
    oa4to6.6 $e |- j = c ' $.
    oa4to6.7 $e |- k = e ' $.
    $( Proper 4-variable OA as hypothesis $)
    oa4to6.oa4 $e |- ( ( h ->1 g ) ^ ( h v ( j ^ ( (
                     ( h ^ j ) v ( ( h ->1 g ) ^ ( j ->1 g ) ) ) v
                 ( ( ( h ^ k ) v ( ( h ->1 g ) ^ ( k ->1 g ) ) ) ^
                   ( ( j ^ k ) v ( ( j ->1 g ) ^ ( k ->1 g ) ) ) ) ) ) ) )
               =< g $.
    $( Orthoarguesian law (4-variable to 6-variable proof).  The first 3
       hypotheses are those for 6-OA. The next 4 are variable substitutions
       into 4-OA. The last is the 4-OA. The proof uses OM logic only. $)
    oa4to6 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =<
                   ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^
   ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $=
      ( wa wo lecon3 lecon wi1 ud1lem0ab 2an 2or le3tr2 oa4to6dual oa6fromdual
      wn id ) ABCDEFAUJZBUJZCUJZDUJZEUJZFUJZULUMSUNUOSTUPUQSTZBULABKUAUBDUNCDLU
      AUBFUPEFMUAUBURUKHGUCZHIHISZUSIGUCZSZTZHJSZUSJGUCZSZTZIJSZVAVESZTZSZTZSZT
      ZSGULURUCZULUNULUNSZVOUNURUCZSZTZULUPSZVOUPURUCZSZTZUNUPSZVQWASZTZSZTZSZT
      ZSURRUSVOVNWJHULGURONUDZHULVMWIOIUNVLWHPVCVSVKWGUTVPVBVRHULIUNOPUEUSVOVAV
      QWKIUNGURPNUDZUEUFVGWCVJWFVDVTVFWBHULJUPOQUEUSVOVEWAWKJUPGURQNUDZUEUFVHWD
      VIWEIUNJUPPQUEVAVQVEWAWLWMUEUFUEUFUEUFUENUGUHUI $.
      $( [19-Dec-98] $)
  $}


  ${
    oa4btoc.1 $e |- ( ( a ->1 g ) ^ ( a v ( c ^ ( (
                   ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
               ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                 ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
             =< g $.
    $( Derivation of 4-OA law variant. $)
    oa4btoc $p |- ( a ' ^ ( a v ( c ^ ( (
                   ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
               ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                 ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
             =< g $=
      ( wn wa wi1 wo leo df-i1 ax-r1 lbtr leid lelor lelan le2an letr ) AFZABAB
      GADHZBDHZGIZACGTCDHZGIBCGUAUCGIGZIZGZIZGTUGGDSTUGUGSSADGZIZTSUHJTUIADKLMU
      FUFAUEUEBUDUDUBUDNOPOQER $.
      $( [22-Dec-98] $)
  $}

  ${
    oa4ctob.1 $e |- ( a ' ^ ( a v ( c ^ ( (
                   ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
               ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                 ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
             =< g $.
    $( Derivation of 4-OA law variant. $)
    oa4ctob $p |- ( ( a ->1 g ) ^ ( a v ( c ^ ( (
                   ( a ^ c ) v ( ( a ->1 g ) ^ ( c ->1 g ) ) ) v
               ( ( ( a ^ e ) v ( ( a ->1 g ) ^ ( e ->1 g ) ) ) ^
                 ( ( c ^ e ) v ( ( c ->1 g ) ^ ( e ->1 g ) ) ) ) ) ) ) )
             =< g $=
      ( wa wi1 wo oas ) ABABFADGZBDGZFHACFJCDGZFHBCFKLFHFHFDEI $.
      $( [22-Dec-98] $)
  $}

  ${
    oa4ctod.1 $e |- ( a ' ^ ( a v ( b ^ ( (
                   ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) )
             =< d $.
    $( Derivation of 4-OA law variant. $)
    oa4ctod $p |- ( b ^ ( (
                   ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) )
             =< ( a ' ->1 d ) $=
      ( wa wi1 wo oat ) ABABFADGZBDGZFHACFJCDGZFHBCFKLFHFHFDEI $.
      $( [24-Dec-98] $)
  $}

  ${
    oa4dtoc.1 $e |- ( b ^ ( (
                   ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) )
             =< ( a ' ->1 d ) $.
    $( Derivation of 4-OA law variant. $)
    oa4dtoc $p |- ( a ' ^ ( a v ( b ^ ( (
                   ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) )
             =< d $=
      ( wa wi1 wo oatr ) ABABFADGZBDGZFHACFJCDGZFHBCFKLFHFHFDEI $.
      $( [24-Dec-98] $)
  $}

  $( Lemma commuting terms. $)
  oa4dcom $p |- ( b ^ ( (
                   ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) )
                 = ( b ^ ( (
                   ( b ^ a ) v ( ( b ->1 d ) ^ ( a ->1 d ) ) ) v
               ( ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) $=
    ( wa wi1 wo ancom 2or lan ) ABEZADFZBDFZEZGZACELCDFZEGZBCEMPEGZEZGBAEZMLEZG
    ZRQEZGBOUBSUCKTNUAABHLMHIQRHIJ $.
    $( [24-Dec-98] $)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
   5OA law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    oa8to5.1 $e |- ( ( ( a ' v b ' ) ^ ( c ' v d ' ) ) ^
           ( ( e ' v f ' ) ^ ( g ' v h ' ) ) ) =< ( b ' v ( a ' ^ ( c ' v
               ( ( ( ( a ' v c ' ) ^ ( b ' v d ' ) ) ^
                   ( ( ( a ' v g ' ) ^ ( b ' v h ' ) ) v
                     ( ( c ' v g ' ) ^ ( d ' v h ' ) ) ) )
              ^ ( ( ( ( a ' v e ' ) ^ ( b ' v f ' ) ) ^
                      ( ( ( a ' v g ' ) ^ ( b ' v h ' ) ) v
                        ( ( e ' v g ' ) ^ ( f ' v h ' ) ) ) )
                 v ( ( ( c ' v e ' ) ^ ( d ' v f ' ) ) ^
                      ( ( ( c ' v g ' ) ^ ( d ' v h ' ) ) v
                      ( ( e ' v g ' ) ^ ( f ' v h ' ) ) ) ) ) ) ) ) ) $.
    $( Conventional to dual 8-variable OA law. $)
    oa8todual $p |- ( b ^ ( a v ( c ^
               ( ( ( ( a ^ c ) v ( b ^ d ) ) v
                   ( ( ( a ^ g ) v ( b ^ h ) ) ^
                     ( ( c ^ g ) v ( d ^ h ) ) ) )
              v ( ( ( ( a ^ e ) v ( b ^ f ) ) v
                      ( ( ( a ^ g ) v ( b ^ h ) ) ^
                        ( ( e ^ g ) v ( f ^ h ) ) ) )
                 ^ ( ( ( c ^ e ) v ( d ^ f ) ) v
                      ( ( ( c ^ g ) v ( d ^ h ) ) ^
                      ( ( e ^ g ) v ( f ^ h ) ) ) ) ) ) ) ) )
             =< ( ( ( a ^ b ) v ( c ^ d ) ) v
                ( ( e ^ f ) v ( g ^ h ) ) ) $=
      ( wn wo wa lecon ax-a1 df-a 2or oran3 ax-r2 2an anor3 le3tr1 ) BJZAJZCJZU
      CUDKZUBDJZKZLZUCGJZKZUBHJZKZLZUDUIKZUFUKKZLZKZLZUCEJZKZUBFJZKZLZUMUSUIKZV
      AUKKZLZKZLZUDUSKZUFVAKZLZUPVFKZLZKZLZKZLZKZJZUCUBKZUDUFKZLZUSVAKZUIUKKZLZ
      LZJZBACACLZBDLZKZAGLZBHLZKZCGLZDHLZKZLZKZAELZBFLZKZWMEGLZFHLZKZLZKZCELZDF
      LZKZWPXDLZKZLZKZLZKZLZABLZCDLZKZEFLZGHLZKZKZWFVRIMXPUBJZVQJZLVSBYDXOYEBNX
      OUCJZVPJZKYEAYFXNYGANXNUDJZVOJZLYGCYHXMYICNXMURJZVNJZKYIWRYJXLYKWRUHJZUQJ
      ZKYJWJYLWQYMWJUEJZUGJZKYLWHYNWIYOACOBDOPUEUGQRWQUMJZUPJZLYMWMYPWPYQWMUJJZ
      ULJZKYPWKYRWLYSAGOBHOPUJULQRZWPUNJZUOJZKYQWNUUAWOUUBCGODHOPUNUOQRZSUMUPTR
      PUHUQQRXLVHJZVMJZLYKXFUUDXKUUEXFVCJZVGJZKUUDXAUUFXEUUGXAUTJZVBJZKUUFWSUUH
      WTUUIAEOBFOPUTVBQRXEYPVFJZLUUGWMYPXDUUJYTXDVDJZVEJZKUUJXBUUKXCUULEGOFHOPV
      DVEQRZSUMVFTRPVCVGQRXKVKJZVLJZKUUEXIUUNXJUUOXIVIJZVJJZKUUNXGUUPXHUUQCEODF
      OPVIVJQRXJYQUUJLUUOWPYQXDUUJUUCUUMSUPVFTRPVKVLQRSVHVMTRPURVNQRSUDVOTRPUCV
      PQRSUBVQTRYCWBJZWEJZKWGXSUURYBUUSXSVTJZWAJZKUURXQUUTXRUVAABOCDOPVTWAQRYBW
      CJZWDJZKUUSXTUVBYAUVCEFOGHOPWCWDQRPWBWEQRUA $.
      $( [8-May-00] $)

    ${
      $( Substitutions into 8-variable 5OA law. $)
      oa8to5.2 $e |- b ' = ( a ->1 j ) ' $.
      oa8to5.3 $e |- d ' = ( c ->1 j ) ' $.
      oa8to5.4 $e |- f ' = ( e ->1 j ) ' $.
      oa8to5.5 $e |- h ' = ( g ->1 j ) ' $.
      $( Orthoarguesian law 5OA converted from 8 to 5 variables. $)
      oa8to5 $p |- ( ( a ->1 j ) ^ ( a v ( c ^ (
                ( ( ( a ^ c ) v ( ( a ->1 j ) ^ ( c ->1 j ) ) ) v
                ( ( ( a ^ g ) v ( ( a ->1 j ) ^ ( g ->1 j ) ) )
                ^ ( ( c ^ g ) v ( ( c ->1 j ) ^ ( g ->1 j ) ) ) ) )
                v (
                ( ( ( a ^ e ) v ( ( a ->1 j ) ^ ( e ->1 j ) ) ) v
                ( ( ( a ^ g ) v ( ( a ->1 j ) ^ ( g ->1 j ) ) )
                ^ ( ( e ^ g ) v ( ( e ->1 j ) ^ ( g ->1 j ) ) ) ) )
                ^
                ( ( ( c ^ e ) v ( ( c ->1 j ) ^ ( e ->1 j ) ) ) v
                ( ( ( c ^ g ) v ( ( c ->1 j ) ^ ( g ->1 j ) ) )
                ^ ( ( e ^ g ) v ( ( e ->1 j ) ^ ( g ->1 j ) ) ) ) ) ) ) )
                ) )
                 =< ( ( ( a ^ j ) v ( c ^ j ) ) v
                      ( ( e ^ j ) v ( g ^ j ) ) ) $=
        ( wa wo 2an lor 2or lan wi1 oa8todual con1 ancom u1lemaa 3tr le3tr2 ) B
        ACACOZBDOZPZAGOZBHOZPZCGOZDHOZPZOZPZAEOZBFOZPZUMEGOZFHOZPZOZPZCEOZDFOZP
        ZUPVDOZPZOZPZOZPZOABOZCDOZPZEFOZGHOZPZPAIUAZACUHWBCIUAZOZPZUKWBGIUAZOZP
        ZUNWCWFOZPZOZPZUSWBEIUAZOZPZWHVBWMWFOZPZOZPZVGWCWMOZPZWJWQOZPZOZPZOZPZO
        AIOZCIOZPZEIOZGIOZPZPABCDEFGHJUBBWBVOXGBWBKUCZVNXFAVMXECURWLVLXDUJWEUQW
        KUIWDUHBWBDWCXNDWCLUCZQRUMWHUPWJULWGUKBWBHWFXNHWFNUCZQRZUOWIUNDWCHWFXOX
        PQRZQSVFWSVKXCVAWOVEWRUTWNUSBWBFWMXNFWMMUCZQRUMWHVDWQXQVCWPVBFWMHWFXSXP
        QRZQSVIXAVJXBVHWTVGDWCFWMXOXSQRUPWJVDWQXRXTQSQSTRQVRXJWAXMVPXHVQXIVPAWB
        OWBAOXHBWBAXNTAWBUDAIUEUFVQCWCOWCCOXIDWCCXOTCWCUDCIUEUFSVSXKVTXLVSEWMOW
        MEOXKFWMEXSTEWMUDEIUEUFVTGWFOWFGOXLHWFGXPTGWFUDGIUEUFSSUG $.
        $( [8-May-00] $)
    $}
  $}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
   "Godowski/Greechie" form of proper 4-OA
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    oa4to4u.1 $e |- ( ( e ->1 d ) ^ ( e v ( f ^ ( (
                     ( e ^ f ) v ( ( e ->1 d ) ^ ( f ->1 d ) ) ) v
                 ( ( ( e ^ g ) v ( ( e ->1 d ) ^ ( g ->1 d ) ) ) ^
                   ( ( f ^ g ) v ( ( f ->1 d ) ^ ( g ->1 d ) ) ) ) ) ) ) )
               =< ( ( ( e ^ d ) v ( f ^ d ) ) v ( g ^ d ) ) $.
    $( Substitutions into 4-variable OA law. $)
    oa4to4u.2 $e |- e = ( a ' ->1 d ) $.
    oa4to4u3 $e |- f = ( b ' ->1 d ) $.
    oa4to4u.4 $e |- g = ( c ' ->1 d ) $.
    $( A "universal" 4-OA. The hypotheses are the standard proper 4-OA and
       substitutions into it. $)
    oa4to4u $p |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( (
     ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v
 ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^
   ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) )
    ) ) ) ) =< ( ( ( ( a ->1 d ) ^ ( a ' ->1 d ) ) v
                   ( ( b ->1 d ) ^ ( b ' ->1 d ) ) ) v
                   ( ( c ->1 d ) ^ ( c ' ->1 d ) ) ) $=
      ( wn wi1 wa wo 2an 2or ran ax-a2 ax-r2 ud1lem0b u1lem11 ax-r5 lan u1lemab
      le3tr2 lor u1lem8 ax-a1 3tr ax-r1 ) ALZDMZDMZUMBLZDMZUMUPNZUNUPDMZNZOZUMC
      LZDMZNZUNVBDMZNZOZUPVBNZURVDNZOZNZOZNZOZNZUMDNZUPDNZOZVBDNZOZADMZUMUPVTBD
      MZNZUQOZVTCDMZNZVCOZWAWDNZVGOZNZOZNZOZNVTUMNZWAUPNZOZWDVBNZOEDMZEFEFNZWQF
      DMZNZOZEGNZWQGDMZNZOZFGNZWSXCNZOZNZOZNZOZNEDNZFDNZOZGDNZOVNVSHWQUNXLVMEUM
      DIUAZEUMXKVLIFUPXJVKJXAUTXIVJWRUQWTUSEUMFUPIJPWQUNWSURXQFUPDJUAZPQXEVFXHV
      IXBVCXDVEEUMGVBIKPWQUNXCVDXQGVBDKUAZPQXFVGXGVHFUPGVBJKPWSURXCVDXRXSPQPQPQ
      PXOVQXPVRXMVOXNVPEUMDIRFUPDJRQGVBDKRQUFUNVTVMWLADUBZVLWKUMVKWJUPUTWCVJWIU
      TUSUQOWCUQUSSUSWBUQUNVTURWAXTBDUBZPUCTVFWFVIWHVFVEVCOWFVCVESVEWEVCUNVTVDW
      DXTCDUBZPUCTVIVHVGOWHVGVHSVHWGVGURWAVDWDYAYBPUCTPQUDUGPVQWOVRWPVOWMVPWNVO
      ULDNZULLZDNZOZWMULDUEWMYFWMADNZYCOYCYGOYFADUHYGYCSYGYEYCAYDDAUIRUGUJUKTVP
      UODNZUOLZDNZOZWNUODUEWNYKWNBDNZYHOYHYLOYKBDUHYLYHSYLYJYHBYIDBUIRUGUJUKTQV
      RVADNZVALZDNZOZWPVADUEWPYPWPCDNZYMOYMYQOYPCDUHYQYMSYQYOYMCYNDCUIRUGUJUKTQ
      UF $.
      $( [28-Dec-98] $)

    $( A weaker-looking "universal" proper 4-OA. $)
    oa4to4u2 $p |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( (
     ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v
 ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^
   ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) )
    ) ) ) ) =< d $=
      ( wi1 wn wa wo oa4to4u u1lem8 lear lel2or bltr letr ) ADLZAMZDLZBMZDLZUBB
      DLZNUDUFNOUBCDLZNUDCMZDLZNOUGUHNUFUJNONONONUBUDNZUGUFNZOZUHUJNZODABCDEFGH
      IJKPUMDUNUKDULUKADNZUCDNZODADQUODUPADRUCDRSTULBDNZUEDNZODBDQUQDURBDRUEDRS
      TSUNCDNZUIDNZODCDQUSDUTCDRUIDRSTSUA $.
      $( [29-Dec-98] $)
  $}

  ${
    oa4uto4g.1 $e |- ( ( b ' ->1 d ) ^ ( ( b ' ' ->1 d ) v
                      ( ( a ' ' ->1 d ) ^ ( (
     ( ( b ' ->1 d ) ^ ( a ' ->1 d ) ) v ( ( b ' ' ->1 d ) ^
          ( a ' ' ->1 d ) ) ) v
 ( ( ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) v ( ( b ' ' ->1 d ) ^
          ( c ' ' ->1 d ) ) ) ^
   ( ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) v ( ( a ' ' ->1 d ) ^
          ( c ' ' ->1 d ) ) ) ) ) ) ) ) =< d $.

    $( Expression involving 4th variable. $)
    oa4uto4g.4 $e |- h =
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $.
    $( Derivation of "Godowski/Greechie" 4-variable proper OA law variant from
       "universal" variant ~ oa4to4u2 . $)
    oa4uto4g $p |- ( ( a ->1 d ) ^ ( (
             ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v h ) )
             =< ( b ->1 d ) $=
      ( wi1 wa wo ancom 2or lan lor wn u1lem9a lecon1 le2an leror 2an bltr letr
      ax-r5 le2or lelan lelor ax-a1 ud1lem0b ax-r2 oau ) BADHZABIZUKBDHZIZJZEJZ
      IZDBUMUQJZIBUMUKBAIZUMUKIZJZEJZIZJZIZDURVDBUQVCUMUPVBUKUOVAEULUSUNUTABKUK
      UMKLUCMNMVEBOZDHZUMUKVGAOZDHZIZUTJZVICOZDHZIZUKCDHZIZJZVGVMIZUMVOIZJZIZJZ
      IZJZIZDBVGVDWDVGBBDPQZVCWCUMVBWBUKVAVKEWAUSVJUTBVGAVIWFVIAADPQZRSEACIZVPJ
      ZBCIZVSJZIWAGWIVQWKVTWHVNVPAVICVMWGVMCCDPQZRSWJVRVSBVGCVMWFWLRSRUAUDUEUFR
      WEVGVFOZDHZVHOZDHZVJWNWPIZJZVRWNVLOZDHZIZJZVNWPWTIZJZIZJZIZJZIDWDXHVGUMWN
      WCXGBWMDBUGUHZUKWPWBXFAWODAUGUHZVKWRWAXEUTWQVJUMWNUKWPXIXJTNWAVTVQIXEVQVT
      KVTXBVQXDVSXAVRUMWNVOWTXICWSDCUGUHZTNVPXCVNUKWPVOWTXJXKTNTUILTLMFUAUBUAUJ
      $.
      $( [28-Dec-98] $)
  $}

  ${
    oa4gto4u.1 $e |- ( ( e ->1 d ) ^ ( (
             ( e ^ f ) v ( ( e ->1 d ) ^ ( f ->1 d ) ) ) v
         ( ( ( e ^ g ) v ( ( e ->1 d ) ^ ( g ->1 d ) ) ) ^
           ( ( f ^ g ) v ( ( f ->1 d ) ^ ( g ->1 d ) ) ) ) ) )
             =< ( f ->1 d ) $.
    $( Substitutions into 4-variable OA law. $)
    oa4gto4u.2 $e |- f = ( a ->1 d ) $.
    oa4gto4u3 $e |- e = ( b ->1 d ) $.
    oa4gto4u.4 $e |- g = ( c ->1 d ) $.
    $( A "universal" 4-OA derived from the Godowski/Greechie form.  The
       hypotheses are the Godowski/Greechie form of the proper 4-OA and
       substitutions into it. $)
    oa4gto4u $p |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( (
     ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v
 ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^
   ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) )
    ) ) ) ) =< d $=
      ( wi1 wn wa wo ud1lem0b u1lem12 ax-r2 2an 2or ancom ax-r1 oaur bltr ) ADL
      ZAMDLZBMDLZUEBDLZNZUFUGNZOZUECDLZNZUFCMDLZNZOZUHULNZUGUNNZOZNZOZNZOZNZFFD
      LZEDLZEFNZVFVENZOZEGNZVFGDLZNZOZFGNZVEVKNZOZNZOZNZOZNZDWAVDFUEVTVCIVEUFVS
      VBVEUEDLUFFUEDIPADQRZVFUGVRVAVFUHDLUGEUHDJPBDQRZVIUKVQUTVGUIVHUJVGFENUIEF
      UAFUEEUHIJSRVHVEVFNUJVFVEUAVEUFVFUGWBWCSRTVQVPVMNUTVMVPUAVPUPVMUSVNUMVOUO
      FUEGULIKSVEUFVKUNWBVKULDLUNGULDKPCDQRZSTVJUQVLUREUHGULJKSVFUGVKUNWCWDSTSR
      TSTSUBFVSDHUCUD $.
      $( [30-Dec-98] $)
  $}

  ${
    oa4uto4.1 $e |- ( ( a ->1 d ) ^ ( ( a ' ->1 d ) v ( ( b ' ->1 d ) ^ ( (
     ( ( a ->1 d ) ^ ( b ->1 d ) ) v ( ( a ' ->1 d ) ^ ( b ' ->1 d ) ) ) v
 ( ( ( ( a ->1 d ) ^ ( c ->1 d ) ) v ( ( a ' ->1 d ) ^ ( c ' ->1 d ) ) ) ^
   ( ( ( b ->1 d ) ^ ( c ->1 d ) ) v ( ( b ' ->1 d ) ^ ( c ' ->1 d ) ) ) )
    ) ) ) ) =< d $.
    $( Derivation of standard 4-variable proper OA law from "universal" variant
       ~ oa4to4u2 . $)
    oa4uto4 $p |- ( ( a ->1 d ) ^ ( a v ( b ^ ( (
                     ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
                 ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                   ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) )
               =< d $=
      ( wi1 wa wo wn u1lem9a lecon1 ax-a2 le2an lelor bltr le2or lelan letr ) A
      DFZABABGZSBDFZGZHZACGZSCDFZGZHZBCGZUAUEGZHZGZHZGZHZGSAIDFZBIDFZUBUOUPGZHZ
      UFUOCIDFZGZHZUIUPUSGZHZGZHZGZHZGDUNVGSAUOUMVFUOAADJKZBUPULVEUPBBDJKZUCURU
      KVDUCUBTHURTUBLTUQUBAUOBUPVHVIMNOUGVAUJVCUGUFUDHVAUDUFLUDUTUFAUOCUSVHUSCC
      DJKZMNOUJUIUHHVCUHUILUHVBUIBUPCUSVIVJMNOMPMPQER $.
      $( [30-Dec-98] $)
  $}


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
   Some 3-OA inferences (derived under OM)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)


  $( Lemma for 3-OA(2).  Equivalence with substitution into 4-OA. $)
  oa3-2lema $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( (
                       ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) v
                   ( ( ( a ^ 0 ) v ( ( a ->1 c ) ^ ( 0 ->1 c ) ) ) ^
                     ( ( b ^ 0 ) v ( ( b ->1 c ) ^ ( 0 ->1 c ) ) ) ) ) ) ) )
                 = ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $=
    ( wa wi1 wo wf ax-a3 an0 ax-r5 ax-a2 wt or0 0i1 lan an1 3tr 2an lor ax-r2
    oridm ) ABABDZACEZBCEZDZFZAGDZUCGCEZDZFZBGDZUDUHDZFZDZFZDZFABUFDZFUCUPUQAUO
    UFBUOUBUEUNFZFUFUBUEUNHURUEUBURUEUEFUEUNUEUEUJUCUMUDUJGUIFUIGFZUCUGGUIAIJGU
    IKUSUIUCLDUCUIMUHLUCCNZOUCPQQUMGULFULGFZUDUKGULBIJGULKVAULUDLDUDULMUHLUDUTO
    UDPQQRSUEUATSTOSO $.
    $( [24-Dec-98] $)

  $( Lemma for 3-OA(2).  Equivalence with substitution into 4-OA. $)
  oa3-2lemb $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( (
                       ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) v
                   ( ( ( a ^ c ) v ( ( a ->1 c ) ^ ( c ->1 c ) ) ) ^
                     ( ( b ^ c ) v ( ( b ->1 c ) ^ ( c ->1 c ) ) ) ) ) ) ) )
                 = ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $=
    ( wa wi1 wo ax-a3 wt i1id lan an1 ax-r2 lor wn or12 oridm df-i1 3tr1 2an )
    ABABDZACEZBCEZDZFZACDZUACCEZDZFZBCDZUBUFDZFZDZFZDZFABUDDZFUAUNUOAUMUDBUMTUC
    ULFZFUDTUCULGUPUCTUPUCUCFUCULUCUCUHUAUKUBUHUEUAFZUAUGUAUEUGUAHDUAUFHUACIZJU
    AKLMUEANZUEFZFZUTUQUAVAUSUEUEFZFUTUEUSUEOVBUEUSUEPMLUAUTUEACQZMVCRLUKUIUBFZ
    UBUJUBUIUJUBHDUBUFHUBURJUBKLMUIBNZUIFZFZVFVDUBVGVEUIUIFZFVFUIVEUIOVHUIVEUIP
    MLUBVFUIBCQZMVIRLSMUCPLMLJMJ $.
    $( [24-Dec-98] $)

  $( Lemma for 3-OA(6).  Equivalence with substitution into 4-OA. $)
  oa3-6lem $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( (
                       ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) v
                   ( ( ( a ^ 1 ) v ( ( a ->1 c ) ^ ( 1 ->1 c ) ) ) ^
                     ( ( b ^ 1 ) v ( ( b ->1 c ) ^ ( 1 ->1 c ) ) ) ) ) ) ) )
                 = ( ( a ->1 c ) ^ ( a v ( b ^ ( (
                  ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $=
    ( wa wi1 wo wt wn an1 lan u1lemab ax-r2 2or ax-a3 ax-r1 orabs ax-r5 3tr 2an
    lor 1i1 or32 leo le2an df-le2 ax-a1 df-i1 ) ABABDZACEZBCEZDZFZAGDZUIGCEZDZF
    ZBGDZUJUNDZFZDZFZDZFABAHZCEZBHZCEZDZUKFZDZFUIVBVIAVAVHBVAULAVCCDZFZBVECDZFZ
    DZFUHVNFZUKFVHUTVNULUPVKUSVMUPAACDZVJFZFZAVPFZVJFZVKUMAUOVQAIUOUICDVQUNCUIC
    UAZJACKLMVTVRAVPVJNOVSAVJACPQRUSBBCDZVLFZFZBWBFZVLFZVMUQBURWCBIURUJCDWCUNCU
    JWAJBCKLMWFWDBWBVLNOWEBVLBCPQRSTUHUKVNUBVOVGUKVOVNVGUHVNAVKBVMAVJUCBVLUCUDU
    EVKVDVMVFVKVCHZVJFZVDAWGVJAUFQVDWHVCCUGOLVMVEHZVLFZVFBWIVLBUFQVFWJVECUGOLSL
    QRJTJ $.
    $( [24-Dec-98] $)

  $( Lemma for 3-OA(3).  Equivalence with substitution into 6-OA dual. $)
  oa3-3lem $p |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( a '
                  ^ b ' ) ) v ( ( ( a ^ 1 ) v ( a ' ^ c ) ) ^
                   ( ( b ^ 1 ) v ( b ' ^ c ) ) ) ) ) ) ) =
               ( a ' ^ ( a v ( b ^
               ( ( a == b ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) $=
    ( wa wn wo wt tb wi1 dfb ax-r1 an1 ax-a1 ax-r2 ax-r5 df-i1 2an 2or lan lor
    ) ABABDAEZBEZDFZAGDZUACDZFZBGDZUBCDZFZDZFZDZFABABHZUACIZUBCIZDZFZDZFUAULURA
    UKUQBUCUMUJUPUMUCABJKUFUNUIUOUFUAEZUEFZUNUDUSUEUDAUSALAMNOUNUTUACPKNUIUBEZU
    HFZUOUGVAUHUGBVABLBMNOUOVBUBCPKNQRSTS $.
    $( [24-Dec-98] $)

  $( Lemma for 3-OA(1).  Equivalence with substitution into 6-OA dual. $)
  oa3-1lem $p |- ( 1 ^ ( 0 v ( a ^ ( ( ( 0 ^ a ) v ( 1 ^ ( a ->1 c ) )
       ) v ( ( ( 0 ^ b ) v ( 1 ^ ( b ->1 c ) ) ) ^ ( ( a ^ b ) v
        ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) ) )
       = ( a ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^
               ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $=
    ( wt wf wa wi1 wo ancom an1 ax-a2 or0 an0 ax-r2 2or 3tr ax-r5 ran lor lan )
    DEAEAFZDACGZFZHZEBFZDBCGZFZHZABFUBUFFHZFZHZFZHZFUMDFUMAUBUFUIFZHZFZDUMIUMJU
    MULEHULUPEULKULLUKUOAUKUBUJHUOUDUBUJUDEUBHUBEHUBUAEUCUBUAAEFEEAIAMNUCUBDFUB
    DUBIUBJNOEUBKUBLPQUJUNUBUHUFUIUHUGUEHUFEHUFUEUGKUGUFUEEUGUFDFUFDUFIUFJNUEBE
    FEEBIBMNOUFLPRSNTPP $.
    $( [25-Dec-98] $)

  $( Lemma for 3-OA(4).  Equivalence with substitution into 6-OA dual. $)
  oa3-4lem $p |- ( a ' ^ ( a v ( b ^ ( ( ( a ^ b ) v ( a '
                  ^ b ' ) ) v ( ( ( a ^ c ) v ( a ' ^ 1 ) ) ^
                   ( ( b ^ c ) v ( b ' ^ 1 ) ) ) ) ) ) ) =
               ( a ' ^ ( a v ( b ^
               ( ( a == b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) $=
    ( wa wn wo wt tb wi1 dfb ax-a2 df-i1 an1 lor 3tr1 2an 2or ax-r1 lan ) ABABD
    AEZBEZDFZACDZTGDZFZBCDZUAGDZFZDZFZDZFABABHZACIZBCIZDZFZDZFTUKUQAUJUPBUPUJUL
    UBUOUIABJUMUEUNUHTUCFUCTFUMUETUCKACLUDTUCTMNOUAUFFUFUAFUNUHUAUFKBCLUGUAUFUA
    MNOPQRSNS $.
    $( [25-Dec-98] $)

  $( Lemma for 3-OA(5).  Equivalence with substitution into 6-OA dual. $)
  oa3-5lem $p |- ( ( a ->1 c ) ^ ( a v ( c ^ ( ( ( a ^ c ) v (
          ( a ->1 c ) ^ 1 ) ) v ( ( ( a ^ b ) v ( ( a ->1 c ) ^
      ( b ->1 c ) ) ) ^ ( ( c ^ b ) v ( 1 ^ ( b ->1 c ) ) ) ) ) ) ) ) =
          ( ( a ->1 c ) ^ ( a v ( c ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^
          ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) ) ) $=
    ( wa wi1 wt wo or12 oridm lor ax-r2 an1 df-i1 3tr1 ancom ax-r5 3tr lan 2or
    wn ) ACACDZACEZFDZGZABDUBBCEZDGZCBDZFUEDZGZDZGZDZGACUBUEUFDZGZDZGUBULUOAUKU
    NCUDUBUJUMUAATZUAGZGZUQUDUBURUPUAUAGZGUQUAUPUAHUSUAUPUAIJKUCUQUAUCUBUQUBLAC
    MZKJUTNUJUFUEDUMUIUEUFUGBTZBCDZGZGZVCUIUEVDVAUGVBGZGVCUGVAVBHVEVBVAVEVBVBGV
    BUGVBVBCBOPVBIKJKUHVCUGUHUEFDUEVCFUEOUELBCMZQJVFNRUFUEOKSRJR $.
    $( [25-Dec-98] $)

  $( Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA
     dual. $)
  oa3-u1lem $p |- ( 1 ^ ( c v ( ( a ' ->1 c ) ^ ( ( ( c ^ ( a ' ->1 c ) )
                 v ( 1 ^ ( a ->1 c ) ) ) v ( ( ( c ^ ( b ' ->1 c ) ) v ( 1
                 ^ ( b ->1 c ) ) ) ^ ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v
                 ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) ) ) =
                 ( c v ( ( a ' ->1 c ) ^ ( ( a ->1 c ) v ( ( b ->1 c ) ^ (
                 ( ( a ->1 c ) ^ ( b ->1 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1
                  c ) ) ) ) ) ) ) $=
    ( wt wn wi1 wa wo ancom an1 lea leo letr leor lel2or df-le2 u1lemab lor 3tr
    2or ax-a1 ax-r1 ran df-i1 3tr1 ax-a2 2an lan ) DCAEZCFZCUJGZDACFZGZHZCBEZCF
    ZGZDBCFZGZHZUJUPGZULURGZHZGZHZGZHZGVGDGVGCUJULURVBVAHZGZHZGZHDVGIVGJVFVKCVE
    VJUJUNULVDVIUICGZACGZHZUIVMHZHVOUNULVNVOVLVOVMVLUIVOUICKUIVMLMVMUINOPUKVNUM
    VOUKUJCGVLUIEZCGZHVNCUJIUICQVQVMVLVPACAVPAUAUBUCRSUMULDGULVODULIULJACUDZSTV
    RUEUTURVCVHUOCGZBCGZHZUOVTHZHWBUTURWAWBVSWBVTVSUOWBUOCKUOVTLMVTUONOPUQWAUSW
    BUQUPCGVSUOEZCGZHWACUPIUOCQWDVTVSWCBCBWCBUAUBUCRSUSURDGURWBDURIURJBCUDZSTWE
    UEVAVBUFUGTUHRS $.
    $( [26-Dec-98] $)

  $( Lemma for a "universal" 3-OA. Equivalence with substitution into 6-OA
     dual. $)
  oa3-u2lem $p |- ( ( a ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ (
                  ( ( ( a ' ->1 c ) ^ c ) v ( ( a ->1 c ) ^ 1 ) ) v (
                  ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( a ->1 c ) ^
                  ( b ->1 c ) ) ) ^ ( ( c ^ ( b ' ->1 c ) ) v
                  ( 1 ^ ( b ->1 c ) ) ) ) ) ) ) ) =
                  ( ( a ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ ( ( a ->1 c ) v
                  ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v
                  ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) ) ) $=
    ( wn wi1 wa wt u1lemab an1 2or lea ax-a1 ax-r1 leid leran le2or ax-r2 ancom
    wo bltr df-i1 lbtr df-le2 ax-a2 2an lan lor ) ADZCEZCUICFZACEZGFZSZUIBDZCEZ
    FZUKBCEZFZSZCUOFZGUQFZSZFZSZFZSUICUKUQURUPSZFZSZFZSUKVEVIUIVDVHCUMUKVCVGUMU
    HCFZUHDZCFZSZUKSUKUJVMULUKUHCHUKIJVMUKVMUHACFZSZUKVJUHVLVNUHCKVKACVKAAAVKAL
    MANTOPUKVOACUAMUBUCQVCVBUSFVGUSVBRVBUQUSVFVBUNCFZUNDZCFZSZUQSUQUTVSVAUQUTUO
    CFVSCUORUNCHQVAUQGFUQGUQRUQIQJVSUQVSUNBCFZSZUQVPUNVRVTUNCKVQBCVQBBBVQBLMBNT
    OPUQWABCUAMUBUCQUPURUDUEQJUFUGUF $.
    $( [27-Dec-98] $)

  ${
    oa3-6to3.1 $e |- ( ( a ->1 c ) ^ ( a v ( b ^ ( (
                  ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $.
    $( Derivation of 3-OA variant (3) from (6). $)
    oa3-6to3 $p |- ( a ' ^ ( a v ( b ^
               ( ( a == b ) v ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) )
                =< c $=
      ( wn tb wi1 wa wo wt oa3-3lem ax-r1 leid wf df-f bltr ax-r2 dff 2or or0
      le0 ancom an1 ax-a2 oa3-6lem oa4to6dual ) AEZABABFUGCGBEZCGHZIHIHZUGABABH
      ZUGUHHIAJHZUGCHIBJHZUHCHIHIHIHZCUNUJABCKLAUGBUHJCCUGMUHMJEZNCNUOOLCUAPCJC
      HZAUGHZBUHHZIZIZUSUPIUTCUTCNICUPCUSNUPCJHCJCUBCUCQUSNNIZNVAUSNUQNURARBRSL
      NTQSCTQLUPUSUDQACGZABUKVBBCGZHZIULVBJCGZHIUMVCVEHIHIHIHVBABUIVDIHIHCABCUE
      DPUFP $.
      $( [24-Dec-98] $)
  $}

  ${
    oa3-2to4.1 $e |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $.
    $( Derivation of 3-OA variant (4) from (2). $)
    oa3-2to4 $p |- ( a ' ^ ( a v ( b ^
               ( ( a == b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) )
                =< c $=
      ( wn tb wi1 wa wo wt oa3-4lem ax-r1 leid le1 wf dff 2or or0 ax-r2 bltr
      an1 ax-a2 oa3-2lemb oa4to6dual ) AEZABABFACGZBCGZHZIHIHZUEABABHZUEBEZHIAC
      HZUEJHIBCHZUKJHIHIHIHZCUNUIABCKLAUEBUKCJCUEMUKMCENCCJHZAUEHZBUKHZIZIZURUO
      IUSCUSCOICUOCUROCUAUROOIZOUTUROUPOUQAPBPQLORSQCRSLUOURUBSUFABUJUHIZULUFCC
      GZHIUMUGVBHIHIHIHUFABVAHIHCABCUCDTUDT $.
      $( [24-Dec-98] $)
  $}

  ${
    oa3-2wto2.1 $e |- ( a ' ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $.
    $( Derivation of 3-OA variant from weaker version. $)
    oa3-2wto2 $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =< c $=
      ( wa wi1 wo oas ) ABABEACFBCFEGECDH $.
      $( [25-Dec-98] $)
  $}

  ${
    oa3-2to2s.1 $e |- ( ( a ->1 d ) ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 d ) ^ ( b ->1 d ) ) ) ) ) ) =< d $.
    $( Substitution into weaker version. $)
    oa3-2to2s.2 $e |- d = ( ( a ^ c ) v ( b ^ c ) ) $.
    $( Derivation of 3-OA variant from weaker version. $)
    oa3-2to2s $p |- ( ( a ->1 c ) ^ ( a v ( b ^ ( ( a ^ b ) v (
                    ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) ) =<
        ( ( a ^ c ) v ( b ^ c ) ) $=
      ( wi1 wa wo wf wn id leo df-i1 ax-r1 ax-a1 ax-r2 lbtr 2an wt or0 lan omla
      2or an1 0i1 oa3-2lema bltr oa4to6 oa6to4 ancom an0 lor le3tr2 ) ACGZABABH
      ZUOBCGZHIZAJHZUOJCGZHIBJHZUQUTHIHIHIHACHZBCHZIZJCHZIZUOABURHIHVDAUOBUQJUT
      CUOKZLUQKZLUTKZLAKZVGBKZVHJKZVIDABJVJVJVBIZVGKZVJVBMVMUOVNUOVMACNZOUOPZQR
      VKVKVCIZVHKZVKVCMVQUQVRUQVQBCNZOUQPZQRVLVLVEIZVIKZVLVEMWAUTWBUTWAJCNOUTPZ
      QRDDJIZVJKZVNHZVKKZVRHZIZVLKZWBHZIWDDDUAODWIJWKDVDWIFVBWFVCWHVBAUOHZWFWLV
      BWLAVMHVBUOVMAVOUBACUCQOAWEUOVNAPZVPSQVCBUQHZWHWNVCWNBVQHVCUQVQBVSUBBCUCQ
      OBWGUQVRBPZVTSQUDQJJTHZWKWPJJUEOJWJTWBJPZTUTWBUTTCUFOWCQSQUDQWMWOWQADGZAB
      UPWRBDGZHIZUSWRJDGZHIVAWSXAHIHIHIHWRABWTHIHDABDUGEUHUIUJABCUGVFVDJIVDVEJV
      DVECJHJJCUKCULQUMVDUAQUN $.
      $( [25-Dec-98] $)
  $}

  ${
    oa3-u1.1 $e |- ( ( c ->1 c ) ^ ( c v ( ( a ' ->1 c ) ^
                     ( ( ( c ^ ( a ' ->1 c ) ) v ( ( c ->1 c ) ^
                     ( ( a ' ->1 c ) ->1 c ) ) ) v ( ( ( c ^ ( b ' ->1 c ) )
                     v ( ( c ->1 c ) ^ ( ( b ' ->1 c ) ->1 c ) ) ) ^ ( (
                     ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v
                     ( ( ( a ' ->1 c ) ->1 c ) ^ ( ( b ' ->1 c ) ->1 c ) ) )
                      ) ) ) ) ) =< c $.
    $( Derivation of a "universal" 3-OA. The hypothesis is a substitution
       instance of the proper 4-OA. $)
    oa3-u1 $p |- ( c v ( ( a ' ->1 c ) ^ ( ( a ->1 c ) v
                 ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1
                 c ) ) v ( ( a ' ->1 c ) ^ ( b ' ->1
                  c ) ) ) ) ) ) ) =< c $=
      ( wn wi1 wa wo wt oa3-u1lem ax-r1 u1lem9ab ax-a2 lear lel2or df-le2 ax-r2
      ancom u1lem8 2or le1 an1 3tr oa4to6dual leid letr bltr ) CAEZCFZACFZBCFZU
      JUKGZUIBEZCFZGZHGHGHZICUICUIGIUJGHCUNGIUKGHUOULHGHGHGZCUQUPABCJKUQCCCIUIU
      JUNUKCCEUAACLBCLCCBCGZUMCGZHZHZCIGZUIUJGZHZUNUKGZHZVACVAUTCHCCUTMUTCURCUS
      BCNUMCNOPQKVFVAVDCVEUTVDCACGZUHCGZHZHVICHCVBCVCVICUBVCUJUIGVIUIUJRACSQTCV
      IMVICVGCVHACNUHCNOPUCVEUKUNGUTUNUKRBCSQTKQDUDCUEUFUG $.
      $( [27-Dec-98] $)
  $}

  ${
    oa3-u2.1 $e |- ( ( ( a ' ->1 c ) ->1 c ) ^ ( ( a ' ->1 c
 ) v ( c ^ ( ( ( ( a ' ->1 c ) ^ c ) v ( ( ( a ' ->1 c ) ->1 c ) ^ ( c ->1
 c ) ) ) v ( ( ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) v ( ( ( a ' ->1 c ) ->1 c )
 ^ ( ( b ' ->1 c ) ->1 c ) ) ) ^ ( ( c ^ ( b ' ->1 c ) ) v ( ( c ->1 c ) ^
                    ( ( b ' ->1 c ) ->1 c ) ) ) ) ) ) ) ) =< c $.
    $( Derivation of a "universal" 3-OA. The hypothesis is a substitution
       instance of the proper 4-OA. $)
    oa3-u2 $p |- ( ( a ->1 c ) ^ ( ( a ' ->1 c ) v ( c ^ ( ( a ->1 c ) v
                  ( ( b ->1 c ) ^ ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v
                  ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) ) ) ) ) ) =< c $=
      ( wi1 wn wa wo wt oa3-u2lem ax-r1 u1lem9ab le1 or32 ancom u1lem8 2or lear
      ax-r2 lel2or an1 df-le2 3tr oa4to6dual bltr ) ACEZAFZCEZCUFBCEZUFUIGZUHBF
      ZCEZGZHGHGHGZUFUHCUHCGUFIGHUMUJHCULGIUIGHGHGHGZCUOUNABCJKUHUFCIULUICACLCF
      MBCLUHUFGZCIGZHULUIGZHZCUSUPURHZUQHACGZUGCGZHZBCGZUKCGZHZHZCHCUPUQURNUTVG
      UQCUPVCURVFUPUFUHGVCUHUFOACPSURUIULGVFULUIOBCPSQCUAQVGCVCCVFVACVBACRUGCRT
      VDCVEBCRUKCRTTUBUCKDUDUE $.
      $( [27-Dec-98] $)
  $}

  ${
    oa3-1to5.1 $e |- ( ( a ->1 c ) ^
              ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) )
               =< ( b ->1 c ) $.
    $( Derivation of an equivalent of the second "universal" 3-OA U2 from an
       equivalent of the first "universal" 3-OA U1.  This shows that U2 is
       redundant in a system containg U1.  The hypothesis is theorem
       ~ oal1 . $)
    oa3-1to5 $p |- ( c ^ ( ( b ->1 c ) v ( ( a ->1 c ) ^
              ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) ) ) )
               =< ( b ' ->1 c ) $=
      ( wi1 wa wo wn leid lel2or lelan ax-a1 ran ax-r5 ax-a2 ax-r2 u1lemab 3tr1
      ancom lbtr lear letr ) CBCEZACEZABFUDUCFGFZGZFZCBHZCEZFZUIUGCUCFZUJUFUCCU
      CUCUEUCIDJKUCCFZUICFZUKUJBCFZUHCFZGZUOUHHZCFZGZULUMUPURUOGUSUNURUOBUQCBLM
      NURUOOPBCQUHCQRCUCSCUISRTCUIUAUB $.
      $( [1-Jan-99] $)
  $}

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
   Derivation of 4-variable proper OA from OA distributive law
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$( In this section, we postulate a temporary axiom (intended not to
   be used outside of this section) for the OA distributive law, and derive
   from it the proper 4-OA.  This shows that the OA distributive law
   implies the proper 4-OA (and therefore the 6-OA). $)

  ${
    oad.1 $e |- e =
                ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                  ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $.
    oad.2 $e |- f =
                ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v e ) $.
    oad.3 $e |- h =< ( a ->1 d ) $.
    oad.4 $e |- j =< f $.
    oad.5 $e |- k =< f $.
    oad.6 $e |- ( h ^ ( b ->1 d ) ) =< k $.
    $( OA Distributive law.  In this section, we postulate this temporary axiom
       (intended not to be used outside of this section) for the OA
       distributive law, and derive from it the 6-OA, in theorem ~ d6oa .  This
       together with the derivation of the distributive law in theorem
       ~ 4oadist shows that the OA distributive law is equivalent to the
       6-OA. $)
    ax-oadist $a |- ( h ^ ( j v k ) ) = ( ( h ^ j ) v ( h ^ k ) ) $.
  $}

  ${
    d3oa.1 $e |- f =
                ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) $.
    $( Derivation of 3-OA from OA distributive law. $)
    d3oa $p |- ( ( a ->1 c ) ^ f ) =< ( b ->1 c ) $=
      ( wi1 wa wn wi2 wo lear bltr le2or id leid ax-r1 leo letr ax-r2 lbtr bile
      1oai1 2oath1i1 df-i1 ax-a1 df-i2 ax-a2 lea ax-oadist wi0 u12lem df-i0 lan
      ax-r5 oridm le3tr2 ) ACFZABGZHZUQBCFZGZFZGZUQUSVAIZGZJZUTUTJUQDGZUTVCUTVE
      UTABCUBVEVAUTABCUCUQUTKLMVFUQVBVDJZGZVGVIVFABACAAGUQUQGJBAGUTUQGJGZURVAJZ
      VJJZUQVBVDVJNVLNUQOVBVKVLVBUSHZUSVAGZJVKUSVAUDVMURVNVAVMURURVMURUEZPZUAUS
      VAKMLVKVJQZRVDVKVLVDVMVAHZGZVAJZVKVDVAVSJZVTUSVAUFZVAVSUGSVSURVAVAVSVMURV
      MVRUHVPTVAOMLVQRVAWAVDVAVSQVDWAWBPTUIPVHDUQVHVKDVHVMVAJZVKVHUSVAUJWCUSVAU
      KUSVAULSVKWCURVMVAVOUNPSDVKEPSUMSUTUOUP $.
      $( [30-Dec-98] $)
  $}

  ${
    d4oa.2 $e |- e =
                ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) $.
    d4oa.1 $e |- f =
                ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                  ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $.
    $( Variant of proper 4-OA proved from OA distributive law. $)
    d4oa $p |- ( ( a ->1 d ) ^ ( e v f ) ) =< ( b ->1 d ) $=
      ( wi1 wo wa lan id 2or leor ax-r1 ax-r2 d3oa bltr ancom ax-a2 anass leran
      leid leo lbtr ax-oadist letr lel2or ) ADIZEFJZKZUJFKZUJEKZJZBDIZULUJFEJZK
      UOUKUQUJEFUALABCDACKUJCDIZKJZBCKZUPURKZJZKZUKUJFEVCMEABKZUJUPKZJZFVCGHNUJ
      UDFEOEFUEVEVFEVEVDOEVFGPUFUGQUMUPUNUMURVBKZUPUMUJUSKZVBKZVGUMUJVCKZVIFVCU
      JHLVIVJUJUSVBUBPQVHURVBACDUSUSMRUCSCBDVBUTCBKVAURUPKBCTUPURTNRUHABDEGRUIS
      $.
      $( [30-Dec-98] $)
  $}

  ${
    d6oa.1 $e |- a =< b ' $.
    d6oa.2 $e |- c =< d ' $.
    d6oa.3 $e |- e =< f ' $.
    $( Derivation of 6-variable orthoarguesian law from OA distributive law. $)
    d6oa $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =<
                   ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^
   ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $=
      ( wn wa wo id wi1 d4oa oa4gto4u oa4uto4 oa4to6 ) ABCDEFAJZBJKCJZDJKLEJZFJ
      KLZSTUAGHIUBMSMTMUAMSTUAUBSTUAUBTUBNZSUBNZUAUBNZUCUDUEUBUCUDKUCUBNZUDUBNZ
      KLZUCUEKUFUEUBNZKLUDUEKUGUIKLKZUHMUJMOUDMUCMUEMPQR $.
      $( [30-Dec-98] $)
  $}

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
                  Orthoarguesian laws
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$( R. Godowski and R. Greechie, Demonstratio Mathematica 17, 241 (1984) $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        3-variable orthoarguesian law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( 3-variable consequence of the orthoarguesion law. $)
  ax-3oa $a |- ( ( a ->1 c ) ^
              ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) )
               =< ( b ->1 c ) $.

  $( Orthoarguesian law - ` ->2 ` version. $)
  oal2 $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
               =< ( a ->2 c ) $=
    ( wn wi1 wa wo wi2 ax-3oa i2i1 anor3 ax-r1 2an 2or le3tr1 ) BDZADZEZPCDZFZR
    SQEZFZGZFUAABHZBCGDZUDACHZFZGZFUFPSQIUDRUHUCABJZUETUGUBTUEBCKLUDRUFUAUIACJZ
    MNMUJO $.
    $( [20-Jul-99] $)

  $( Orthoarguesian law - ` ->1 ` version derived from ` ->1 ` version. $)
  oal1 $p |- ( ( a ->1 c ) ^
              ( ( a ^ b ) v ( ( a ->1 c ) ^ ( b ->1 c ) ) ) )
               =< ( b ->1 c ) $=
    ( wn wi2 wo wa wi1 oal2 i1i2 df-a 2an 2or le3tr1 ) CDZADZEZPBDZFDZQOREZGZFZ
    GTACHZABGZUCBCHZGZFZGUEOPRIUCQUGUBACJZUDSUFUAABKUCQUETUHBCJZLMLUIN $.
    $( [25-Nov-98] $)

  $( Orthoarguesian law.  Godowski/Greechie, Eq.  III. $)
  oaliii $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
     ( ( a ->2 c ) ^ ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $=
    ( wi2 wo wn wa anass anidm lan ax-r2 ax-r1 oal2 leran ax-a2 ax-r4 ancom 2or
    bltr ran lebi ) ABDZBCEZFZUBACDZGZEZGZUEUGGZUHUHUGGZUIUJUHUJUBUGUGGZGUHUBUG
    UGHUKUGUBUGIZJKLUHUEUGABCMNSUIUECBEZFZUEUBGZEZGZUGGZUHURUIURUEUPUGGZGUIUEUP
    UGHUSUGUEUSUKUGUPUGUGUNUDUOUFUMUCCBOPUEUBQRTULKJKLUQUBUGACBMNSUA $.
    $( [22-Sep-98] $)

  $( Orthoarguesian law.  Godowski/Greechie, Eq.  II. This proof references
     ~ oaliii only. $)
  oalii $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =< a ' $=
    ( wn wi2 wo wa orabs oaliii lor df-i2 ancom ax-r2 3tr2 lan omlan lear bltr
    ) BDZABEZACEZBCFDTUAGFZGZFZGZSADZGZUFUESBUGFZGUGUDUHSTTUBGZFTUDUHTUBHUIUCTA
    BCIJTBUFSGZFUHABKUJUGBUFSLJMNOBUFPMSUFQR $.
    $( [22-Sep-98] $)

  $( Orthoarguesian law.  Godowski/Greechie, Eq.  IV. $)
  oaliv $p |- ( b ' ^ ( ( a ->2 b ) v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) =<
              ( ( b ' ^ ( a ->2 b ) ) v ( c ' ^ ( a ->2 c ) ) ) $=
    ( wn wi2 wo lea oalii ler2an df-i2 ancom lor ax-r2 lan omlan ax-r1 lbtr leo
    wa letr ) BDZABEZACEZBCFDUBUCSFSFZSZUAUBSZUFCDUCSZFUEUAADZSZUFUEUAUHUAUDGAB
    CHIUFUIUFUABUIFZSUIUBUJUAUBBUHUASZFUJABJUKUIBUHUAKLMNBUHOMPQUFUGRT $.
    $( [25-Nov-98] $)

  $( OA theorem. $)
  oath1 $p |- ( ( a ->2 b ) ^
              ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
              ( ( a ->2 b ) ^ ( a ->2 c ) ) $=
    ( wi2 wo wn wa oaliii lan anidm ax-r1 anandir 3tr1 ax-a2 anabs 3tr ) ABDZBC
    EFZQACDZGZEZGZTUAGZTTREZGTUBUBGZUBSUAGZGUBUCUBUFUBABCHIUEUBUBJKQSUALMUAUDTR
    TNITROP $.
    $( [12-Oct-98] $)

  $( Lemma. $)
  oalem1 $p |- ( ( b v c ) v ( ( b v c ) ' ^ ( ( a ->2 b )
                v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) ) ) =<
                ( a ->2 ( b v c ) ) $=
    ( wo wn wi2 wa anidm ran ax-r1 anor3 an32 ax-r2 3tr2 anass oalii lelan bltr
    ancom lbtr lelor df-i2 ) BCDZUCEZABFZACFZUDUEUFGDGDZGZDUCAEZUDGZDZAUCFZUHUJ
    UCUHUDUIGZUJUHUDBEZGZUGGZUMUDUOUGUNCEZGZUNUNGZUQGZUDUOUTURUSUNUQUNHIJBCKZUT
    URUNGUOUNUNUQLURUDUNVAIMNIUPUDUNUGGZGUMUDUNUGOVBUIUDABCPQRRUDUISTUAULUKAUCU
    BJT $.
    $( [16-Oct-98] $)

  $( Lemma. $)
  oalem2 $p |- ( ( a ->2 b )
                v ( ( a ->2 c ) ^ ( ( b v c ) '
                v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) =
                ( a ->2 b ) $=
    ( wi2 wo wn wa ax-a2 ax-r4 ancom 2or lan oath1 ax-r2 lor orabs 3tr ) ABDZAC
    DZBCEZFZRSGZEZGZERSRGZERUBERUDUERUDSCBEZFZUEEZGUEUCUHSUAUGUBUETUFBCHIRSJKLA
    CBMNOUEUBRSRJORSPQ $.
    $( [16-Oct-98] $)

  ${
    oadist2a.1 $e |- ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
                 =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Distributive inference derived from OA. $)
    oadist2a $p |- ( ( a ->2 b ) ^
        ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) =
  ( ( ( a ->2 b ) ^ d ) v
    ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $=
      ( wi2 wo wa ax-a2 lan wi0 bltr lelan wn df-i0 oath1 ax-r2 leo df-i2 ax-r1
      lbtr letr distlem ) ABFZDBCGZUDACFHZFZGZHUDUGDGZHZUDDHZUDUGHZGZUHUIUDDUGI
      JUJULUKGUMUDUGDUJUDUEUFKZHZUGUIUNUDUIUHUNUGDIELMUOUFUGUOUDUENZUFGZHUFUNUQ
      UDUEUFOJABCPQUFUFUPUFNHZGZUGUFURRUGUSUEUFSTUALUBUCULUKIQQ $.
      $( [17-Nov-98] $)
  $}

  ${
    oadist2b.1 $e |- d =<
                     ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Distributive inference derived from OA. $)
    oadist2b $p |- ( ( a ->2 b ) ^
        ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) =
  ( ( ( a ->2 b ) ^ d ) v
    ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $=
      ( wo wi2 wa wi1 wi0 u12lem ax-r1 lbtr leor lel2or oadist2a ) ABCDDBCFZABG
      ACGHZGZFQRIZSFZQRJZDUASDUBUAEUAUBQRKZLMSTNOUCMP $.
      $( [17-Nov-98] $)
  $}

  ${
    oadist2.1 $e |- ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
                 = ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Distributive inference derived from OA. $)
    oadist2 $p |- ( ( a ->2 b ) ^
        ( d v ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) =
  ( ( ( a ->2 b ) ^ d ) v
    ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $=
      ( wo wi2 wa wi0 bile oadist2a ) ABCDDBCFZABGACGHZGFLMIEJK $.
      $( [17-Nov-98] $)
  $}

  $( Distributive law derived from OA. $)
  oadist12 $p |- ( ( a ->2 b ) ^
        ( ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) v
          ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) =
  ( ( ( a ->2 b ) ^ ( ( b v c ) ->1 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) v
    ( ( a ->2 b ) ^ ( ( b v c ) ->2 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) ) $=
    ( wo wi2 wa wi1 u12lem oadist2 ) ABCBCDZABEACEFZGJKHI $.
    $( [17-Nov-98] $)

  ${
    oacom.1 $e |- d C ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    oacom.2 $e |- ( d ^ ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
           C ( a ->2 b ) $.
    $( Commutation law requiring OA. $)
    oacom $p |- d C ( ( a ->2 b ) ^ ( a ->2 c ) ) $=
      ( wi2 wo wa wi0 comcom ancom bctr gsth2 wn df-i0 lan oath1 ax-r2 cbtr ) D
      ABGZBCHZUAACGIZJZIZUCUEDUAUDDDUDEKUDDIZUAUFDUDIUAUDDLFMKNKUEUAUBOUCHZIUCU
      DUGUAUBUCPQABCRST $.
      $( [19-Nov-98] $)
  $}

  ${
    oacom2.1 $e |- d =<
       ( ( a ->2 b ) ^ ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $.
    $( Commutation law requiring OA. $)
    oacom2 $p |- d C ( ( a ->2 b ) ^ ( a ->2 c ) ) $=
      ( wo wi2 wa wi0 lear letr lecom lea oacom ) ABCDDBCFABGZACGHIZDOPHZPEOPJK
      LDPHZORDODPMDQOEOPMKKLN $.
      $( [19-Nov-98] $)
  $}

  ${
    oacom3.1 $e |- ( d ^ ( a ->2 b ) )
           C ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    oacom3.2 $e |- d C ( a ->2 b ) $.
    $( Commutation law requiring OA. $)
    oacom3 $p |- d C ( ( a ->2 b ) ^ ( a ->2 c ) ) $=
      ( wo wi2 wa wi0 comcom ancom bctr gsth2 wn df-i0 ran oath1 3tr cbtr ) DBC
      GZABHZACHIZJZUBIZUCUEDUDUBDDUBFKUBDIZUDUFDUBIUDUBDLEMKNKUEUAOUCGZUBIUBUGI
      UCUDUGUBUAUCPQUGUBLABCRST $.
      $( [19-Nov-98] $)
  $}

  ${
    oagen1.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( "Generalized" OA. $)
    oagen1 $p |- ( ( a ->2 b ) ^
              ( d v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
              ( ( a ->2 b ) ^ ( a ->2 c ) ) $=
      ( wi2 wa wo wn wi0 df-i0 lbtr leror ax-a3 oridm lor ax-r2 lelan oath1 lea
      leor ler2an lebi ) ABFZDUDACFZGZHZGZUFUHUDBCHZIZUFHZGUFUGUKUDUGUKUFHZUKDU
      KUFDUIUFJUKEUIUFKLMULUJUFUFHZHUKUJUFUFNUMUFUJUFOPQLRABCSLUFUDUGUDUETUFDUA
      UBUC $.
      $( [19-Nov-98] $)
  $}

  ${
    oagen1b.1 $e |- d =< ( a ->2 b ) $.
    oagen1b.2 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( "Generalized" OA. $)
    oagen1b $p |- ( d ^ ( e v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
              ( d ^ ( a ->2 c ) ) $=
      ( wi2 wa wo oagen1 lan anass ax-r1 df2le2 ran ax-r2 3tr2 ) DABHZESACHZIZJ
      ZIZIZDUAIZDUBIZDTIZUCUADABCEGKLUDDSIZUBIZUFUIUDDSUBMNUHDUBDSFOZPQUEUHTIZU
      GUKUEDSTMNUHDTUJPQR $.
      $( [21-Nov-98] $)
  $}

  ${
    oagen2.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( "Generalized" OA. $)
    oagen2 $p |- ( ( a ->2 b ) ^ d ) =< ( a ->2 c ) $=
      ( wi2 wa wo wn wi0 df-i0 lbtr lelan oal2 letr ) ABFZDGPBCHZIPACFZGZHZGRDT
      PDQSJTEQSKLMABCNO $.
      $( [19-Nov-98] $)
  $}

  ${
    oagen2b.1 $e |- d =< ( a ->2 b ) $.
    oagen2b.2 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( "Generalized" OA. $)
    oagen2b $p |- ( d ^ e ) =< ( a ->2 c ) $=
      ( wa wi2 leran oagen2 letr ) DEHABIZEHACIDMEFJABCEGKL $.
      $( [21-Nov-98] $)
  $}

  $( Mladen's OA $)
  mloa $p |- ( ( a == b ) ^ ( ( b == c ) v ( ( b v ( a == b ) )
         ^ ( c v ( a == c ) ) ) ) ) =< ( c v ( a == c ) ) $=
    ( wi2 wa wn wo tb lea ax-a3 or12 anor3 ax-r2 leo df-i2 ax-r1 lbtr le2an 2an
    i2bi ax-r5 id bile lel2or lelor bltr oal2 letr u2lembi dfb 2or le3tr2 ) ABD
    ZBADZEZBCEZBFZCFZEZGZUMACDZEZGZEZVAABHZBCHZBVEGZCACHGZEZGZEVHVDUMBCGFZVBGZE
    VAUOUMVCVLUMUNIVCVKUPVBGZGZVLVCUPUSVBGGZVNUPUSVBJVOUSVMGVNUPUSVBKUSVKVMBCLU
    AMMVMVBVKUPVBVBBUMCVABBAFZUQEZGZUMBVQNUMVRABOPQCCVPUREZGZVACVSNVAVTACOPQRVB
    VBVBUBUCUDUEUFRABCUGUHUOVEVCVJABUIUTVFVBVIVFUTBCUJPUMVGVAVHABTACTZSUKSWAUL
    $.
    $( [20-Nov-98] $)


  ${
    oadist.1 $e |- d =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Distributive law derived from OAL. $)
    oadist $p |- ( ( a ->2 b ) ^
              ( d v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
              ( ( ( a ->2 b ) ^ d ) v ( ( a ->2 b ) ^
              ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $=
      ( wi2 wa oagen1 bile anidm ax-r1 ran anass ax-r2 leor bltr letr ledi lebi
      wo ) ABFZDUAACFZGZTGZUADGZUAUCGZTZUDUCUGUDUCABCDEHIUCUFUGUCUAUAGZUBGUFUAU
      HUBUHUAUAJKLUAUAUBMNUFUEOPQUADUCRS $.
      $( [20-Nov-98] $)
  $}

  ${
    oadistb.2 $e |- d =< ( a ->2 b ) $.
    oadistb.1 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    $( Distributive law derived from OAL. $)
    oadistb $p |- ( d ^
              ( e v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) =
              ( ( d ^ e ) v ( d ^
              ( ( a ->2 b ) ^ ( a ->2 c ) ) ) ) $=
      ( wi2 wa wo df2le2 ran ax-r1 anass oagen1 lan ax-r2 leor bltr ledi lebi )
      DEABHZACHIZJZIZDEIZDUCIZJZUEUGUHUEDUBIZUDIZUGUJUEUIDUDDUBFKLMUJDUBUDIZIUG
      DUBUDNUKUCDABCEGOPQQUGUFRSDEUCTUA $.
      $( [20-Nov-98] $)
  $}

  ${
    oadistc0.1 $e |- d =< ( ( a ->2 b ) ^ ( a ->2 c ) ) $.
    $( Note: inference of 2nd hyp. from 1st may be an OM theorem. $)
    oadistc0.2 $e |- ( ( a ->2 c ) ^
                        ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) ) =<
                      ( ( ( a ->2 b ) ^ ( b v c ) ' ) v d ) $.
    $( Pre-distributive law. $)
    oadistc0 $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) =
                   ( ( ( a ->2 b ) ^ ( b v c ) ' ) v d ) $=
      ( wi2 wo wn wa ancom lelor lelan oal2 letr df2le2 ax-r2 ax-r1 bltr ledior
      ax-a2 lea df-le2 ran lbtr lebi ) ABGZBCHIZDHZJZUGUHJDHZUJACGZUJJZUKUMUJUM
      UJULJUJULUJKUJULUJUGUHUGULJZHZJULUIUOUGDUNUHELMABCNOPQRFSUKUGDHZUIJUJDUGU
      HTUPUGUIUPDUGHUGUGDUADUGDUNUGEUGULUBOUCQUDUEUF $.
      $( [30-Nov-98] $)
  $}

  ${
    oadistc.1 $e |- d =< ( ( a ->2 b ) ^ ( a ->2 c ) ) $.
    oadistc.2 $e |- ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) =<
                        ( ( ( a ->2 b ) ^ ( b v c ) ' ) v d ) $.
    $( Distributive law. $)
    oadistc $p |- ( ( a ->2 b ) ^ ( ( b v c ) ' v d ) ) =
             ( ( ( a ->2 b ) ^ ( b v c ) ' ) v ( ( a ->2 b ) ^ d ) ) $=
      ( wi2 wo wn wa lea letr df2le2 ax-r1 ancom ax-r2 lor lbtr ledi lebi ) ABG
      ZBCHIZDHJZUAUBJZUADJZHZUCUDDHUFFDUEUDDDUAJZUEUGDDUADUAACGZJUAEUAUHKLMNDUA
      OPQRUAUBDST $.
      $( [21-Nov-98] $)
  $}

  ${
    oadistd.1 $e |- d =< ( a ->2 b ) $.
    oadistd.2 $e |- e =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    oadistd.3 $e |- f =< ( ( b v c ) ->0 ( ( a ->2 b ) ^ ( a ->2 c ) ) ) $.
    oadistd.4 $e |- ( d ^ ( a ->2 c ) ) =< f $.
    $( OA distributive law. $)
    oadistd $p |- ( d ^ ( e v f ) ) = ( ( d ^ e ) v ( d ^ f ) ) $=
      ( wo wa wi2 lbtr df2le2 ax-r1 lan ax-r2 bltr letr le2or oridm lelan df-i0
      wi0 wn leo oagen1b lear an32 lea leor ledi lebi ) DEFKZLZDELZDFLZKZUPURUS
      UPUPDACMZLZLZURUPUPDBCKZABMUTLZUEZLZLZVBVGUPUPVFUOVEDUOVEVEKVEEVEFVEHIUAV
      EUBNUCOPVFVAUPVFDVCUFZVDKZLVAVEVIDVCVDUDZQABCDVHGVHVIVEVHVDUGVEVIVJPNUHRQ
      RVBVAURUPVAUIVAURUTLZURVAVAFLZVKVLVAVAFJOPDUTFUJRURUTUKSTSURUQULTDEFUMUN
      $.
      $( [21-Nov-98] $)
  $}

  $( Alternate form for the 3-variable orthoarguesion law. $)
  3oa2 $p |- ( ( a ->1 c ) ^
              ( ( ( a ->1 c ) ^ ( b ->1 c ) ) v
                 ( ( a ' ->1 c ) ^ ( b ' ->1 c ) ) ) )
               =< ( b ->1 c ) $=
    ( wn wi1 wa wo ax-3oa u1lem11 ax-a2 2an ax-r5 ax-r2 le3tr2 ) ADCEZCEZOBDCEZ
    FZPQCEZFZGZFSACEZUBBCEZFZRGZFUCOQCHPUBUAUEACIZUATRGUERTJTUDRPUBSUCUFBCIZKLM
    KUGN $.
    $( [27-May-04] $)

  $( 3-variable orthoarguesion law expressed with the 3OA identity
     abbreviation. $)
  3oa3 $p |- ( ( a ->1 c ) ^ ( a == c ==OA b ) ) =< ( b ->1 c ) $=
    ( wi1 wid3oa wa wn wo df-id3oa lan 3oa2 bltr ) ACDZABCEZFMMBCDZFAGCDBGCDFHZ
    FONPMABCIJABCKL $.
    $( [27-May-04] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        4-variable orthoarguesian law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    oal4.1 $e |- a =< b ' $.
    oal4.2 $e |- c =< d ' $.
    $( Orthoarguesian law (4-variable version). $)
    ax-oal4 $a |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v
                   ( ( a v c ) ^ ( b v d ) ) ) ) ) $.
  $}

  $( 4-variable OA closed equational form) $)
  oa4cl $p |- ( ( a v ( b ^ a ' ) ) ^ ( c v ( d ^ c ' ) ) ) =<
              ( ( b ^ a ' ) v ( a ^ ( c v
              ( ( a v c ) ^ ( ( b ^ a ' ) v ( d ^ c ' ) ) ) ) ) ) $=
    ( wn wa wo leor oran2 lbtr ax-oal4 ) ABAEFZCDCEFZABEZAGLEANHBAIJCDEZCGMECOH
    DCIJK $.
    $( [1-Dec-98] $)

  $( Derivation of 3-variable OA from 4-variable OA. $)
  oa43v $p |- ( ( a ->2 b ) ^
            ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
             =< ( a ->2 c ) $=
    ( wi2 wn wo wa ud2lem0c lea bltr ax-oal4 id oa4v3v oal42 oa23 ) ABCACBACBAC
    DEZABDEZPCEZACFZGRACHRSIJZQBEZABFZGUAABHUAUBIJZPCQBTUCKPLQLMNO $.
    $( [28-Nov-98] $)


  ${
    oa3moa3.1 $e |- a =< b ' $.
    oa3moa3.2 $e |- c =< d ' $.
    oa3moa3.3 $e |- d =< e ' $.
    oa3moa3.4 $e |- e =< c ' $.
    $( 4-variable 3OA to 5-variable Mayet's 3OA. $)
    oa3moa3 $p |- ( ( a v b ) ^ ( ( c v d ) v e ) ) =< ( a v ( ( ( b ^ ( c v
         ( ( b v c ) ^ ( ( a v d ) v e ) ) ) ) ^ ( d v ( ( b v d ) ^ ( ( a v
          c ) v e ) ) ) ) ^ ( e v ( ( b v e ) ^ ( ( a v c ) v d ) ) ) ) ) $=
      ( wo wa lecon3 wn lel2or lan lor lel lecom comcom7 comcom ax-a2 ax-a3 2an
      ax-oal4 orass le3tr1 ror tr ler2an fh3 cm anandi lbtr ax-r1 anass 3tr1 )
      ABJZCDJZEJZKZABCBCJZADJEJZKZJZKZJZABDBDJZACJZEJZKZJZEBEJZVHDJZKZJZKZKZJZK
      ZAVEVKKVOKZJZUTVFVRBAJZCDEJZJZKABCVAAWCJZKZJZKZJUTVFBACWCABFLZWCCDCMECDGL
      INLUDUQWBUSWDABUAZCDEUBUCVEWHAVDWGBVCWFCVBWEVAADEUEOPOPUFUTABVKKZJZABVOKZ
      JZKZVRUTWLWNWBDCEJZJZKABDVGAWPJZKZJZKZJUTWLBADWPWIWPDCDMEGDEHLNLUDUQWBUSW
      QWJUSDCJZEJWQURXBECDUAUGDCEUEUHUCWKXAAVKWTBVJWSDVIWRVGACEUEOPOPUFWBEURJZK
      ABEVLAURJZKZJZKZJUTWNBAEURWIURECEMDECILHNLUDUQWBUSXCWJUREUAUCWMXGAVOXFBVN
      XEEVMXDVLACDUBOPOPUFUIWOAWKWMKZJZVRXIWOAWKWMWKAWKAWKAMZBXJVKWIQRSTWMAWMAW
      MXJBXJVOWIQRSTUJUKXHVQAVQXHBVKVOULUKPUHUMUIVSAVEVQKZJZWAXLVSAVEVQVEAVEAVE
      XJBXJVDWIQRSTVQAVQAVQXJBXJVPWIQRSTUJUNXKVTABVDVPKKZVEVPKZXKVTXNXMBVDVPUOU
      KXMXKBVDVPULUNVEVKVOUOUPPUHUM $.
      $( [31-Mar-2011] $) $( [3-Apr-2009] $)
  $}

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
         6-variable orthoarguesian law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    oal6.1 $e |- a =< b ' $.
    oal6.2 $e |- c =< d ' $.
    oal6.3 $e |- e =< f ' $.
    $( Orthoarguesian law (6-variable version). $)
    ax-oa6 $a |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =<
                   ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^
   ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $.
  $}


  ${
    oa64v.1 $e |- a =< b ' $.
    oa64v.2 $e |- c =< d ' $.
    $( Derivation of 4-variable OA from 6-variable OA. $)
    oa64v $p |- ( ( a v b ) ^ ( c v d ) ) =< ( b v ( a ^ ( c v
                   ( ( a v c ) ^ ( b v d ) ) ) ) ) $=
      ( wf wt wn le0 ax-oa6 id oa6v4v ) ABCDGHABCDGHEFHIJKGLHLM $.
      $( [29-Nov-98] $)
  $}


  $( Derivation of 3-variable OA from 6-variable OA. $)
  oa63v $p |- ( ( a ->2 b ) ^
            ( ( b v c ) ' v ( ( a ->2 b ) ^ ( a ->2 c ) ) ) )
             =< ( a ->2 c ) $=
    ( wi2 wn wo wa ud2lem0c lea bltr oa64v id oa4v3v oal42 oa23 ) ABCACBACBACDE
    ZABDEZPCEZACFZGRACHRSIJZQBEZABFZGUAABHUAUBIJZPCQBTUCKPLQLMNO $.
    $( [28-Nov-98] $)


$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        The proper 4-variable orthoarguesian law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( The proper 4-variable OA law. $)
  ax-4oa $a |- ( ( a ->1 d ) ^ ( (
             ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
             ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) )
             =< ( b ->1 d ) $.

  $( The proper 4-variable OA law. $)
  axoa4 $p |- ( a ' ^ ( a v ( b ^
               ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v (
                 ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =<
                 d $=
    ( wn wa wi1 wo u1lem9b leran ax-4oa id oa4gto4u oa4uto4 letr ) AEZABABFADGZ
    BDGZFHACFQCDGZFHBCFRSFHFHFHZFQTFDPQTADIJABCDABCDRQSRQSDKQLRLSLMNO $.
    $( [20-Jul-99] $)

  $( Proper 4-variable OA law variant. $)
  axoa4b $p |- ( ( a ->1 d ) ^ ( a v ( b ^
               ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v (
                 ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =<
                 d $=
    ( axoa4 oa4ctob ) ABCDABCDEF $.
    $( [22-Dec-98] $)

  ${
    oa6.1 $e |- a =< b ' $.
    oa6.2 $e |- c =< d ' $.
    oa6.3 $e |- e =< f ' $.
    $( Derivation of 6-variable orthoarguesian law from 4-variable version. $)
    oa6 $p |- ( ( ( a v b ) ^ ( c v d ) ) ^ ( e v f ) ) =<
                   ( b v ( a ^ ( c v ( ( ( a v c ) ^ ( b v d ) ) ^
   ( ( ( a v e ) ^ ( b v f ) ) v ( ( c v e ) ^ ( d v f ) ) ) ) ) ) ) $=
      ( wn wa wo id axoa4b oa4to6 ) ABCDEFAJZBJKCJZDJKLEJZFJKLZPQRGHISMPMQMRMPQ
      RSNO $.
      $( [18-Dec-98] $)
  $}

  $( Proper 4-variable OA law variant. $)
  axoa4a $p |- ( ( a ->1 d ) ^ ( a v ( b ^
               ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v (
                 ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) ) ) ) =<
                 ( ( ( a ^ d ) v ( b ^ d ) ) v ( c ^ d ) ) $=
    ( wi1 wn id wa wo leo df-i1 ax-r1 ax-a1 ax-r2 lbtr oa6 oa6to4 ) AADEZBBDEZC
    CDEZDRFZGSFZGTFZGAFZUABFZUBCFZUCUDUDADHZIZUAFZUDUGJUHRUIRUHADKLRMNOUEUEBDHZ
    IZUBFZUEUJJUKSULSUKBDKLSMNOUFUFCDHZIZUCFZUFUMJUNTUOTUNCDKLTMNOPQ $.
    $( [22-Dec-98] $)

  $( Proper 4-variable OA law variant. $)
  axoa4d $p |- ( a ^ ( (
                   ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v
               ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                 ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) ) )
             =< ( b ' ->1 d ) $=
    ( wa wi1 wo wn oa4dcom ax-r1 axoa4 oa4ctod bltr ) AABEADFZBDFZEGACENCDFZEGZ
    BCEOPEGZEGEZABAEONEGRQEGEZBHDFTSBACDIJBACDBACDKLM $.
    $( [24-Dec-98] $)

  ${
    4oa.1 $e |- e =
                ( ( ( a ^ c ) v ( ( a ->1 d ) ^ ( c ->1 d ) ) ) ^
                  ( ( b ^ c ) v ( ( b ->1 d ) ^ ( c ->1 d ) ) ) ) $.
    $( Generalized "alpha" expression. $)
    4oa.2 $e |- f =
                ( ( ( a ^ b ) v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) v e ) $.
    $( Variant of proper 4-OA. $)
    4oa $p |- ( ( a ->1 d ) ^ f ) =< ( b ->1 d ) $=
      ( wi1 wa wo lan wn axoa4a id oa4to4u2 oa4uto4g bltr ) ADIZFJSABJSBDIZJKEK
      ZJTFUASHLABCDEBMZAMZCMZDUBMDIZUCMDIZUDMDIZUEUFUGDNUEOUFOUGOPGQR $.
      $( [29-Dec-98] $)

    $( Proper OA analog to Godowski/Greechie, Eq.  III. $)
    4oaiii $p |- ( ( a ->1 d ) ^ f ) = ( ( b ->1 d ) ^ f ) $=
      ( wi1 wa 4oa lear ler2an wo ancom ax-r2 2or ax-r5 lebi ) ADIZFJZBDIZFJZUA
      UBFABCDEFGHKTFLMUCTFBACDEFEACJTCDIZJNZBCJUBUDJNZJUFUEJGUEUFOPFABJZTUBJZNZ
      ENBAJZUBTJZNZENHUIULEUGUJUHUKABOTUBOQRPKUBFLMS $.
      $( [29-Dec-98] $)

    $( Proper 4-OA theorem. $)
    4oath1 $p |- ( ( a ->1 d ) ^ f ) = ( ( a ->1 d ) ^ ( b ->1 d ) ) $=
      ( wi1 wa wo 4oaiii lan or32 ax-r2 2an anidm ax-r1 anandir 3tr1 ax-a2 3tr
      anabs ) ADIZFJZUDBDIZJZABJZEKZUGKZJZUGUGUIKZJUGUEUEJZUDUJJZUFUJJZJZUEUKUM
      UEUFFJZJUPUEUQUEABCDEFGHLMUEUNUQUOFUJUDFUHUGKEKUJHUHUGENOZMFUJUFURMPOUMUE
      UEQRUDUFUJSTUJULUGUIUGUAMUGUIUCUB $.
      $( [29-Dec-98] $)

    ${
      4oagen1.1 $e |- g =< f $.
      $( "Generalized" 4-OA. $)
      4oagen1 $p |- ( ( a ->1 d ) ^
              ( g v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) ) =
              ( ( a ->1 d ) ^ ( b ->1 d ) ) $=
        ( wi1 wa wo or32 ax-r2 lbtr leror ax-a3 oridm lor ax-r1 4oath1 lea leor
        lelan ler2an lebi ) ADKZGUHBDKZLZMZLZUJULUHFLUJUKFUHUKABLZEMZUJMZUJMZFG
        UOUJGFUOJFUMUJMEMUOIUMUJENOZPQUPUNUJUJMZMZFUNUJUJRUSUOFURUJUNUJSTFUOUQU
        AOOPUEABCDEFHIUBPUJUHUKUHUIUCUJGUDUFUG $.
        $( [29-Dec-98] $)
    $}

    ${
      4oagen1b.1 $e |- g =< f $.
      4oagen1b.2 $e |- h =< ( a ->1 d ) $.
      $( "Generalized" OA. $)
      4oagen1b $p |- ( h ^ ( g v ( ( a ->1 d ) ^ ( b ->1 d ) ) ) ) =
              ( h ^ ( b ->1 d ) ) $=
        ( wi1 wa wo 4oagen1 anass ax-r1 ran ax-r2 lan df2le2 3tr2 ) HADMZGUDBDM
        ZNZOZNZNZHUFNZHUGNZHUENZUHUFHABCDEFGIJKPUAUIHUDNZUGNZUKUNUIHUDUGQRUMHUG
        HUDLUBZSTUJUMUENZULUPUJHUDUEQRUMHUEUOSTUC $.
        $( [29-Dec-98] $)
    $}

    ${
      4oadist.1 $e |- h =< ( a ->1 d ) $.
      4oadist.2 $e |- j =< f $.
      4oadist.3 $e |- k =< f $.
      4oadist.4 $e |- ( h ^ ( b ->1 d ) ) =< k $.
      $( OA Distributive law.  This is equivalent to the 6-variable OA law, as
         shown by theorem ~ d6oa . $)
      4oadist $p |- ( h ^ ( j v k ) ) = ( ( h ^ j ) v ( h ^ k ) ) $=
        ( wo wa wi1 ax-r1 ax-r2 le2or oridm lbtr lelan df2le2 or32 lan 4oagen1b
        leo lear an32 lea bltr letr leor ledi lebi ) GHIPZQZGHQZGIQZPZUSVAVBUSU
        SGBDRZQZQZVAUSUSGFQZQZVEVGUSUSVFURFGURFFPFHFIFMNUAFUBUCUDUESVFVDUSVFGAB
        QZEPZADRVCQZPZQVDFVKGFVHVJPEPVKKVHVJEUFTZUGABCDEFVIGJKVIVKFVIVJUIFVKVLS
        UCLUHTUGTVEVDVAUSVDUJVDVAVCQZVAVDVDIQZVMVNVDVDIOUESGVCIUKTVAVCULUMUNUMV
        AUTUOUNGHIUPUQ $.
        $( [29-Dec-98] $)
    $}

  $}

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        Other stronger-than-OML laws
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        New state-related equation
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( New equation that holds in Hilbert space, discovered by Pavicic and Megill
     (unpublished). $)
  ax-newstateeq $a |- ( ( ( a ->1 b ) ->1 ( c ->1 b ) ) ^
                    ( ( a ->1 c ) ^ ( b ->1 a ) ) ) =< ( c ->1 a ) $.

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        Contributions of Roy Longton
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Roy's first section
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    lem3.3.2.1 $e |- a = 1 $.
    lem3.3.2.2 $e |- ( a ->0 b ) = 1 $.
    $( Equation 3.2 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.3.2 $p |- b = 1 $=
      ( wn wo wi0 wt df-i0 ax-r1 ax-r2 skr0 ) ABCAEBFZABGZHNMABIJDKL $.
      $( [3-Jul-05] $) $( [27-Jun-05] $)
  $}

  $( Define asymmetrical identity (for "Non-Orthomodular Models..." paper). $)
  df-id5 $a |- ( a ==5 b ) = ( ( a ^ b ) v ( a ' ^ b ' ) ) $.

  $( Define biconditional for ` ->1 ` . $)
  df-b1 $a |- ( a <->1 b ) = ( ( a ->1 b ) ^ ( b ->1 a ) ) $.

  $( Lemma for ~ lem3.3.3 . $)
  lem3.3.3lem1 $p |- ( a ==5 b ) =< ( a ->1 b ) $=
    ( wa wn wo wid5 wi1 ax-a2 lea leror bltr df-id5 df-i1 le3tr1 ) ABCZADZBDZCZ
    EZPOEZABFABGSROETORHRPOPQIJKABLABMN $.
    $( [3-Jul-05] $) $( [27-Jun-05] $)

  $( Lemma for ~ lem3.3.3 . $)
  lem3.3.3lem2 $p |- ( a ==5 b ) =< ( b ->1 a ) $=
    ( wa wn wo wid5 wi1 lear leror ax-a2 ancom lor le3tr1 df-id5 df-i1 ) ABCZAD
    ZBDZCZEZRBACZEZABFBAGSPERPETUBSRPQRHIPSJUAPRBAKLMABNBAOM $.
    $( [3-Jul-05] $) $( [27-Jun-05] $)

  $( Lemma for ~ lem3.3.3 . $)
  lem3.3.3lem3 $p |- ( a ==5 b ) =< ( ( a ->1 b ) ^ ( b ->1 a ) ) $=
    ( wid5 wi1 lem3.3.3lem1 lem3.3.3lem2 ler2an ) ABCABDBADABEABFG $.
    $( [3-Jul-05] $) $( [27-Jun-05] $)

  $( Equation 3.3 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
     3-Jul-05.) $)
  lem3.3.3 $p |- ( ( a ==5 b ) ->0 ( a <->1 b ) ) = 1 $=
    ( wid5 wb1 wi0 wn wo wi1 wa wt df-i0 df-b1 lor lem3.3.3lem3 sklem 3tr ) ABC
    ZABDZEQFZRGSABHBAHIZGJQRKRTSABLMQTABNOP $.
    $( [3-Jul-05] $) $( [27-Jun-05] $)

  ${
    lem3.3.4.1 $e |- ( b ->2 a ) = 1 $.
    $( Equation 3.4 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.3.4 $p |- ( a ->2 ( a ==5 b ) ) = ( a ==5 b ) $=
      ( wid5 wi2 wn wa wo df-i2 df-id5 ax-r4 lan anor3 ax-r1 ax-r2 lor 3tr1 3tr
      wf wt oran3 oran 2an anabs ran anass con2 ancom oran1 con3 df-f 3tr2 or0r
      ax-a2 ) AABDZEUOAFZUOFZGZHZSUOHZUOAUOIUSUOSHUTURSUOURUPABGZUPBFZGZHZFZGUP
      UPVBHZABHZGZGZSUQVEUPUOVDABJKLVEVHUPVEVAFZVCFZGZVHVLVEVAVCMNVJVFVKVGVFVJA
      BUANVGVKABUBZNUCOLUPVFGZVGGUPVGGZVISVNUPVGUPVBUDUEUPVFVGUFBAEZFTFVOSVPTCK
      VOVPAVGFZHZAVBUPGZHVOFZVPVQVSAVQVCVSVGVCVMUGUPVBUHOPVRVTAVGUINBAIQUJUKQUL
      RPUOSUNOUOUMR $.
      $( [3-Jul-05] $) $( [28-Jun-05] $)
  $}

  ${
    lem3.3.5lem.1 $e |- 1 =< a $.
    $( A fundamental property in quantum logic.  Lemma for ~ lem3.3.5 . $)
    lem3.3.5lem $p |- a = 1 $=
      ( wt le1 lebi ) ACADBE $.
      $( [3-Jul-05] $) $( [28-Jun-05] $)
  $}

  ${
    lem3.3.5.1 $e |- ( a ==5 b ) = 1 $.
    $( Equation 3.5 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.3.5 $p |- ( a ->1 ( b v c ) ) = 1 $=
      ( wo wi1 wb1 wn wa wt df-b1 lea bltr df-i1 lbtr leo lelan lelor letr wid5
      lem3.3.3 lem3.3.2 ax-r1 le3tr1 lem3.3.5lem ) ABCEZFZABGZAHZAUFIZEZJUGUHUI
      ABIZEZUKUHABFZUMUHUNBAFZIUNABKUNUOLMABNOULUJUIBUFABCPQRSUHJABTUHDABUAUBUC
      AUFNUDUE $.
      $( [3-Jul-05] $) $( [28-Jun-05] $)
  $}

  $( Equation 3.6 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
     3-Jul-05.) $)
  lem3.3.6 $p |- ( a ->2 ( b v c ) ) = ( ( a v c ) ->2 ( b v c ) ) $=
    ( wo wn wa wi2 anor3 ax-r1 lan anandir anass 2an 3tr2 ax-r2 lor df-i2 3tr1
    ) BCDZAEZSEZFZDSACDZEZUAFZDASGUCSGUBUESUBTBEZCEZFZFZUEUAUHTUHUABCHZIJTUFFUG
    FTUGFZUHFUIUETUFUGKTUFUGLUKUDUHUAACHUJMNOPASQUCSQR $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     0, and this is the first part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i0e1 $p |- ( a ->0 ( a ^ b ) ) = ( a ==0 ( a ^ b ) ) $=
    ( wn wa wo wi0 wid0 or1 ax-r1 lan an1 df-t lor 3tr2 ax-a2 ax-a3 ax-r5 oran3
    wt 3tr df-i0 df-id0 3tr1 ) ACZABDZEZUFUECZAEZDZAUEFAUEGUFUFBCZUDEZAEZDZUFUD
    UJEZAEZDUIUFUFUJAUDEZEZDZUFUJUDAEZEZDUMUFSDUFUJSEZDUFURSVAUFVASUJHIJUFKVAUQ
    UFSUPUJALMJNUQUTUFUPUSUJAUDOMJUTULUFULUTUJUDAPIJTULUOUFUKUNAUJUDOQJUOUHUFUN
    UGAABRQJTAUEUAAUEUBUC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     0, and this is the second part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i0e2 $p |- ( a ==0 ( a ^ b ) ) = ( ( a ^ b ) ==0 a ) $=
    ( wn wa wo wid0 ancom df-id0 3tr1 ) ACABDZEZJCAEZDLKDAJFJAFKLGAJHJAHI $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     0, and this is the third part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i0e3 $p |- ( a ->0 ( a ^ b ) ) = ( a ->1 b ) $=
    ( nom10 ) ABC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     1, and this is the first part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i1e1 $p |- ( a ->1 ( a ^ b ) ) = ( a ==1 ( a ^ b ) ) $=
    ( wn wa wo wi1 wid1 or1r ax-r1 ran an1r df-t ax-r5 3tr2 ax-a3 oran3 lor 3tr
    wt df-i1 df-id1 3tr1 ) ACZAABDZDEZAUDCZEZUEDZAUDFAUDGUEAUCEZBCZEZUEDZAUCUJE
    ZEZUEDUHSUEDSUJEZUEDUEULSUOUEUOSUJHIJUEKUOUKUESUIUJALMJNUKUNUEAUCUJOJUNUGUE
    UMUFAABPQJRAUDTAUDUAUB $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     1, and this is the second part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i1e2 $p |- ( a ==1 ( a ^ b ) ) = ( ( a ^ b ) ==1 a ) $=
    ( wa wn wo wid1 oran3 ax-r1 lor ran ax-a3 wt df-t ax-r5 anass ax-a2 lan 3tr
    or1r df-id1 an1r anidm an1 ancom 3tr1 ) AABCZDZEZADZAUFCZEZCZUFUIEZUGUFACZE
    ZCZAUFFUFAFULAUIBDZEZEZUKCAUIEZUQEZUKCZUPUHUSUKUGURAURUGABGHIJUSVAUKVAUSAUI
    UQKHJVBLUQEZUKCLUKCZUPVAVCUKUTLUQLUTAMHNJVCLUKUQSJVDUKUIAACZBCZEZUPUKUAUJVF
    UIVFUJAABOZHIVGUIUFEZUMUGABACZCZEZCZUPVFUFUIVEABAUBZJIVIUMUGVFEZCZUMUGUJEZC
    VMVIUMUFUGEZCZUMUGUFEZCVPVIUMUMLCZVSUIUFPWAUMUMUCHLVRUMUFMQRVRVTUMUFUGPQVTV
    OUMUFVFUGAVEBVEAVNHJIQRVOVQUMVFUJUGVHIQVQVLUMUJVKUGUFVJAABUDQIQRVLUOUMVKUNU
    GUNVKABAOHIQRRRRAUFTUFATUE $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     1, and this is the third part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i1e3 $p |- ( a ->1 ( a ^ b ) ) = ( a ->1 b ) $=
    ( nom11 ) ABC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     2, and this is the first part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i2e1 $p |- ( a ->2 ( a ^ b ) ) = ( a ==2 ( a ^ b ) ) $=
    ( wa wn wo wi2 wid2 or1r ax-r1 ran an1r df-t ax-r5 3tr2 ax-a3 oran3 lor 3tr
    wt df-i2 df-id2 3tr1 ) ABCZADZUCDZCEZAUEEZUFCZAUCFAUCGUFAUDEZBDZEZUFCZAUDUJ
    EZEZUFCUHSUFCSUJEZUFCUFULSUOUFUOSUJHIJUFKUOUKUFSUIUJALMJNUKUNUFAUDUJOJUNUGU
    FUMUEAABPQJRAUCTAUCUAUB $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     2, and this is the second part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i2e2 $p |- ( a ==2 ( a ^ b ) ) = ( ( a ^ b ) ==2 a ) $=
    ( wa wn wo wid2 oran3 ax-r1 lor ran ax-a3 wt df-t ax-r5 anor3 ax-r4 lan 3tr
    ax-r2 df-id2 or1r an1r orabs an1 lea df-le2 3tr1 ) AABCZDZEZUHADZUICZEZCZUH
    UKEZAUIUKCZEZCZAUHFUHAFUNAUKBDZEZEZUMCAUKEZUSEZUMCZURUJVAUMUIUTAUTUIABGHIJV
    AVCUMVCVAAUKUSKHJVDLUSEZUMCLUMCZURVCVEUMVBLUSLVBAMZHNJVELUMUSUAJVFUMUHAUHEZ
    DZEZURUMUBULVIUHAUHOIVJUOURVIUKUHVHAABUCPIUOUOVBCZUOAUHAEZDZEZCURUOUOLCZVKV
    OUOUOUDHLVBUOVGQSVBVNUOUKVMAAVLVLAUHAABUEUFHPIQVNUQUOVMUPAUPVMUHAOHIQRSRRRA
    UHTUHATUG $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     2, and this is the third part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i2e3 $p |- ( a ->2 ( a ^ b ) ) = ( a ->1 b ) $=
    ( nom12 ) ABC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     3, and this is the first part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i3e1 $p |- ( a ->3 ( a ^ b ) ) = ( a ==3 ( a ^ b ) ) $=
    ( wn wa wo wi3 wid3 anass ax-r1 ax-r5 ancom ran wf dff ax-r4 wt lan 3tr lor
    an0r or0r anor3 orabs womaa an1 df-t ax-r2 df-i3 df-id3 3tr1 ) ACZABDZDZUKU
    LCDZEZAUKULEZDZEZUPAUNEZDZAULFAULGURUKADZBDZUNEZUQEAUKDZBDZUNEZUQEZUTUOVCUQ
    UMVBUNVBUMUKABHIJJVCVFUQVBVEUNVAVDBUKAKLJJVGMBDZUNEZUQEMUNEZUQEZUTVFVIUQVEV
    HUNVDMBMVDANILJJVIVJUQVHMUNBTJJVKUNUQEZUTVJUNUQUNUAJVLAULEZCZUQEUKUQEZUTUNV
    NUQAULUBZJVNUKUQVMAABUCZOJVOUPAUKEZDZUPAVNEZDUTVOUPUPPDZVSABUDWAUPUPUEIPVRU
    PAUFQRVRVTUPUKVNAAVMVMAVQIOSQVTUSUPVNUNAUNVNVPISQRRUGRRAULUHAULUIUJ $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     3, and this is the second part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i3e2 $p |- ( a ==3 ( a ^ b ) ) = ( ( a ^ b ) ==3 a ) $=
    ( wn wa wo wid3 wt anor3 lor lan orabs ax-r4 df-t ax-r1 an1 ax-a2 3tr ax-r5
    ran df-id3 lea df-le2 an1r ax-r2 or1 ax-a3 oran3 3tr1 ) ACZABDZEZAUIUJCZDZE
    ZDZULAEZUJULUIDZEZDZAUJFUJAFUOBCZUIEZAEZURDZUIUTEZAEZURDUSUOUTAUIEZEZURDZUT
    UIAEZEZURDVCUOGURDZUTGEZURDVHUOURVKUOUJUIEZUJUJAEZCZEURUOUKAAUJEZCZEZDUKVFD
    ZVMUNVRUKUMVQAAUJHIJVRVFUKVQUIAVPAABKLIJVSUKGDUKVMVFGUKGVFAMZNJUKOUIUJPQQUI
    VOUJAVNVNAUJAABUAUBNLIVOUQUJUQVOUJAHNIQVKURURUCNUDGVLURVLGUTUENSVLVGURGVFUT
    VTISQVGVJURVFVIUTAUIPISVJVBURVBVJUTUIAUFNSQVBVEURVAVDAUTUIPRSVEUPURVDULAABU
    GRSQAUJTUJATUH $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     3, and this is the third part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i3e3 $p |- ( a ->3 ( a ^ b ) ) = ( a ->1 b ) $=
    ( nom13 ) ABC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     4, and this is the first part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i4e1 $p |- ( a ->4 ( a ^ b ) ) = ( a ==4 ( a ^ b ) ) $=
    ( wa wn wo wi4 wid4 lear lea ler2an lebi ax-r5 wt wf lor lel2or leo 3tr lan
    ax-r1 leid lecon ortha or0 leor lerr an1 sklem df-i4 df-id4 3tr1 ) AABCZCZA
    DZULCZEZUNULEZULDZCZEZUQURUMEZCZAULFAULGUTULUOEZUSEZUQURULEZCZVBUPVCUSUMULU
    OUMULAULHZULAULABIZULUAZJZKLLVDUQUQMCZVFVDULNEZUSEULUSEZUQVCVLUSUONULUNULUL
    AVHUBZUCOLVLULUSULUDLVMUQULUQUSULUNUEUQURIPUNVMULUNUSULUNUQURUNULQVNJUFULUS
    QPKRVKUQUQUGTMVEUQVEMULULVIUHTSRVEVAUQULUMURULUMVJVGKOSRAULUIAULUJUK $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     4, and this is the second part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i4e2 $p |- ( a ==4 ( a ^ b ) ) = ( ( a ^ b ) ==4 a ) $=
    ( wn wa wo wid4 wt lear lea leid ler2an lebi lor lan sklem an1 df2le2 ax-r1
    3tr df-id4 an1r ax-r2 ran 3tr1 ) ACZABDZEZUFCZAUFDZEZDZUHAEZUEUFADZEZDZAUFF
    UFAFUKUGUHUFEZDUGGDZUOUJUPUGUIUFUHUIUFAUFHUFAUFABIZUFJZKLMNUPGUGUFUFUSONUQU
    GGUNDZUOUGPUGUNUTUFUMUEUMUFUFAURQRMUTUNUNUARUBGULUNULGUFAURORUCSSAUFTUFATUD
    $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     4, and this is the third part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i4e3 $p |- ( a ->4 ( a ^ b ) ) = ( a ->1 b ) $=
    ( nom14 ) ABC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     5, and this is the first part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i5e1 $p |- ( a ->5 ( a ^ b ) ) = ( a ==5 ( a ^ b ) ) $=
    ( wa wn wo wi5 wid5 wf lear lea leid ler2an lebi lecon ortha 2or or0 df2le2
    ax-r5 ax-r1 3tr df-i5 df-id5 3tr1 ) AABCZCZADZUECZEZUGUEDZCZEZUFUKEZAUEFAUE
    GULUEHEZUKEUEUGEUMUIUNUKUFUEUHHUFUEAUEIZUEAUEABJZUEKLZMUGUEUEAUPNZOPSUNUEUK
    UGUEQUGUJURRZPUEUFUGUKUEUFUQUOMUKUGUSTPUAAUEUBAUEUCUD $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     5, and this is the second part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i5e2 $p |- ( a ==5 ( a ^ b ) ) = ( ( a ^ b ) ==5 a ) $=
    ( wa wn wo wid5 ancom 2or ax-r1 df-id5 3tr1 ) AABCZCZADZLDZCZEZLACZONCZEZAL
    FLAFTQRMSPLAGONGHIALJLAJK $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( Equation 3.7 of [PavMeg1999] p. 9.  The variable i in the paper is set to
     5, and this is the third part of the equation.  (Contributed by Roy F.
     Longton, 3-Jul-05.) $)
  lem3.3.7i5e3 $p |- ( a ->5 ( a ^ b ) ) = ( a ->1 b ) $=
    ( nom15 ) ABC $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

$(
  lem3.3.8i0e1 $p |- ( ( a v b ) ->0 b ) = ( ( a v b ) ==0 b ) $= ? $.

  lem3.3.8i0e2 $p |- ( ( a v b ) ==0 b ) = ( b ==0 ( a v b ) ) $= ? $.

  lem3.3.8i0e3 $p |- ( ( a v b ) ->0 b ) = ( a ->2 b ) $=
    wva wvb nom40 $.

  lem3.3.8i1e1 $p |- ( ( a v b ) ->1 b ) = ( ( a v b ) ==1 b ) $= ? $.

  lem3.3.8i1e2 $p |- ( ( a v b ) ==1 b ) = ( b ==1 ( a v b ) ) $= ? $.

  lem3.3.8i1e3 $p |- ( ( a v b ) ->1 b ) = ( a ->2 b ) $=
    wva wvb nom41 $.

  lem3.3.8i2e1 $p |- ( ( a v b ) ->2 b ) = ( ( a v b ) ==2 b ) $= ? $.

  lem3.3.8i2e2 $p |- ( ( a v b ) ==2 b ) = ( b ==2 ( a v b ) ) $= ? $.

  lem3.3.8i2e3 $p |- ( ( a v b ) ->2 b ) = ( a ->2 b ) $=
    wva wvb nom42 $.

  lem3.3.8i3e1 $p |- ( ( a v b ) ->3 b ) = ( ( a v b ) ==3 b ) $= ? $.

  lem3.3.8i3e2 $p |- ( ( a v b ) ==3 b ) = ( b ==3 ( a v b ) ) $= ? $.

  lem3.3.8i3e3 $p |- ( ( a v b ) ->3 b ) = ( a ->2 b ) $= ? $.

  lem3.3.8i4e1 $p |- ( ( a v b ) ->4 b ) = ( ( a v b ) ==4 b ) $= ? $.

  lem3.3.8i4e2 $p |- ( ( a v b ) ==4 b ) = ( b ==4 ( a v b ) ) $= ? $.

  lem3.3.8i4e3 $p |- ( ( a v b ) ->4 b ) = ( a ->2 b ) $= ? $.

  lem3.3.8i5e1 $p |- ( ( a v b ) ->5 b ) = ( ( a v b ) ==5 b ) $= ? $.

  lem3.3.8i5e2 $p |- ( ( a v b ) ==5 b ) = ( b ==5 ( a v b ) ) $= ? $.

  lem3.3.8i5e3 $p |- ( ( a v b ) ->5 b ) = ( a ->2 b ) $= ? $.
$)
  $( [28-Jun-05] $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Roy's second section
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( Equation 3.9 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
     3-Jul-05.) $)
  lem3.4.1 $p |- ( ( a ->1 b ) ->0 ( a ->2 b ) ) = 1 $=
    ( wi1 wi2 wi0 wn wo wt df-i0 woml6 ax-r2 ) ABCZABDZELFMGHLMIABJK $.
    $( [3-Jul-05] $) $( [28-Jun-05] $)

  $( lem3.4.2 is 2vwomr1a and 2vwomr2a $)

  ${
    lem3.4.3.1 $e |- ( a ->2 b ) = 1 $.
    $( Equation 3.11 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.4.3 $p |- ( a ->2 ( a ==5 b ) ) = 1 $=
      ( wid5 wi1 wt 2vwomr2a ax-r1 wn wa wo anidm ran lea lel leran ler2an bltr
      ler df-i1 df-id5 lan lbtr lelor le3tr1 lem3.3.5lem 2vwomr1a ) AABDZAUHEZF
      ABEZUIUJFABCGHAIZABJZKUKAUHJZKUJUIULUMUKULAULUKBIJZKZJZUMULAAJZBJZUPAUQBU
      QAALHMURAUOUQABAANZOURULUNUQABUSPSQRUOUHAUHUOABUAHUBUCUDABTAUHTUERUFUG $.
      $( [3-Jul-05] $) $( [29-Jun-05] $)
  $}

  ${
    lem3.4.4.1 $e |- ( a ->2 b ) = 1 $.
    lem3.4.4.2 $e |- ( b ->2 a ) = 1 $.
    $( Equation 3.12 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.4.4 $p |- ( a ==5 b ) = 1 $=
      ( wid5 wi2 wt lem3.3.4 ax-r1 lem3.4.3 ax-r2 ) ABEZALFZGMLABDHIABCJK $.
      $( [3-Jul-05] $) $( [29-Jun-05] $)
  $}

  ${
    lem3.4.5.1 $e |- ( a ==5 b ) = 1 $.
    $( Equation 3.13 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.4.5 $p |- ( a ->2 ( b v c ) ) = 1 $=
      ( wo lem3.3.5 2vwomr1a ) ABCEABCDFG $.
      $( [3-Jul-05] $) $( [29-Jun-05] $)
  $}

  ${
    lem3.4.6.1 $e |- ( a ==5 b ) = 1 $.
    $( Equation 3.14 of [PavMeg1999] p. 9.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem3.4.6 $p |- ( ( a v c ) ==5 ( b v c ) ) = 1 $=
      ( wo wi2 wt lem3.3.6 ax-r1 lem3.4.5 ax-r2 wid5 wa wn df-id5 ancom 2or 3tr
      lem3.4.4 ) ACEZBCEZTUAFZAUAFZGUCUBABCHIABCDJKUATFZBTFZGUEUDBACHIBACBALBAM
      ZBNZANZMZEZGBAOUJABMZUHUGMZEZABLZGUFUKUIULBAPUGUHPQUNUMABOIDRKJKS $.
      $( [3-Jul-05] $) $( [29-Jun-05] $)
  $}

$(
  @( Lemma intended for ~ thm3.8i1 . @)
  thm3.8i1lem @p |- ( a ==1 b ) = ( ( b ->0 a ) ^ ( a ->1 b ) ) @=
    wva wvb wn wo wva wn wva wvb wa wo wa wvb wn wva wo wva wn wva wvb wa wo wa
    wva wvb wid1 wvb wva wi0 wva wvb wi1 wa wva wvb wn wo wvb wn wva wo wva wn
    wva wvb wa wo wva wvb wn ax-a2 ran wva wvb df-id1 wvb wva wi0 wvb wn wva wo
    wva wvb wi1 wva wn wva wvb wa wo wvb wva df-i0 wva wvb df-i1 2an 3tr1 @.
    @( [31-Mar-2011] @) @( [30-Jun-05] @)

@{
  thm3.8i1.1 @e |- ( a ==1 b ) = 1 @.
  thm3.8i1 @p |- ( ( a v c ) ==1 ( b v c ) ) = 1 @= ? @.
@}

@{
  thm3.8i2.1 @e |- ( a ==2 b ) = 1 @.
  thm3.8i2 @p |- ( ( a v c ) ==2 ( b v c ) ) = 1 @= ? @.
@}

@{
  thm3.8i3.1 @e |- ( a ==3 b ) = 1 @.
  thm3.8i3 @p |- ( ( a v c ) ==3 ( b v c ) ) = 1 @= ? @.
@}

@{
  thm3.8i4.1 @e |- ( a ==4 b ) = 1 @.
  thm3.8i4 @p |- ( ( a v c ) ==4 ( b v c ) ) = 1 @= ? @.
@}

@{
  thm3.8i5.1 @e |- ( a ==5 b ) = 1 @.
  thm3.8i5 @p |- ( ( a v c ) ==5 ( b v c ) ) = 1 @=
    wva wvb wvc thm3.8i5.1 lem3.4.6 @.
    @( [31-Mar-2011] @) @( [29-Jun-05] @)
@}
  $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Roy's third section
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( lem4.6.1 is u1lemaa $)

  $( Equation 4.10 of [MegPav2000] p. 23.  This is the first part of the
     equation.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.2e1 $p |- ( ( a ->1 b ) ^ ( a ' ->1 b ) ) = ( ( a ->1 b ) ^ b ) $=
    ( wi1 wn wa wo df-i1 2an ax-a1 ax-r1 ax-r5 lan comcom fh1 lor coman1 coman2
    ancom ran 3tr comorr comcom6 leao1 lecom comcom7 com2an anass anidm comcom2
    omla orabs fh3 ax-a2 lear df-le2 ) ABCZADZBCZEUQABEZFZUQDZUQBEZFZEZUTBEZUPB
    EUPUTURVCABGZUQBGHVDUTAVBFZEUTAEZUTVBEZFZVEVCVGUTVAAVBAVAAIJKLUTAVBAUTAUTUQ
    USUAUBMVBUTVBUTUQBUSUCUDMNVJAUTEZVIFUSVIFZVEVHVKVIUTARKVKUSVIABUJKVLUSVBUTE
    ZFUSVBUQEZVBUSEZFZFZVEVIVMUSUTVBROVMVPUSVBUQUSUQBPZVBABVBAVRUEUQBQUFNOVQUSB
    UQEZUQEZVOFZFUSBUQUQEZEZVOFZFZVEVPWAUSVNVTVOVBVSUQUQBRSKOWAWDUSVTWCVOBUQUQU
    GKOWEUSVSVOFZFUSVBVOFZFZVEWDWFUSWCVSVOWBUQBUQUHLKOWFWGUSVSVBVOBUQRKOWHUSVBF
    USUQFZUSBFZEVEWGVBUSVBUSUKOUSUQBUSAABPUIABQULWIUTWJBUSUQUMUSBABUNUOHTTTTTTU
    TUPBUPUTVFJST $.
    $( [3-Jul-05] $) $( [29-Jun-05] $)

  $( Equation 4.10 of [MegPav2000] p. 23.  This is the second part of the
     equation.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.2e2 $p |- ( ( a ->1 b ) ^ b ) = ( ( a ^ b ) v ( a ' ^ b ) ) $=
    ( u1lemab ) ABC $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.11 of [MegPav2000] p. 23.  This is the first part of the
     equation.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.3le1 $p |- ( a ' ->1 b ) ' =< a ' $=
    ( u1lem9a ) ABC $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.11 of [MegPav2000] p. 23.  This is the second part of the
     equation.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.3le2 $p |- a ' =< ( a ->1 b ) $=
    ( u1lem9b ) ABC $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.12 of [MegPav2000] p. 23.  (Contributed by Roy F. Longton,
     3-Jul-05.) $)
  lem4.6.4 $p |- ( ( a ->1 b ) ->1 b ) = ( a ' ->1 b ) $=
    ( u1lem12 ) ABC $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.13 of [MegPav2000] p. 23.  (Contributed by Roy F. Longton,
     3-Jul-05.) $)
  lem4.6.5 $p |- ( ( a ->1 b ) ' ->1 b ) = ( a ->1 b ) $=
    ( wi1 wn u1lemn1b ax-r1 ) ABCZGDBCABEF $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 0, and j is set to 1.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i0j1 $p |- ( ( a ->0 b ) v ( a ->1 b ) ) = ( a ->0 b ) $=
    ( wn wo wa wi0 wi1 leid lear lelor lel2or leo lebi df-i0 df-i1 2or 3tr1 ) A
    CZBDZRABEZDZDZSABFZABGZDUCUBSSSUASHTBRABIJKSUALMUCSUDUAABNZABOPUEQ $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 0, and j is set to 2.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i0j2 $p |- ( ( a ->0 b ) v ( a ->2 b ) ) = ( a ->0 b ) $=
    ( wn wo wa wi0 wi2 leid leor leao1 lel2or leo lebi df-i0 df-i2 2or 3tr1 ) A
    CZBDZBRBCZEZDZDZSABFZABGZDUDUCSSSUBSHBSUABRIRTBJKKSUBLMUDSUEUBABNZABOPUFQ
    $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 0, and j is set to 3.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i0j3 $p |- ( ( a ->0 b ) v ( a ->3 b ) ) = ( a ->0 b ) $=
    ( wn wo wa wi0 wi3 leid leao1 lel2or lear leo lebi df-i0 df-i3 2or 3tr1 ) A
    CZBDZRBEZRBCZEZDZASEZDZDZSABFZABGZDUGUFSSSUESHUCSUDTSUBRBBIRUABIJASKJJSUELM
    UGSUHUEABNZABOPUIQ $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 0, and j is set to 4.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i0j4 $p |- ( ( a ->0 b ) v ( a ->4 b ) ) = ( a ->0 b ) $=
    ( wn wo wi0 wi4 leid leao4 leao1 lel2or lea leo lebi df-i0 df-i4 2or 3tr1
    wa ) ACZBDZABRZSBRZDZTBCZRZDZDZTABEZABFZDUHUGTTTUFTGUCTUEUATUBBASHSBBIJTUDK
    JJTUFLMUHTUIUFABNZABOPUJQ $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 1, and j is set to 0.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i1j0 $p |- ( ( a ->1 b ) v ( a ->0 b ) ) = ( a ->0 b ) $=
    ( wn wa wo wi1 wi0 lear lelor df-le2 df-i1 df-i0 2or 3tr1 ) ACZABDZEZOBEZER
    ABFZABGZETQRPBOABHIJSQTRABKABLZMUAN $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 1, and j is set to 2.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i1j2 $p |- ( ( a ->1 b ) v ( a ->2 b ) ) = ( a ->0 b ) $=
    ( u12lem ) ABC $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 1, and j is set to 3.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i1j3 $p |- ( ( a ->1 b ) v ( a ->3 b ) ) = ( a ->0 b ) $=
    ( wn wa wo wi1 wi3 ler lecom lea lel2or ax-a3 ax-a2 ran ax-r1 wt lor df-le2
    ax-r5 3tr wi0 leo comcom6 comcom lear lelor ax-a4 df-le1 lem3.3.5lem orordi
    fh3 an1r ax-r2 3tr2 df-i1 df-i3 2or df-i0 3tr1 ) ACZABDZEZUTBDZUTBCZDZEZAUT
    BEZDZEZEZVGABFZABGZEABUAVBVFEZVHEVMAEZVMVGEZDZVJVGVMAVGAVMAVMUTVMUTVBVFUTVA
    UBHIUCUDVMVGVBVGVFVABUTABUEZUFVFUTBVCUTVEUTBJUTVDJKHZKIUKVBVFVHLVPAVMEZVODA
    VBEZVFEZVODZVGVNVSVOVMAMNVSWAVOWAVSAVBVFLONWBAUTEZVAEZVFEZVODPVODZVGWAWEVOV
    TWDVFWDVTAUTVALOSNWEPVOWEPWDVFPWCVAPWCPAUGUHHHUINWFVOVFVBEZVGEZVGVOULVMWGVG
    VBVFMSWHVFVBVGEZEZVGVFVBVGLWJVFUTVABEZEZEVFVGEVGWIWLVFWLWIUTVABUJOQWLVGVFWK
    BUTVABVQRQQVFVGVRRTUMTTTUNVKVBVLVIABUOABUPUQABURUS $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 2, and j is set to 0.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i2j0 $p |- ( ( a ->2 b ) v ( a ->0 b ) ) = ( a ->0 b ) $=
    ( wn wa wo wi2 wi0 leor leao1 lel2or df-le2 df-i2 df-i0 2or 3tr1 ) BACZBCZD
    ZEZPBEZETABFZABGZEUBSTBTRBPHPQBIJKUASUBTABLABMZNUCO $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 2, and j is set to 1.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i2j1 $p |- ( ( a ->2 b ) v ( a ->1 b ) ) = ( a ->0 b ) $=
    ( wn wa wo wi2 wi1 wi0 leor leao1 lel2or lear lelor leo lerr ler lebi df-i2
    df-i1 2or df-i0 3tr1 ) BACZBCZDZEZUCABDZEZEZUCBEZABFZABGZEABHUIUJUFUJUHBUJU
    EBUCIUCUDBJKUGBUCABLMKUCUIBUCUHUFUCUGNOBUFUHBUENPKQUKUFULUHABRABSTABUAUB $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 2, and j is set to 4.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i2j4 $p |- ( ( a ->2 b ) v ( a ->4 b ) ) = ( a ->0 b ) $=
    ( wn wa wo wi2 wi4 wi0 ax-a2 ax-r5 ax-a3 ax-r1 lor ancom lan oml 3tr lel2or
    ax-r2 leao1 leao4 leid leor lerr lebi df-i2 df-i4 2or df-i0 3tr1 ) BACZBCZD
    ZEZABDZUKBDZEZUKBEZULDZEZEZURABFZABGZEABHVAUMBEZUTEUMBUTEZEZURUNVDUTBUMIJUM
    BUTKVFUMBUQEZUSEZEUMUQBEZUSEZEZURVEVHUMVHVEBUQUSKLMVHVJUMVGVIUSBUQIJMVKUMUQ
    BUSEZEZEUMUQUREZEZURVJVMUMUQBUSKMVMVNUMVLURUQVLBULURDZEBULBUKEZDZEZURUSVPBU
    RULNMVPVRBURVQULUKBIOMVSVQURBUKPBUKISQMMVOURUMURVNUKULBTUQURURUOURUPBAUKUAU
    KBBTRURUBRRURVNUMURUQUCUDUEQQQVBUNVCUTABUFABUGUHABUIUJ $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 3, and j is set to 0.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i3j0 $p |- ( ( a ->3 b ) v ( a ->0 b ) ) = ( a ->0 b ) $=
    ( wn wa wi3 wi0 ax-a3 ax-r1 lor ax-a2 omln ax-r2 ax-r5 leid leor lel2or leo
    wo leao1 3tr lebi df-le2 df-i3 df-i0 2or 3tr1 ) ACZBDZUGBCZDZRZAUGBRZDZRZUL
    RZULABEZABFZRUQUOUKUMULRZRUKUMUGRZBRZRZULUKUMULGURUTUKUTURUMUGBGHIVAUKULBRZ
    RUKULRULUTVBUKUSULBUSUGUMRULUMUGJABKLMIVBULUKVBULULULBULNBUGOPULBQUAIUKULUH
    ULUJUGBBSUGUIBSPUBTTUPUNUQULABUCABUDZUEVCUF $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 3, and j is set to 1.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i3j1 $p |- ( ( a ->3 b ) v ( a ->1 b ) ) = ( a ->0 b ) $=
    ( wn wa wo wi3 wi1 wi0 ax-a3 ax-r1 ax-a2 omln ax-r2 ax-r5 leao1 lel2or leid
    lor leao4 leo lerr lebi 3tr df-i3 df-i1 2or df-i0 3tr1 ) ACZBDZUIBCZDZEZAUI
    BEZDZEZUIABDZEZEZUNABFZABGZEABHUSUMUOUREZEUMUOUIEZUQEZEZUNUMUOURIVBVDUMVDVB
    UOUIUQIJRVEUMUNUQEZEZUNVDVFUMVCUNUQVCUIUOEUNUOUIKABLMNRVGUNUMUNVFUJUNULUIBB
    OUIUKBOPUNUNUQUNQBAUISPPUNVFUMUNUQTUAUBMUCUTUPVAURABUDABUEUFABUGUH $.
    $( [3-Jul-05] $) $( [1-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 4, and j is set to 0.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i4j0 $p |- ( ( a ->4 b ) v ( a ->0 b ) ) = ( a ->0 b ) $=
    ( wa wn wo wi4 wi0 leao4 leao1 lel2or lea df-le2 df-i4 df-i0 2or 3tr1 ) ABC
    ZADZBCZEZRBEZBDZCZEZUAEUAABFZABGZEUFUDUATUAUCQUASBARHRBBIJUAUBKJLUEUDUFUAAB
    MABNZOUGP $.
    $( [3-Jul-05] $) $( [2-Jul-05] $)

  $( Equation 4.14 of [MegPav2000] p. 23.  The variable i in the paper is set
     to 4, and j is set to 2.  (Contributed by Roy F. Longton, 3-Jul-05.) $)
  lem4.6.6i4j2 $p |- ( ( a ->4 b ) v ( a ->2 b ) ) = ( a ->0 b ) $=
    ( wa wn wi4 wi2 wi0 ax-a3 ax-r1 ax-a2 ancom lor leor oml2 ax-r5 ax-r2 leao1
    wo 3tr lel2or leao4 leid leo lerr lebi df-i4 df-i2 2or df-i0 3tr1 ) ABCZADZ
    BCZRZULBRZBDZCZRZBULUPCZRZRZUOABEZABFZRABGVAUNUQUTRZRUNUOUSRZRZUOUNUQUTHVDV
    EUNVDUQBRZUSRZVEVHVDUQBUSHIVGUOUSVGBUQRBUPUOCZRUOUQBJUQVIBUOUPKLBUOBULMNSOP
    LVFUOUNUOVEUKUOUMBAULUAULBBQTUOUOUSUOUBULUPBQTTUOVEUNUOUSUCUDUESVBURVCUTABU
    FABUGUHABUIUJ $.
    $( [3-Jul-05] $) $( [2-Jul-05] $)

  ${
    com3iia.1 $e |- a C b $.
    $( The dual of ~ com3ii .  (Contributed by Roy F. Longton, 3-Jul-05.) $)
    com3iia $p |- ( a v ( a ' ^ b ) ) = ( a v b ) $=
      ( wn wa wo comid comcom2 fh3 lear ax-a4 df-le1 leid ler2an lebi ax-r2 ) A
      ADZBEFAQFZABFZEZSAQBAAAGHCITSRSJSRSSRSAKLSMNOP $.
      $( [3-Jul-05] $) $( [2-Jul-05] $)
  $}

$(
  @( Note: This theorem is unfinished. This is the progress that I was able
      to make. @)
  lem4.6.6i4j3 @p |- ( ( a ->4 b ) v ( a ->3 b ) ) = ( a ->0 b ) @=
    wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo wva wn wvb wa wva wn
    wvb wn wa wo wva wva wn wvb wo wa wo wo wva wn wvb wo wva wvb wi4 wva wvb
    wi3 wo wva wvb wi0 wva wvb wa wva wn wvb wa wo wva wn wvb wo wvb wn wa wo
    wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wo wva wvb wa wva
    wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wn wa wva wn wvb wa wva
    wo wva wn wvb wo wa wo wo wva wn wvb wo wva wvb wa wva wn wvb wa wo wva wn
    wvb wo wvb wn wa wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo
    wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wva wn wvb wn wa
    wva wn wvb wa wva wo wva wn wvb wo wa wo wva wvb wa wva wn wvb wa wo wva wn
    wvb wo wvb wn wa wo wva wvb wa wva wn wvb wa wva wn wvb wo wvb wn wa wo wo
    wva wvb wa wva wn wvb wa wva wn wvb wo wo wva wn wvb wa wvb wn wo wa wo wva
    wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wvb wa wva wn wvb wa
    wva wn wvb wo wvb wn wa ax-a3 wva wn wvb wa wva wn wvb wo wvb wn wa wo wva
    wn wvb wa wva wn wvb wo wo wva wn wvb wa wvb wn wo wa wva wvb wa wva wn wvb
    wa wva wn wvb wo wvb wn wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1
    lecom wva wn wvb wa wvb wva wn wvb coman2 comcom2 fh3 lor wva wn wvb wa wva
    wn wvb wo wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wvb wn
    wo wa wva wvb wa wva wn wvb wa wva wn wvb wo wo wva wn wvb wo wva wn wvb wa
    wvb wn wo wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 df-le2 ran lor
    3tr wva wn wvb wa wva wn wvb wn wa wo wva wva wn wvb wo wa wo wva wn wvb wn
    wa wva wn wvb wa wo wva wva wn wvb wo wa wo wva wn wvb wn wa wva wn wvb wa
    wva wva wn wvb wo wa wo wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb
    wo wa wo wva wn wvb wa wva wn wvb wn wa wo wva wn wvb wn wa wva wn wvb wa
    wo wva wva wn wvb wo wa wva wn wvb wa wva wn wvb wn wa ax-a2 ax-r5 wva wn
    wvb wn wa wva wn wvb wa wva wva wn wvb wo wa ax-a3 wva wn wvb wa wva wva wn
    wvb wo wa wo wva wn wvb wa wva wo wva wn wvb wo wa wva wn wvb wn wa wva wn
    wvb wa wva wva wn wvb wo wa wo wva wn wvb wa wva wo wva wn wvb wa wva wn
    wvb wo wo wa wva wn wvb wa wva wo wva wn wvb wo wa wva wn wvb wa wva wva wn
    wvb wo wva wva wn wvb wa wva wva wn wvb wa wva wn wvb comanr1 comcom6
    comcom wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 lecom fh3 wva wn
    wvb wa wva wn wvb wo wo wva wn wvb wo wva wn wvb wa wva wo wva wn wvb wa
    wva wn wvb wo wva wn wvb wvb leao1 df-le2 lan ax-r2 lor 3tr 2or wva wvb wa
    wva wn wvb wo wva wn wvb wa wvb wn wo wa wo wva wn wvb wn wa wva wn wvb wa
    wva wo wva wn wvb wo wa wo wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn
    wo wa wo wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva
    wn wvb wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn wvb wo wa wo wva wn
    wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wva wvb wa wva wn wvb wo
    wva wn wvb wa wvb wn wo wa wo wva wn wvb wn wa wva wn wvb wa wva wo wva wn
    wvb wo wa wo wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva
    wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wva wn wvb wa wva wo
    wva wn wvb wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wva
    wn wvb wa wva wo wva wn wvb wo ancom lor wva wn wvb wn wa wva wn wvb wo wva
    wn wvb wa wva wo wa ax-a2 ax-r2 lor wva wvb wa wva wn wvb wo wva wn wvb wa
    wvb wn wo wa wo wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo
    wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn
    wvb wa wva wo wa wva wn wvb wn wa wo wo wo wva wn wvb wo wva wvb wa wva wn
    wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva
    wn wvb wn wa wo ax-a3 wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wa
    wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wo wva wvb wa
    wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb
    wn wa wo wo wva wn wvb wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn
    wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn
    wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wva wvb wa
    wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo
    wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn
    wvb wo wva wn wvb wa wva wo wa wo wva wn wvb wn wa wo wva wn wvb wo wva wn
    wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wva wn wvb
    wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wo wva
    wn wvb wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva
    wn wvb wa wva wo wa wva wn wvb wn wa wo wo wva wn wvb wo wva wn wvb wa wvb
    wn wo wa wva wn wvb wo wva wn wvb wa wva wo wa wva wn wvb wn wa ax-a3 ax-r1
    wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva wo
    wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva
    wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo
    wa wva wn wvb wo wva wn wvb wa wvb wn wo wa wva wn wvb wo wva wn wvb wa wva
    wo wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wva wn
    wvb wo wva wn wvb wa wvb wn wva wn wvb wa wva wn wvb wo wva wn wvb wa wva
    wn wvb wo wva wn wvb wvb leao1 lecom comcom wva wn wvb wo wvb wva wn wvb
    comor2 comcom2 com2or wva wn wvb wo wva wn wvb wa wva wva wn wvb wa wva wn
    wvb wo wva wn wvb wa wva wn wvb wo wva wn wvb wvb leao1 lecom comcom wva wn
    wvb wo wva wva wn wvb comor1 comcom7 com2or fh1 ax-r1 ax-r5 ax-r2 lor wva
    wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva
    wn wvb wn wa wo wo wva wvb wa wva wn wvb wn wa wva wn wvb wo wva wn wvb wa
    wvb wn wo wva wn wvb wa wva wo wo wa wo wo wva wn wvb wo wva wn wvb wo wva
    wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wn wa wo wva wn
    wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa
    wo wva wvb wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo
    wa wva wn wvb wn wa ax-a2 lor wva wvb wa wva wn wvb wn wa wva wn wvb wo wva
    wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wo wva wvb wa wva wn wvb
    wn wa wo wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa
    wo wva wn wvb wo wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb wa
    wvb wn wo wva wn wvb wa wva wo wo wa wo wva wvb wa wva wn wvb wn wa wva wn
    wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wo wo wva wvb wa
    wva wn wvb wn wa wva wn wvb wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo
    wo wa ax-a3 ax-r1 wva wvb wa wva wn wvb wn wa wo wva wn wvb wo wva wn wvb
    wa wvb wn wo wva wn wvb wa wva wo wo wa wo wva wvb wa wva wn wvb wn wa wo
    wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wo wva wn wvb wo wva wn wvb
    wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo wo wa wva wn wvb wo wva wn
    wvb wa wvb wn wva wo wo wa wva wvb wa wva wn wvb wn wa wo wva wn wvb wa wvb
    wn wo wva wn wvb wa wva wo wo wva wn wvb wa wvb wn wva wo wo wva wn wvb wo
    wva wn wvb wa wvb wn wva wo wo wva wn wvb wa wvb wn wo wva wn wvb wa wva wo
    wo wva wn wvb wa wvb wn wva orordi ax-r1 lan lor wva wvb wa wva wn wvb wn
    wa wo wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wo wva wvb wa wva wn
    wvb wn wa wo wva wn wvb wo wva wn wvb wa wva wvb wn wo wo wa wo wva wn wvb
    wo wva wn wvb wo wva wn wvb wa wvb wn wva wo wo wa wva wn wvb wo wva wn wvb
    wa wva wvb wn wo wo wa wva wvb wa wva wn wvb wn wa wo wva wn wvb wa wvb wn
    wva wo wo wva wn wvb wa wva wvb wn wo wo wva wn wvb wo wvb wn wva wo wva
    wvb wn wo wva wn wvb wa wvb wn wva ax-a2 lor lan lor ? ax-r2 ax-r2 ax-r2
    ax-r2 ax-r2 ax-r2 ax-r2 ax-r2 wva wvb wi4 wva wvb wa wva wn wvb wa wo wva
    wn wvb wo wvb wn wa wo wva wvb wi3 wva wn wvb wa wva wn wvb wn wa wo wva
    wva wn wvb wo wa wo wva wvb df-i4 wva wvb df-i3 2or wva wvb df-i0 3tr1 @.
    @( [31-Mar-2011] @) @( [2-Jul-05] @)

  lem4.6.6i1j4 @p |- ( ( a ->1 b ) v ( a ->4 b ) ) = ( a ->0 b ) @= ? @.

  lem4.6.6i2j3 @p |- ( ( a ->2 b ) v ( a ->3 b ) ) = ( a ->0 b ) @= ? @.

  lem4.6.6i3j2 @p |- ( ( a ->3 b ) v ( a ->2 b ) ) = ( a ->0 b ) @= ? @.

  lem4.6.6i3j4 @p |- ( ( a ->3 b ) v ( a ->4 b ) ) = ( a ->0 b ) @= ? @.

  lem4.6.6i4j1 @p |- ( ( a ->4 b ) v ( a ->1 b ) ) = ( a ->0 b ) @= ? @.
$)

  ${
    lem4.6.7.1 $e |- a ' =< b $.
    $( Equation 4.15 of [MegPav2000] p. 23.  (Contributed by Roy F. Longton,
       3-Jul-05.) $)
    lem4.6.7 $p |- b =< ( a ->1 b ) $=
      ( wn wa wo wi1 wt leid sklem ax-r1 df-le2 ax-a3 ler2an lel2or leran leao2
      2an le1 ler lebi ax-r2 comid comcom3 lecom fh3 3tr1 df-le1 df-i1 lbtr ) B
      ADZABEZFZABGZBUMHBEZUKAFZUKBFZEBUMFZUMHUPBUQUPHAAAIJKUQBUKBCLKRURBUKFZULF
      ZUOUTURBUKULMKUTUOUSUOULBUOUKBHBBSBINUKHBUKSCNOAHBASPOUOUSULBHUKQTUAUBUKA
      BAAAUCUDUKBCUEUFUGUHUNUMABUIKUJ $.
      $( [3-Jul-05] $) $( [3-Jul-05] $)
  $}


$( $t

/* The '$t' token indicates the beginning of the typesetting definition
section, embedded in a Metamath comment.  There may only be one per
source file, and the typesetting section ends with the end of the
Metamath comment.  The typesetting section uses C-style comment
delimiters.  */

/* These are the LaTeX and HTML definitions in the order the tokens are
introduced in $c or $v statements.  See HELP TEX or HELP HTML in the
Metamath program. */

/* Definitions for LaTeX output of various Metamath commands */
/* (LaTeX definitions have not been written for this file.) */

/* Definitions for HTML output of various Metamath commands. */

/* Title */
htmltitle "Quantum Logic Explorer";

/* Home page link */
htmlhome '<A HREF="mmql.html"><FONT SIZE=-2 FACE=sans-serif>' +
    '<IMG SRC="l46-7icon.gif" BORDER=0 ALT=' +
    '"[Lattice L46-7]Home Page" HEIGHT=32 WIDTH=32 ALIGN=MIDDLE>' +
    'Home</FONT></A>';

/* Optional file where bibliographic references are kept */
htmlbibliography "mmql.html";

/* Variable color key */
htmlvarcolor '<FONT COLOR="#CC4400">term</FONT>';


/* GIF and Symbol Font HTML directories */
htmldir "../qlegif/";
althtmldir "../qleuni/";


/* Symbol definitions */
htmldef "a" as "<IMG SRC='_ba.gif' WIDTH=9 HEIGHT=19 ALT='a' ALIGN=TOP>";
htmldef "b" as "<IMG SRC='_bb.gif' WIDTH=8 HEIGHT=19 ALT='b' ALIGN=TOP>";
htmldef "c" as "<IMG SRC='_bc.gif' WIDTH=7 HEIGHT=19 ALT='c' ALIGN=TOP>";
htmldef "d" as "<IMG SRC='_bd.gif' WIDTH=9 HEIGHT=19 ALT='d' ALIGN=TOP>";
htmldef "e" as "<IMG SRC='_be.gif' WIDTH=8 HEIGHT=19 ALT='e' ALIGN=TOP>";
htmldef "f" as "<IMG SRC='_bf.gif' WIDTH=9 HEIGHT=19 ALT='f' ALIGN=TOP>";
htmldef "g" as "<IMG SRC='_bg.gif' WIDTH=9 HEIGHT=19 ALT='g' ALIGN=TOP>";
htmldef "h" as "<IMG SRC='_bh.gif' WIDTH=10 HEIGHT=19 ALT='h' ALIGN=TOP>";
htmldef "i" as "<IMG SRC='_browni.gif' WIDTH=6 HEIGHT=19 ALT='i' ALIGN=TOP>";
htmldef "j" as "<IMG SRC='_bj.gif' WIDTH=7 HEIGHT=19 ALT='j' ALIGN=TOP>";
htmldef "k" as "<IMG SRC='_bk.gif' WIDTH=9 HEIGHT=19 ALT='k' ALIGN=TOP>";
htmldef "l" as "<IMG SRC='_bl.gif' WIDTH=6 HEIGHT=19 ALT='l' ALIGN=TOP>";
htmldef "m" as "<IMG SRC='_bm.gif' WIDTH=14 HEIGHT=19 ALT='m' ALIGN=TOP>";
htmldef "n" as "<IMG SRC='_bn.gif' WIDTH=10 HEIGHT=19 ALT='n' ALIGN=TOP>";
htmldef "p" as "<IMG SRC='_bp.gif' WIDTH=10 HEIGHT=19 ALT='p' ALIGN=TOP>";
htmldef "q" as "<IMG SRC='_bq.gif' WIDTH=8 HEIGHT=19 ALT='q' ALIGN=TOP>";
htmldef "r" as "<IMG SRC='_br.gif' WIDTH=8 HEIGHT=19 ALT='r' ALIGN=TOP>";
htmldef "t" as "<IMG SRC='_bt.gif' WIDTH=7 HEIGHT=19 ALT='t' ALIGN=TOP>";
htmldef "u" as "<IMG SRC='_bu.gif' WIDTH=10 HEIGHT=19 ALT='u' ALIGN=TOP>";
htmldef "w" as "<IMG SRC='_bw.gif' WIDTH=12 HEIGHT=19 ALT='w' ALIGN=TOP>";
htmldef "x" as "<IMG SRC='_bx.gif' WIDTH=10 HEIGHT=19 ALT='x' ALIGN=TOP>";
htmldef "y" as "<IMG SRC='_by.gif' WIDTH=9 HEIGHT=19 ALT='y' ALIGN=TOP>";
htmldef "z" as "<IMG SRC='_bz.gif' WIDTH=9 HEIGHT=19 ALT='z' ALIGN=TOP>";
htmldef "(" as "<IMG SRC='lp.gif' WIDTH=5 HEIGHT=19 ALT='(' ALIGN=TOP>";
htmldef ")" as "<IMG SRC='rp.gif' WIDTH=5 HEIGHT=19 ALT=')' ALIGN=TOP>";
htmldef "=" as " <IMG SRC='eq.gif' WIDTH=12 HEIGHT=19 ALT='=' ALIGN=TOP> ";
htmldef "==" as " <IMG SRC='equiv.gif' WIDTH=12 HEIGHT=19 ALT='=='" +
  " ALIGN=TOP> ";
htmldef "v" as " <IMG SRC='cup.gif' WIDTH=10 HEIGHT=19 ALT='v' ALIGN=TOP> ";
htmldef "^" as " <IMG SRC='cap.gif' WIDTH=10 HEIGHT=19 ALT='^' ALIGN=TOP> ";
htmldef "0" as "<IMG SRC='0.gif' WIDTH=8 HEIGHT=19 ALT='0' ALIGN=TOP>";
htmldef "1" as "<IMG SRC='1.gif' WIDTH=7 HEIGHT=19 ALT='1' ALIGN=TOP>";
/* htmldef "-" as "<IMG SRC='shortminus.gif' WIDTH=8 HEIGHT=19 ALT='-'" +
  " ALIGN=TOP>"; */
/* htmldef "_|_" as " <IMG SRC='perp.gif' WIDTH=11 HEIGHT=19 ALT='_|_'" +
  " ALIGN=TOP> "; */
htmldef "'" as "<IMG SRC='supperp.gif' WIDTH=9 HEIGHT=19 ALT=" +
   '"' + "'" + '"' + " ALIGN=TOP>";
htmldef "wff" as "<IMG SRC='_wff.gif' WIDTH=24 HEIGHT=19 ALT='wff'" +
  " ALIGN=TOP> ";
htmldef "term" as "<IMG SRC='_term.gif' WIDTH=32 HEIGHT=19 ALT='term'" +
  " ALIGN=TOP> ";
/* Mladen wants the turnstile to go away 2/9/02 */
/*htmldef "|-" as "<IMG SRC='_vdash.gif' WIDTH=10 HEIGHT=19 ALT='|-'" +
  " ALIGN=TOP> ";*/
htmldef "|-" as "";
htmldef "C" as " <IMG SRC='cc.gif' WIDTH=12 HEIGHT=19 ALT='C' ALIGN=TOP> ";
htmldef "," as "<IMG SRC='comma.gif' WIDTH=4 HEIGHT=19 ALT=',' ALIGN=TOP> ";
htmldef "=<" as " <IMG SRC='le.gif' WIDTH=11 HEIGHT=19 ALT='=&lt;'" +
  " ALIGN=TOP> ";
htmldef "=<2" as " <IMG SRC='_le2.gif' WIDTH=17 HEIGHT=19 ALT='=&lt;2'" +
  " ALIGN=TOP> ";
htmldef "->0" as " <IMG SRC='_to0.gif' WIDTH=21 HEIGHT=19 ALT='-&gt;0'" +
  " ALIGN=TOP> ";
htmldef "->1" as " <IMG SRC='_to1.gif' WIDTH=19 HEIGHT=19 ALT='-&gt;1'" +
  " ALIGN=TOP> ";
htmldef "->2" as " <IMG SRC='_to2.gif' WIDTH=21 HEIGHT=19 ALT='-&gt;2'" +
  " ALIGN=TOP> ";
htmldef "->3" as " <IMG SRC='_to3.gif' WIDTH=21 HEIGHT=19 ALT='-&gt;3'" +
  " ALIGN=TOP> ";
htmldef "->4" as " <IMG SRC='_to4.gif' WIDTH=20 HEIGHT=19 ALT='-&gt;4'" +
  " ALIGN=TOP> ";
htmldef "->5" as " <IMG SRC='_to5.gif' WIDTH=20 HEIGHT=19 ALT='-&gt;5'" +
  " ALIGN=TOP> ";
htmldef "<->1" as " <IMG SRC='_bi1.gif' WIDTH=19 HEIGHT=19" +
  " ALT='&lt;-&gt;1' ALIGN=TOP> ";
htmldef "<->3" as " <IMG SRC='_bi3.gif' WIDTH=21 HEIGHT=19" +
  " ALT='&lt;-&gt;3' ALIGN=TOP> ";
htmldef "u3" as " <IMG SRC='_cup3.gif' WIDTH=16 HEIGHT=19 ALT='u3'" +
  " ALIGN=TOP> ";
htmldef "^3" as " <IMG SRC='_cap3.gif' WIDTH=16 HEIGHT=19 ALT='^3'" +
  " ALIGN=TOP> ";
htmldef "==0" as " <IMG SRC='_equiv0.gif' WIDTH=18 HEIGHT=19 ALT='==0'" +
  " ALIGN=TOP> ";
htmldef "==1" as " <IMG SRC='_equiv1.gif' WIDTH=16 HEIGHT=19 ALT='==1'" +
  " ALIGN=TOP> ";
htmldef "==2" as " <IMG SRC='_equiv2.gif' WIDTH=18 HEIGHT=19 ALT='==2'" +
  " ALIGN=TOP> ";
htmldef "==3" as " <IMG SRC='_equiv3.gif' WIDTH=18 HEIGHT=19 ALT='==3'" +
  " ALIGN=TOP> ";
htmldef "==4" as " <IMG SRC='_equiv4.gif' WIDTH=18 HEIGHT=19 ALT='==4'" +
  " ALIGN=TOP> ";
htmldef "==5" as " <IMG SRC='_equiv5.gif' WIDTH=18 HEIGHT=19 ALT='==5'" +
  " ALIGN=TOP> ";
htmldef "==OA" as " <IMG SRC='_oa.gif' WIDTH=26 HEIGHT=19 ALT='==OA'" +
  " ALIGN=TOP> ";
/*
htmldef "==u" as '<FONT FACE="Symbol"> &#186;</FONT ><I><SUB>u</SUB> </I>';
htmldef "u.u" as '<FONT FACE="Symbol"> &#218;</FONT ><I><SUB>u</SUB> </I>';
htmldef "^u" as '<FONT FACE="Symbol"> &#217;</FONT ><I><SUB>u</SUB> </I>';
htmldef "-u" as '<FONT FACE="Symbol"> &#216;</FONT ><I><SUB>u</SUB> </I>';
htmldef "=<u" as '<FONT FACE="Symbol"> &#163;</FONT ><I><SUB>u</SUB> </I>';
htmldef "=" as '<FONT FACE="Symbol"> = </FONT>';
*/


/* Definitions for Unicode version */
althtmldef "a" as '<I><FONT COLOR="#CC4400">a</FONT></I>';
althtmldef "b" as '<I><FONT COLOR="#CC4400">b</FONT></I>';
althtmldef "c" as '<I><FONT COLOR="#CC4400">c</FONT></I>';
althtmldef "d" as '<I><FONT COLOR="#CC4400">d</FONT></I>';
althtmldef "e" as '<I><FONT COLOR="#CC4400">e</FONT></I>';
althtmldef "f" as '<I><FONT COLOR="#CC4400">f</FONT></I>';
althtmldef "g" as '<I><FONT COLOR="#CC4400">g</FONT></I>';
althtmldef "h" as '<I><FONT COLOR="#CC4400">h</FONT></I>';
althtmldef "i" as '<I><FONT COLOR="#CC4400">i</FONT></I>';
althtmldef "j" as '<I><FONT COLOR="#CC4400">j</FONT></I>';
althtmldef "k" as '<I><FONT COLOR="#CC4400">k</FONT></I>';
althtmldef "l" as '<I><FONT COLOR="#CC4400">l</FONT></I>';
althtmldef "m" as '<I><FONT COLOR="#CC4400">m</FONT></I>';
althtmldef "n" as '<I><FONT COLOR="#CC4400">n</FONT></I>';
althtmldef "p" as '<I><FONT COLOR="#CC4400">p</FONT></I>';
althtmldef "q" as '<I><FONT COLOR="#CC4400">q</FONT></I>';
althtmldef "r" as '<I><FONT COLOR="#CC4400">r</FONT></I>';
althtmldef "t" as '<I><FONT COLOR="#CC4400">t</FONT></I>';
althtmldef "u" as '<I><FONT COLOR="#CC4400">u</FONT></I>';
althtmldef "w" as '<I><FONT COLOR="#CC4400">w</FONT></I>';
althtmldef "x" as '<I><FONT COLOR="#CC4400">x</FONT></I>';
althtmldef "y" as '<I><FONT COLOR="#CC4400">y</FONT></I>';
althtmldef "z" as '<I><FONT COLOR="#CC4400">z</FONT></I>';
althtmldef "a0" as '<I><FONT COLOR="#CC4400">a<SUB>0</SUB></FONT></I>';
althtmldef "a1" as '<I><FONT COLOR="#CC4400">a<SUB>1</SUB></FONT></I>';
althtmldef "a2" as '<I><FONT COLOR="#CC4400">a<SUB>2</SUB></FONT></I>';
althtmldef "b0" as '<I><FONT COLOR="#CC4400">b<SUB>0</SUB></FONT></I>';
althtmldef "b1" as '<I><FONT COLOR="#CC4400">b<SUB>1</SUB></FONT></I>';
althtmldef "b2" as '<I><FONT COLOR="#CC4400">b<SUB>2</SUB></FONT></I>';
althtmldef "c0" as '<I><FONT COLOR="#CC4400">c<SUB>0</SUB></FONT></I>';
althtmldef "c1" as '<I><FONT COLOR="#CC4400">c<SUB>1</SUB></FONT></I>';
althtmldef "c2" as '<I><FONT COLOR="#CC4400">c<SUB>2</SUB></FONT></I>';
althtmldef "p0" as '<I><FONT COLOR="#CC4400">p<SUB>0</SUB></FONT></I>';
althtmldef "p1" as '<I><FONT COLOR="#CC4400">p<SUB>1</SUB></FONT></I>';
althtmldef "p2" as '<I><FONT COLOR="#CC4400">p<SUB>2</SUB></FONT></I>';
htmldef "a0" as '<I><FONT COLOR="#CC4400">a<SUB>0</SUB></FONT></I>';
htmldef "a1" as '<I><FONT COLOR="#CC4400">a<SUB>1</SUB></FONT></I>';
htmldef "a2" as '<I><FONT COLOR="#CC4400">a<SUB>2</SUB></FONT></I>';
htmldef "b0" as '<I><FONT COLOR="#CC4400">b<SUB>0</SUB></FONT></I>';
htmldef "b1" as '<I><FONT COLOR="#CC4400">b<SUB>1</SUB></FONT></I>';
htmldef "b2" as '<I><FONT COLOR="#CC4400">b<SUB>2</SUB></FONT></I>';
htmldef "c0" as '<I><FONT COLOR="#CC4400">c<SUB>0</SUB></FONT></I>';
htmldef "c1" as '<I><FONT COLOR="#CC4400">c<SUB>1</SUB></FONT></I>';
htmldef "c2" as '<I><FONT COLOR="#CC4400">c<SUB>2</SUB></FONT></I>';
htmldef "p0" as '<I><FONT COLOR="#CC4400">p<SUB>0</SUB></FONT></I>';
htmldef "p1" as '<I><FONT COLOR="#CC4400">p<SUB>1</SUB></FONT></I>';
htmldef "p2" as '<I><FONT COLOR="#CC4400">p<SUB>2</SUB></FONT></I>';
althtmldef "(" as '(';
althtmldef ")" as ')';
althtmldef "=" as ' = '; /* &equals; */
althtmldef "==" as ' &equiv; ';
althtmldef "v" as ' &cup; ';
althtmldef "^" as ' &cap; ';
althtmldef "1" as '1';
althtmldef "0" as '0';
/* althtmldef "-" as ' - '; */
/* althtmldef "'" as '&#8869;'; */
althtmldef "'" as '<SUP>&#8869;</SUP> ';
althtmldef "wff" as '<FONT COLOR="#00CC00">wff&nbsp; </FONT>';
althtmldef "term" as '<FONT COLOR="#00CC00">term&nbsp; </FONT>';
/* Mladen wants the turnstile to go away 2/9/02 */
/*althtmldef "|-" as '<FONT COLOR="#00CC00">|-&nbsp; </FONT>';*/
althtmldef "|-" as '';
althtmldef "C" as '<I> C </I>';
althtmldef "," as ', ';
althtmldef "=<" as ' &le; ';
althtmldef "=<2" as ' &le;<SUB>2 </SUB>';
althtmldef "->0" as ' &rarr;<SUB>0 </SUB>';
althtmldef "->1" as ' &rarr;<SUB>1 </SUB>';
althtmldef "->2" as ' &rarr;<SUB>2 </SUB>';
althtmldef "->3" as ' &rarr;<SUB>3 </SUB>';
althtmldef "->4" as ' &rarr;<SUB>4 </SUB>';
althtmldef "->5" as ' &rarr;<SUB>5 </SUB>';
althtmldef "<->1" as ' &harr;<SUB>1 </SUB> ';
althtmldef "<->3" as ' &harr;<SUB>3 </SUB> ';
althtmldef "u3" as ' &cup;<SUB>3 </SUB> ';
althtmldef "^3" as ' &cap;<SUB>3 </SUB> ';
althtmldef "==0" as ' &equiv;<SUB>0 </SUB> ';
althtmldef "==1" as ' &equiv;<SUB>1 </SUB>';
althtmldef "==2" as ' &equiv;<SUB>2 </SUB>';
althtmldef "==3" as ' &equiv;<SUB>3 </SUB>';
althtmldef "==4" as ' &equiv;<SUB>4 </SUB>';
althtmldef "==5" as ' &equiv;<SUB>5 </SUB>';
althtmldef "==OA" as ' &equiv;<SUB>OA </SUB>';
/*
althtmldef "==u" as ' &equiv;<I><SUB>u</SUB> </I>';
althtmldef "u.u" as ' &middot;<I><SUB>u</SUB> </I>';
althtmldef "^u" as ' &cap;<I><SUB>u</SUB> </I>';
althtmldef "-u" as ' &minus;<I><SUB>u</SUB> </I>';
althtmldef "=<u" as ' &le;<I><SUB>u</SUB> </I>';
althtmldef "=" as ' = ';
*/
/* End of Unicode defintions */


latexdef "a" as "a";
latexdef "b" as "b";
latexdef "c" as "c";
latexdef "d" as "d";
latexdef "e" as "e";
latexdef "f" as "f";
latexdef "g" as "g";
latexdef "h" as "h";
latexdef "i" as "i";
latexdef "j" as "j";
latexdef "k" as "k";
latexdef "l" as "l";
latexdef "m" as "m";
latexdef "n" as "n";
latexdef "p" as "p";
latexdef "q" as "q";
latexdef "r" as "r";
latexdef "t" as "t";
latexdef "u" as "u";
latexdef "w" as "w";
latexdef "x" as "x";
latexdef "y" as "y";
latexdef "z" as "z";
latexdef "(" as "(";
latexdef ")" as ")";
latexdef "=" as "=";
latexdef "==" as "\equiv ";
latexdef "v" as "\vee ";
latexdef "^" as "\wedge ";
latexdef "0" as "0";
latexdef "1" as "1";
latexdef "'" as "'";
latexdef "wff" as "{\rm wff}";
latexdef "term" as "{\rm term}";
latexdef "|-" as "";
latexdef "C" as "C";
latexdef "," as ",";
latexdef "=<" as "\le ";
latexdef "=<2" as "\le_2";
latexdef "->0" as "\to_0";
latexdef "->1" as "\to_1";
latexdef "->2" as "\to_2";
latexdef "->3" as "\to_3";
latexdef "->4" as "\to_4";
latexdef "->5" as "\to_5";
latexdef "<->1" as "\leftrightarrow_1";
latexdef "<->3" as "\leftrightarrow_3";
latexdef "u3" as "\vee_3";
latexdef "^3" as "\wedge_3";
latexdef "==0" as "\equiv_0";
latexdef "==1" as "\equiv_1";
latexdef "==2" as "\equiv_2";
latexdef "==3" as "\equiv_3";
latexdef "==4" as "\equiv_4";
latexdef "==5" as "\equiv_5";
latexdef "==OA" as "\equiv_{\mathrm{OA}}";

/* End of typesetting definition section */
$)

$( 456789012345 (79-character line to adjust text window width) 567890123456 $)


$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        Weakly distributive ortholattices (WDOL)
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        WDOL law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( The WDOL (weakly distributive ortholattice) axiom. $)
  ax-wdol $a |- ( ( a == b ) v ( a == b ' ) ) = 1 $.

  $( Any two variables (weakly) commute in a WDOL. $)
  wdcom $p |- C ( a , b ) = 1 $=
    ( wcmtr wa wn wo wt df-cmtr or42 tb dfb ax-a1 lan ax-r1 lor 2or ax-wdol 3tr
    ax-r2 ) ABCABDZABEZDZFAEZBDZUCUADZFFTUEFZUBUDFZFZGABHTUBUDUEIUHABJZAUAJZFZG
    UKUHUIUFUJUGABKUJUBUCUAEZDZFUGAUAKUMUDUBUDUMBULUCBLMNOSPNABQSR $.
    $( [4-Mar-06] $)

  ${
    wdwom.1 $e |- ( a ' v ( a ^ b ) ) = 1 $.
    $( Prove 2-variable WOML rule in WDOL. This will make all WOML theorems
       available to us.  The proof does not use ~ ax-r3 or ~ ax-wom .  Since
       this is the same as ~ ax-wom , from here on we will freely use those
       theorems invoking ~ ax-wom . $)
    wdwom $p |- ( b v ( a ' ^ b ' ) ) = 1 $=
      ( wn wa wo wi2 wt df-i2 ax-r1 le1 wi5 df-i5 wi1 df-i1 ax-r2 wql1lem wcmtr
      or4 anor1 lor ax-r5 or12 df-cmtr 3tr1 wdcom skr0 i5lei2 bltr lebi ) BADZB
      DZEZFZABGZHUOUNABIJUOHUOKHABLZUOUPHUPABEZUKBEZFZUMFZHABMUKBFZUTABABNUKUQF
      HABOCPQVADZUTFZABRZHUSVBUMFFZUQAULEZFZURUMFZFZVCVDVEUQVBFZVHFVIUQURVBUMSV
      JVGVHVBVFUQVFVBABTJUAUBPVBUSUMUCABUDUEABUFPUGPJABUHUIUJP $.
      $( [4-Mar-06] $)
  $}

  $( Prove the weak distributive law in WDOL. This is our first WDOL theorem
     making use of ~ ax-wom , which is justified by ~ wdwom . $)
  wddi1 $p |- ( ( a ^ ( b v c ) ) == ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
    ( wdcom wfh1 ) ABCABDACDE $.
    $( [4-Mar-06] $)


  $( The weak distributive law in WDOL. $)
  wddi2 $p |- ( ( ( a v b ) ^ c ) == ( ( a ^ c ) v ( b ^ c ) ) ) = 1 $=
    ( wo wa wancom wddi1 w2or wr2 ) ABDZCECJEZACEZBCEZDZJCFKCAEZCBEZDNCABGOLPMC
    AFCBFHII $.
    $( [5-Mar-06] $)

  $( The weak distributive law in WDOL. $)
  wddi3 $p |- ( ( a v ( b ^ c ) ) ==
             ( ( a v b ) ^ ( a v c ) ) ) = 1 $=
    ( wdcom wfh3 ) ABCABDACDE $.
    $( [5-Mar-06] $)

  $( The weak distributive law in WDOL. $)
  wddi4 $p |- ( ( ( a ^ b ) v c ) ==
             ( ( a v c ) ^ ( b v c ) ) ) = 1 $=
    ( wa wo wa2 wddi3 w2an wr2 ) ABDZCECJEZACEZBCEZDZJCFKCAEZCBEZDNCABGOLPMCAFC
    BFHII $.
    $( [5-Mar-06] $)


  ${
    wdid0id5.1 $e |- ( a ==0 b ) = 1 $.
    $( Show that quantum identity follows from classical identity in a WDOL. $)
    wdid0id5 $p |- ( a == b ) = 1 $=
      ( tb wa wn wo wt dfb wid0 df-id0 ax-r1 ax-r2 wa4 wleoa wancom wddi3 w3tr1
      wr1 wa2 wr2 w2an wddi4 wwbmp ) ABDABEAFZBFZEZGZHABIUEBGZUFAGZEZUHUKABJZHU
      LUKABKLCMUJUIEAUGGZBUGGZEUKUHUJUMUIUNAUFGZAUEGZUOEZUJUMUOUOUPEZUQURUOUOUP
      UPUOANOSUOUPPUAUFATAUEUFQRBUEGZUSBUFGZEZUIUNVAUSUSUTUTUSBNOSUEBTBUEUFQRUB
      UIUJPABUGUCRUDM $.
      $( [5-Mar-06] $)

    $( Show a quantum identity that follows from classical identity in a
       WDOL. $)
    wdid0id1 $p |- ( a ==1 b ) = 1 $=
      ( wid1 wn wo wa wt df-id1 wid0 df-id0 ax-r1 ax-r2 wancom wa2 wlan wa4 wr2
      wleoa wr1 wddi3 w2an biid w3tr1 wwbmp ) ABDABEZFZAEZABGFZGZHABIUHBFZUFAFZ
      GZUJUMABJZHUNUMABKLCMUMUIUGGUMUJUKUIULUGUKUHAFZUKGZUIUPUKUPUKUOGZUKUOUKNU
      QUKAUHFZGUKUOURUKUHAOPUKURURUKAQSRRTUIUPUHABUATRUFAOUBUMUCUGUINUDUEM $.
      $( [5-Mar-06] $)

    $( Show a quantum identity that follows from classical identity in a
       WDOL. $)
    wdid0id2 $p |- ( a ==2 b ) = 1 $=
      ( wid2 wn wo wa df-id2 wid0 df-id0 ax-r1 ax-r2 wancom wa2 wa4 wleoa wddi3
      wt wr1 w3tr1 w2an wr2 wwbmp ) ABDABEZFZBAEZUDGFZGZRABHUFBFZUDAFZGZUHUKABI
      ZRULUKABJKCLUKUJUIGUHUIUJMUJUEUIUGUDANBUFFZUMBUDFZGZUIUGUOUMUMUNUNUMBOPSU
      FBNBUFUDQTUAUBUCL $.
      $( [5-Mar-06] $)

    $( Show a quantum identity that follows from classical identity in a
       WDOL. $)
    wdid0id3 $p |- ( a ==3 b ) = 1 $=
      ( wid3 wn wo wa wt df-id3 df-id0 ax-r1 ax-r2 wa4 wleoa wr1 wancom wr2 wa2
      wid0 wddi3 w3tr1 wlan wwbmp ) ABDAEZBFZAUDBEZGFZGZHABIUEUFAFZGZUHUJABSZHU
      KUJABJKCLUIUGUEAUFFZAUDFZULGZUIUGULULUMGZUNUOULULUMUMULAMNOULUMPQUFARAUDU
      FTUAUBUCL $.
      $( [5-Mar-06] $)

    $( Show a quantum identity that follows from classical identity in a
       WDOL. $)
    wdid0id4 $p |- ( a ==4 b ) = 1 $=
      ( wid4 wn wo wa wt df-id4 wid0 df-id0 ax-r1 ax-r2 wddi3 wa2 wa4 wleoa wr2
      wlan wr1 wwbmp ) ABDAEBFZBEZABGFZGZHABIUBUCAFZGZUEUGABJZHUHUGABKLCMUFUDUB
      UDUFUDUFUCBFZGZUFUCABNUJUFBUCFZGUFUIUKUFUCBOSUFUKUKUFBPQRRTSUAM $.
      $( [5-Mar-06] $)

    $( Show WDOL analog of WOM law. $)
    wdka4o $p |- ( ( a v c ) ==0 ( b v c ) ) = 1 $=
      ( wo wdid0id5 wr5 id5id0 ) ACEBCEABCABDFGH $.
      $( [5-Mar-06] $)
  $}

  $( The weak distributive law in WDOL. $)
  wddi-0 $p |- ( ( a ^ ( b v c ) ) ==0 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
    ( wo wa wddi1 id5id0 ) ABCDEABEACEDABCFG $.
    $( [5-Mar-06] $)

  $( The weak distributive law in WDOL. $)
  wddi-1 $p |- ( ( a ^ ( b v c ) ) ==1 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
    ( wo wa wddi-0 wdid0id1 ) ABCDEABEACEDABCFG $.
    $( [5-Mar-06] $)

  $( The weak distributive law in WDOL. $)
  wddi-2 $p |- ( ( a ^ ( b v c ) ) ==2 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
    ( wo wa wddi-0 wdid0id2 ) ABCDEABEACEDABCFG $.
    $( [5-Mar-06] $)

  $( The weak distributive law in WDOL. $)
  wddi-3 $p |- ( ( a ^ ( b v c ) ) ==3 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
    ( wo wa wddi-0 wdid0id3 ) ABCDEABEACEDABCFG $.
    $( [5-Mar-06] $)

  $( The weak distributive law in WDOL. $)
  wddi-4 $p |- ( ( a ^ ( b v c ) ) ==4 ( ( a ^ b ) v ( a ^ c ) ) ) = 1 $=
    ( wo wa wddi-0 wdid0id4 ) ABCDEABEACEDABCFG $.
    $( [5-Mar-06] $)

$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
        Modular ortholattices (MOL)
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
$)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Modular law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  $( The modular law axiom. $)
  ax-ml $a |- ( ( a v b ) ^ ( a v c ) ) =< ( a v ( b ^ ( a v c ) ) ) $.

  $( Modular law in equational form. $)
  ml $p |- ( a v ( b ^ ( a v c ) ) ) = ( ( a v b ) ^ ( a v c ) ) $=
    ( wo wa leo ler2an leor leran lel2or ax-ml lebi ) ABACDZEZDABDZMEZAPNAOMABF
    ACFGBOMBAHIJABCKL $.
    $( [31-Mar-2011] $) $( [15-Mar-2010] $)

  $( Dual of modular law. $)
  mldual $p |- ( a ^ ( b v ( a ^ c ) ) ) = ( ( a ^ b ) v ( a ^ c ) ) $=
    ( wa wo wn anor3 cm oran3 lan ax-r1 tr lor ml 2an 3tr 3tr2 con1 ) ABACDZEZD
    ZABDZSEZAFZTFZEZUBFZSFZDZUAFUCFUFUDBFZUDCFZEZDZEUDUJEZULDUIUEUMUDUEUJUHDZUM
    UOUEBSGHUMUOULUHUJACIZJKLMUDUJUKNUNUGULUHABIUPOPATIUBSGQR $.
    $( [31-Mar-2011] $) $( [15-Mar-2010] $)

  ${
    mli.1 $e |- c =< a $.
    $( Inference version of modular law. $)
    ml2i $p |- ( c v ( b ^ a ) ) = ( ( c v b ) ^ a ) $=
      ( wo wa ml df-le2 lan lor 3tr2 ) CBCAEZFZECBEZLFCBAFZENAFCBAGMOCLABCADHZI
      JLANPIK $.
      $( [1-Apr-2012] $)

    $( Inference version of modular law. $)
    mli $p |- ( ( a ^ b ) v c ) = ( a ^ ( b v c ) ) $=
      ( wa wo ancom ror orcom ml2i 3tr ran ) ABEZCFZCBFZAEZBCFZAEAQENBAEZCFCRFP
      MRCABGHRCIABCDJKOQACBILQAGK $.
      $( [1-Apr-2012] $)

  $}

  ${
    mlduali.1 $e |- a =< c $.
    $( Inference version of dual of modular law. $)
    mldual2i $p |- ( c ^ ( b v a ) ) = ( ( c ^ b ) v a ) $=
      ( wa wo mldual lear leid ler2an lebi lor lan 3tr2 ) CBCAEZFZECBEZOFCBAFZE
      QAFCBAGPRCOABOACAHACADAIJKZLMOAQSLN $.
      $( [1-Apr-2012] $)

    $( Inference version of dual of modular law. $)
    mlduali $p |- ( ( a v b ) ^ c ) = ( a v ( b ^ c ) ) $=
      ( wo wa ax-a2 ran ancom mldual2i 3tr ror orcom ) ABEZCFZCBFZAEZBCFZAEAREO
      BAEZCFCSFQNSCABGHSCIABCDJKPRACBILRAMK $.
      $( [1-Apr-2012] $)
  $}

  $( Form of modular law that swaps two terms. $)
  ml3le $p |- ( a v ( b ^ ( c v a ) ) ) =< ( a v ( c ^ ( b v a ) ) ) $=
    ( wo wa lear lelor or12 oridm lor orcom 3tr lbtr leor lel2or ler2an mlduali
    leao1 ) ABCADZEZDZACDZBADZEACUCEDUAUBUCUAASDZUBTSABSFGUDCAADZDSUBACAHUEACAI
    JCAKLMAUCTABNZBSAROPACUCUFQM $.
    $( [1-Apr-2012] $)

  $( Form of modular law that swaps two terms. $)
  ml3 $p |- ( a v ( b ^ ( c v a ) ) ) = ( a v ( c ^ ( b v a ) ) ) $=
    ( wo wa ml3le lebi ) ABCADEDACBADEDABCFACBFG $.
    $( [1-Apr-2012] $)


  $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
  vneulem1 $p |- ( ( ( x v y ) v u ) ^ w )
      = ( ( ( x v y ) v u ) ^ ( ( u v w ) ^ w ) ) $=
    ( wo wa leor leid ler2an lear lebi lan ) BABEZBFZCDEAEBNBMBBAGBHIMBJKL $.
    $( [31-Mar-2011] $) $( [15-Mar-2010] $)

  $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
  vneulem2 $p |- ( ( ( x v y ) v u ) ^ ( ( u v w ) ^ w ) )
      = ( ( ( ( x v y ) ^ ( u v w ) ) v u ) ^ w ) $=
    ( wo wa anass cm ax-a2 ran ml orcom 3tr tr ) CDEZAEZABEZBFFZPQFZBFZOQFZAEZB
    FTRPQBGHSUBBSAOEZQFZAUAEZUBPUCQOAIJUEUDAOBKHAUALMJN $.
    $( [31-Mar-2011] $) $( [15-Mar-2010] $)

  ${
    vneulem3.1 $e |- ( ( x v y ) ^ ( u v w ) ) = 0 $.
    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem3 $p |- ( ( ( ( x v y ) ^ ( u v w ) ) v u ) ^ w ) = ( u ^ w ) $=
      ( wo wa wf ror or0r tr ran ) CDFABFGZAFZABNHAFAMHAEIAJKL $.
      $( [31-Mar-2011] $) $( [15-Mar-2010] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem4 $p |- ( ( ( x v y ) v u ) ^ w ) = ( u ^ w ) $=
      ( wo wa vneulem1 vneulem2 vneulem3 3tr ) CDFZAFZBGMABFZBGGLNGAFBGABGABCDH
      ABCDIABCDEJK $.
      $( [31-Mar-2011] $) $( [15-Mar-2010] $)
  $}

  $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
  vneulem5 $p |- ( ( ( x v y ) v u ) ^ ( ( x v y ) v w ) )
        = ( ( x v y ) v ( ( ( x v y ) v u ) ^ w ) ) $=
    ( wo wa ancom ml cm lor 3tr ) CDEZAEZLBEZFNMFZLBMFZEZLMBFZEMNGQOLBAHIPRLBMG
    JK $.
    $( [31-Mar-2011] $) $( [15-Mar-2010] $)

  ${
    vneulem6.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $.
    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem6 $p |- ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) )
         = ( ( c ^ a ) v ( b v d ) ) $=
      ( wo wa orcom ror or32 tr 2an vneulem5 leor ax-a2 leao3 bltr lel2or leror
      ler ax-r2 ran wf vneulem4 lerr leao2 leo ler2an lebi ) ABFZDFZBCFZDFZGZCA
      GZBDFZFZUNUPUPAFZCGZFZUQUNURUPCFZGUTUKURUMVAUKBAFZDFZURUJVBDABHIBADJKBCDJ
      LACBDMUAUPUQUSUPUONUSDCGZUQUSVCCGVDURVCCBDAJUBDCBAVBDCFZGUJCDFZGUCVBUJVEV
      FBAODCOLEKUDKVDUPUODCBPUEQRQUQUKUMUOUKUPUOUJDACBUFTBUJDBANSRUOUMUPUOULDCA
      BPTBULDBCUGSRUHUI $.
      $( [31-Mar-2011] $) $( [15-Mar-2010] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem7 $p |- ( ( c ^ a ) v ( b v d ) ) = ( b v d ) $=
      ( wa wo wf leao2 leao1 ler2an lbtr le0 lebi ror or0r tr ) CAFZBDGZGHSGSRH
      SRHRABGZCDGZFHRTUAACBICADJKELRMNOSPQ $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem8 $p |- ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) = ( b v d ) $=
      ( wo wa vneulem6 vneulem7 tr ) ABFDFBCFDFGCAGBDFZFKABCDEHABCDEIJ $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem9 $p |- ( ( ( a v b ) v d ) ^ ( ( a v b ) v c ) )
         = ( ( c ^ d ) v ( a v b ) ) $=
      ( wo wa ancom vneulem5 ax-r2 orcom vneulem4 ror 3tr ) ABFZDFZOCFZGZOQDGZF
      ZSOFCDGZOFRQPGTPQHCDABIJOSKSUAOCDABELMN $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem10 $p |- ( ( ( a v b ) v c ) ^ ( ( a v c ) v d ) ) = ( a v c ) $=
      ( wo wa ax-a2 ax-r5 or32 2an wf orcom tr vneulem8 ) ABFZCFZACFZDFZGBAFZCF
      ZADFCFZGRQUASUBPTCABHIACDJKBADCTDCFZGPCDFZGLTPUCUDBAMDCMKENON $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem11 $p |- ( ( ( b v c ) v d ) ^ ( ( a v c ) v d ) )
         = ( ( c v d ) v ( a ^ b ) ) $=
      ( wo wa ax-a3 orcom tr ax-a2 ror or32 2an wf ancom vneulem9 3tr ) BCFDFZA
      CFZDFZGCDFZBFZUBAFZGABGZUBFUBUEFSUCUAUDSBUBFUCBCDHBUBIJUACAFZDFUDTUFDACKL
      CADMJNCDABUBABFZGUGUBGOUBUGPEJQUEUBIR $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)
  $}

  $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
  vneulem12 $p |- ( ( ( c ^ d ) v ( a v b ) ) ^ ( ( c v d ) v ( a ^ b ) ) )
          = ( ( c ^ d ) v ( ( a v b ) ^ ( ( c v d ) v ( a ^ b ) ) ) ) $=
    ( wa wo ml cm orass leao1 df-le2 ror tr lan lor 3tr2 ) CDEZABFZFZQCDFZABEZF
    ZFZEZQRUCEZFZSUBEQRUBEZFUFUDQRUBGHUCUBSUCQTFZUAFZUBUIUCQTUAIHUHTUAQTCDDJKLM
    ZNUEUGQUCUBRUJNOP $.
    $( [31-Mar-2011] $) $( [31-Mar-2011] $)

  ${
    vneulem13.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $.
    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem13 $p |- ( ( c ^ d ) v ( ( a v b ) ^ ( ( c v d ) v ( a ^ b ) ) ) )
           = ( ( c ^ d ) v ( a ^ b ) ) $=
      ( wo wa leao1 leid ler2an lear lebi lor lan mldual wf 2or or0r tr 3tr ) A
      BFZCDFZABGZFZGZUCCDGUEUAUBUAUCGZFZGUAUBGZUFFZUCUDUGUAUCUFUBUCUFUCUAUCABBH
      UCIJZUAUCKZLMNUAUBUCOUIPUCFUCUHPUFUCEUFUCUKUJLQUCRSTM $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem14 $p |- ( ( ( c ^ d ) v ( a v b ) ) ^ ( ( c v d ) v ( a ^ b ) ) )
           = ( ( c ^ d ) v ( a ^ b ) ) $=
      ( wa wo vneulem12 vneulem13 tr ) CDFZABGZGCDGABFZGZFKLNFGKMGABCDHABCDEIJ
      $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem15 $p |- ( ( a v c ) ^ ( b v d ) )
        = ( ( ( ( a v b ) v c ) ^ ( ( a v c ) v d ) )
           ^ ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) ) $=
      ( wo wa vneulem10 vneulem8 2an cm ) ABFZCFACFZDFGZLDFBCFDFGZGMBDFZGNMOPAB
      CDEHABCDEIJK $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)

    $( Part of von Neumann's lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem16 $p |- ( ( ( ( a v b ) v c ) ^ ( ( a v c ) v d ) )
           ^ ( ( ( a v b ) v d ) ^ ( ( b v c ) v d ) ) )
        = ( ( a ^ b ) v ( c ^ d ) ) $=
      ( wo wa ancom an4 vneulem9 vneulem11 2an tr vneulem14 orcom 3tr ) ABFZCFZ
      ACFDFZGZQDFZBCFDFZGZGUCTGZCDGZQFZCDFABGZFZGZUGUEFZTUCHUDUARGZUBSGZGUIUAUB
      RSIUKUFULUHABCDEJABCDEKLMUIUEUGFUJABCDENUEUGOMP $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)
  $}

  ${
    vneulem.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $.
    $( von Neumann's modular law lemma.  Lemma 9, Kalmbach p. 96 $)
    vneulem $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( a ^ b ) v ( c ^ d ) ) $=
      ( wo wa vneulem15 vneulem16 tr ) ACFZBDFGABFZCFKDFGLDFBCFDFGGABGCDGFABCDE
      HABCDEIJ $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)
  $}

  ${
    vneulemexp.1 $e |- ( ( a v b ) ^ ( c v d ) ) = 0 $.
    $( Expanded version of ~ vneulem . $)
    vneulemexp $p |- ( ( a v c ) ^ ( b v d ) ) = ( ( a ^ b ) v ( c ^ d ) ) $=
      ( wo wa or32 2an orcom ror tr ancom ml cm 3tr ran ler2an lebi wf lor leor
      ax-a2 ax-r5 ax-r2 leid lear anass or0r leao3 lerr bltr lel2or leao2 leror
      lan ler leo leao1 lbtr le0 an4 ax-a3 orass df-le2 3tr2 mldual 2or ) ACFZB
      DFZGZABFZCFZVIDFZGZVLDFZBCFZDFZGZGZABGZCDGZFZVTVKVOVIVSVJVOBAFZCFZADFZCFZ
      GZVIVMWEVNWGVLWDCABUCUDACDHIWHDBGZVIFZVIWHWJWHVIVIBFZDGZFZWJWHWKVNGZWMWEW
      KWGVNWEVMWKWDVLCBAJZKABCHLADCHIWNVNWKGZVIDWKGZFZWMWKVNMWRWPVIDBNOWQWLVIDW
      KMUAPUEVIWJWLVIWIUBWLWBWJWLVMDGZWBWKVMDACBHQWSVMCDFZDGZGZVLWTGZCFZDGZWBDX
      AVMDXADWTDDCUBDUFRWTDUGSUPXBVMWTGZDGZXEXGXBVMWTDUHOXFXDDXFCVLFZWTGZCXCFZX
      DVMXHWTVLCUCQXJXICVLDNOCXCJPQLXDCDXDTCFCXCTCEKCUILQPZLWBVIWICDAUJUKULUMUL
      WJWEWGWIWEVIWIWDCBDAUNZUQAWDCABUBUOUMWIWGVIWIWFCDBAUJUQAWFCADURUOUMRSWJTV
      IFVIWITVIWITWIWDDCFZGZTWIWDXMXLDBCUSRXNXCTWDVLXMWTWODCJIELZUTWIVASKVIUILL
      LVSCAGZVJFZVJVSXQVSVJVJAFZCGZFZXQVSXRVJCFZGZXTVPXRVRYAVPWDDFZXRVLWDDABJKB
      ADHLBCDHIYBYAXRGZVJCXRGZFZXTXRYAMYFYDVJCANOYEXSVJCXRMUAPUEVJXQXSVJXPUBXSD
      CGZXQXSYCCGZYGXRYCCBDAHQYHYCXMCGZGZXNDFZCGZYGCYIYCCYICXMCCDUBCUFRXMCUGSUP
      YJYCXMGZCGZYLYNYJYCXMCUHOYMYKCYMDWDFZXMGZDXNFZYKYCYOXMWDDUCQYQYPDWDCNODXN
      JPQLYKDCYKTDFDXNTDXOKDUILQPLYGVJXPDCBUJUKULUMULXQVPVRXPVPVJXPVLDACBUNZUQB
      VLDBAUBZUOUMXPVRVJXPVQDCABUJUQBVQDBCURUOUMRSXQTVJFVJXPTVJXPTXPXCTXPVLWTYR
      CADUSREUTXPVASKVJUILLIOVTVSVOGZWBVLFZWTWAFZGZWCVOVSMYTVPVMGZVRVNGZGUUCVPV
      RVMVNVBUUDUUAUUEUUBUUDVLWSFZWSVLFUUAUUDVMVPGZUUFVPVMMUUGUUDVLDVMGZFZUUFVM
      VPMUUIUUDVLDCNOUUHWSVLDVMMUAPUEVLWSJWSWBVLXKKPUUEWTBFZWTAFZGZWAWTFZUUBVRU
      UJVNUUKVRBWTFUUJBCDVCBWTJLVNCAFZDFUUKVIUUNDACUCKCADHLIUULWTUUKBGZFZUUOWTF
      UUMUULUUKUUJGZUUPUUJUUKMUUQUULWTBUUKGZFZUUPUUKUUJMUUSUULWTBANOUURUUOWTBUU
      KMUAPUEWTUUOJUUOWAWTUUOUUKVLBGZGZWTVLGZAFZBGZWABUUTUUKBUUTBVLBYSBUFRVLBUG
      SUPUVAUUKVLGZBGZUVDUVFUVAUUKVLBUHOUVEUVCBUVEAWTFZVLGZAUVBFZUVCUUKUVGVLWTA
      UCQUVIUVHAWTBNOAUVBJPQLUVCABUVCTAFAUVBTAUVBXCTWTVLMELKAUILQPKPWAWTJPILUUC
      WBWAFZWCUUCWBVLUUBGZFZUVJUUAWBUUBFZGZWBVLUVMGZFZUUCUVLUVPUVNWBVLUUBNOUVMU
      UBUUAUVMWBWTFZWAFZUUBUVRUVMWBWTWAVDOUVQWTWAWBWTCDDUSVEKLZUPUVOUVKWBUVMUUB
      VLUVSUPUAVFUVKWAWBUVKVLWTVLWAGZFZGXCUVTFZWAUUBUWAVLWAUVTWTWAUVTWAVLWAABBU
      SWAUFRZVLWAUGZSUAUPVLWTWAVGUWBTWAFWAXCTUVTWAEUVTWAUWDUWCSVHWAUILPUALWBWAJ
      LPL $.
      $( [31-Mar-2011] $) $( [31-Mar-2011] $)
  $}

  $( Lemma for ~ l42mod .. $)
  l42modlem1 $p |- ( ( ( a v b ) v d ) ^ ( ( a v b ) v e ) ) =
                              ( ( a v b ) v ( ( a v d ) ^ ( b v e ) ) ) $=
    ( wo wa leo ml2i ancom tr lor cm orass or12 2an lerr 3tr 3tr1 ) ABDEZBACEZE
    ZFZEZABTSFZEZEZABEZCEZUGDEZFZUGUDEUFUCUEUBAUEUASFUBSTBBDGHUASIJKLUJUAASEZFU
    KUAFZUCUHUAUIUKUHABCEEUAABCMABCNJABDMOUAUKIUCULUASAATBACGPHLQABUDMR $.
    $( [8-Apr-2012] $)

  $( Lemma for ~ l42mod .. $)
  l42modlem2 $p |- ( ( ( ( a v b ) ^ c ) v d ) ^ e ) =<
         ( ( ( a v b ) v d ) ^ ( ( a v b ) v e ) ) $=
    ( wo wa lea leror leor le2an ) ABFZCGZDFLDFELEFMLDLCHIELJK $.
    $( [8-Apr-2012] $)

  $( An equation that fails in OML L42 when converted to a Hilbert space
     equation. $)
  l42mod $p |- ( ( ( ( a v b ) ^ c ) v d ) ^ e )
               =< ( ( a v b ) v ( ( a v d ) ^ ( b v e ) ) ) $=
    ( wo wa l42modlem2 l42modlem1 lbtr ) ABFZCGDFEGKDFKEFGKADFBEFGFABCDEHABDEIJ
    $.
    $( [8-Apr-2012] $)

  $( Expansion by modular law. $)
  modexp $p |- ( a ^ ( b v c ) ) = ( a ^ ( b v ( c ^ ( a v b ) ) ) ) $=
    ( wo wa anass anabs ran ancom leor mlduali tr lan 3tr2 ) AABDZEZBCDZEAOQEZE
    AQEABCOEDZEAOQFPAQABGHRSARQOESOQIBCOBAJKLMN $.
    $( [10-Apr-2012] $)

  $( Experimental expansion of l42mod.
  l42modexp $p |- ( ( ( a v b ) v d ) ^ ( ( a v b ) v e ) ) =
                              ( ( a v b ) v ( ( a v d ) ^ ( b v e ) ) ) $=
    ( l42modlem1 modexp id tr lor lan cm ) ???????E???????????????FZ?????????L?
    ????????L?????????L?????????L?????????L?????????L?????????L?GHIJHIJHIJHIJHI
    JHIJHIJHIKHH $.
  $)

$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
        Arguesian law
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$)

  ${
    arg.1 $e |- ( ( a0 v b0 ) ^ ( a1 v b1 ) ) =< ( a2 v b2 ) $.
    $( The Arguesian law as an axiom. $)
    ax-arg $a |- ( ( a0 v a1 ) ^ ( b0 v b1 ) )
       =< ( ( ( a0 v a2 ) ^ ( b0 v b2 ) ) v ( ( a1 v a2 ) ^ ( b1 v b2 ) ) ) $.
  $}

  ${
    dp15lema.1 $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $.
    dp15lema.2 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    dp15lema.3 $e |- e = ( b0 ^ ( a0 v p0 ) ) $.
    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lema $p |- ( ( a0 v e ) ^ ( a1 v b1 ) ) =< ( d v b2 ) $=
      ( wo wa lor tr ran wt leran cm lan le1 lelor an1r orass oridm ror 3tr lea
      orcom mlduali lear leror bltr or32 lbtr letr ) CBMZDGMZNCFCUSEHMZNZMZNZMZ
      USNZAHMZURVDUSBVCCBFCIMZNVCLVGVBFIVACKOUAPOQVECRVBNZMZUSNZVFVDVIUSVCVHCFR
      VBFUBSUCSVJUTCUSNZMZVFVJVAVKMZVLVJVACMZUSNVMVIVNUSVICVBMZCCMZVAMZVNVHVBCV
      BUDOVQVOCCVAUETVQVBVNVPCVACUFUGCVAUJPUHQVACUSUSUTUIUKPVAUTVKUSUTULUMUNVLE
      VKMZHMZVFEHVKUOVFVSAVRHJUGTPUPUQUN $.
      $( [1-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lemb $p |- ( ( a0 v a1 ) ^ ( e v b1 ) )
          =< ( ( ( a0 v d ) ^ ( e v b2 ) ) v ( ( a1 v d ) ^ ( b1 v b2 ) ) ) $=
      ( dp15lema ax-arg ) CDABGHABCDEFGHIJKLMN $.
      $( [1-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lemc $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
          =< ( ( ( a0 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) )
               ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) )
         v ( ( a1 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) ) ^ ( b1 v b2 ) ) ) $=
      ( wo wa dp15lemb ror lan lor 2an ran 2or le3tr2 ) CDMZBGMZNCAMZBHMZNZDAMZ
      GHMZNZMUCFCIMNZGMZNCECDGMNMZMZUKHMZNZDUMMZUINZMABCDEFGHIJKLOUDULUCBUKGLPQ
      UGUPUJURUEUNUFUOAUMCJRBUKHLPSUHUQUIAUMDJRTUAUB $.
      $( [10-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lemd $p |- ( ( ( a0 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) )
               ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) )
         v ( ( a1 v ( a2 v ( a0 ^ ( a1 v b1 ) ) ) ) ^ ( b1 v b2 ) ) )
          = ( ( ( a0 v a2 )
               ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) )
         v ( ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) ^ ( b1 v b2 ) ) ) $=
      ( wo wa or12 orabs lor orcom 3tr ran orass cm 2or ) CECDGMZNZMZMZFCIMNHMZ
      NCEMZUHNDUFMZGHMZNZDEMUEMZUKNZUGUIUHUGECUEMZMECMUICEUEOUOCECUDPQECRSTUNUL
      UMUJUKDEUEUATUBUC $.
      $( [1-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15leme $p |- ( ( ( a0 v a2 )
               ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) )
         v ( ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) ^ ( b1 v b2 ) ) )
          =< ( ( ( a0 v a2 )
               ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) )
         v ( ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) ^ ( b1 v b2 ) ) ) $=
      ( wo wa ax-a2 lan 2or orass tr lelor ml3le bltr cm ror lbtr leran ) DEMZC
      DGMZNZMZGHMZNUGGCDMNZMZUKNCEMFCIMNHMNUJUMUKUJEDULMZMZUMUJEDCGDMZNZMZMZUOU
      JEDMZUQMUSUGUTUIUQDEOUHUPCDGOPQEDUQRSURUNEDCGUATUBUOUTULMZUMVAUOEDULRUCUT
      UGULEDOUDSUEUFT $.
      $( [1-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lemf $p |- ( ( ( a0 v a2 )
               ^ ( ( b0 ^ ( a0 v p0 ) ) v b2 ) )
         v ( ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) ^ ( b1 v b2 ) ) )
      =< ( ( ( a1 v a2 )
               ^ ( b1 v b2 ) )
         v ( ( ( a0 v a2 ) ^ ( b0 v b2 ) ) v ( b1 ^ ( a0 v a1 ) ) ) ) $=
      ( wo wa lea leror lelan leao1 mldual2i ancom 3tr2 bile le2or or12 lbtr
      ror ) CEMZFCIMZNZHMZNZDEMZGCDMZNZMZGHMZNZMUGFHMZNZULUPNZUNMZMUTUSUNMMUKUS
      UQVAUJURUGUIFHFUHOPQUQVAUPUONUPULNZUNMUQVAUNULUPGUMHRSUPUOTVBUTUNUPULTUFU
      AUBUCUSUTUNUDUE $.
      $( [1-Apr-2012] $)

    dp15lemg.4 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp15lemg.5 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lemg $p |- ( ( ( a1 v a2 )
               ^ ( b1 v b2 ) )
         v ( ( ( a0 v a2 ) ^ ( b0 v b2 ) ) v ( b1 ^ ( a0 v a1 ) ) ) )
      = ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa ror cm 2or orass tr ) DEQGHQRZCEQFHQRZGCDQRZQZQZIJUFQZQZIJQUFQZUJ
      UHIUDUIUGOJUEUFPSUATUKUJIJUFUBTUC $.
      $( [1-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    dp15lemh $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa lbtr letr dp15lemc dp15lemd dp15leme dp15lemf dp15lemg ) CDQZFCKQ
      RZGQRZDEQZGHQZRCEQZFHQRGUFRZQQZIJQULQUHUKUGHQZRZUIULQUJRQZUMUHUOUICDGQRZQ
      UJRQZUPUHCEUQQZQUNRDUSQUJRQURABCDEFGHKLMNUAABCDEFGHKLMNUBSABCDEFGHKLMNUCT
      ABCDEFGHKLMNUDTABCDEFGHIJKLMNOPUES $.
      $( [2-Apr-2012] $)
  $}

  ${
    dp15.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp15.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp15.3 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (1)=>(5) $)
    dp15 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa id dp15lemh ) CABEMNMZDAIMNZABCDEFGHIQOLROJKP $.
      $( [1-Apr-2012] $)
  $}

  ${
    dp53lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp53lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp53lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp53lem.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    dp53lem.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53lema $p |- ( b1 v ( b0 ^ ( a0 v p0 ) ) )
       =< ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) $=
      ( wo wa lbtr letr leo lor lan lear lea lelor cm bltr ler2an leor mldual2i
      ax-a3 ancom ror tr dp15 orcom leid lel2or ) FFBCQZHIQZRZQZEBKQZRZFVBUAZVE
      UTVEFQZRZVCQZVCVEVHFQZVIVEVGUTFQZRZVJVEVGVKVEFUAVEEBCFQZDGQZRZQZRZVKVDVPE
      KVOBOUBUCVQVPVKEVPUDVPBVMQZVKVOVMBVMVNUEUFVKVRBCFULUGSTUHUIVLVGUTRZFQVJFU
      TVGFVEUJUKVSVHFVGUTUMUNUOSFVCVHVFUFTVHVCVCVHVBFQZVCVHVBFUTRZQZVTVHUTVAWAQ
      ZRWBVHUTWCUTVGUEBCDEFGHIKLMOUPUIWAVAUTFUTUDUKSWAFVBFUTUEUFTVBFUQSVCURUSTU
      S $.
      $( [2-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53lemb $p |- ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) )
        = ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa ran 3tr an32 tr lor leor ml2i ancom lan anass cm anabs ) EFJHIQZR
      ZQZREEFQZFBCQZUKRZQZRZRZEUNRZUQRZEUQRUMUREUMFUPUNRZQUQUNRURULVBFULUOUNRZU
      KRVBJVCUKNSUOUNUKUAUBUCUNUPFFEUDUEUQUNUFTUGVAUSEUNUQUHUIUTEUQEFUJST $.
      $( [2-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53lemc $p |- ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) )
        = ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ( wa wo leo le2an or32 orcom cm lbtr lerr ler2an df-le2 lor 3tr lan ) BEQ
      ZFRJHIRZQZRZFUMRZEUNUKUMRZFRFUPRUOUKFUMUAUPFUBUPUMFUKUMUKJULUKBCRZEFRZQZJ
      BUQEURBCSEFSTJUSNUCUDUKIHUKBDRZEGRZQZIBUTEVABDSEGSTIVBMUCUDUEUFUGUHUIUJ
      $.
      $( [2-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53lemd $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa lea leor dp53lema letr ler2an dp53lemc dp53lemb tr cm lbtr ) EBKQ
      ZRZEFBCQHIQZRQZRZEBERFQJUKRZQRZUJEULEUISUJFUJQULUJFTABCDEFGHIJKLMNOPUAUBU
      CUOUMUOEFUNQRUMABCDEFGHIJKLMNOPUDABCDEFGHIJKLMNOPUEUFUGUH $.
      $( [3-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53leme $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa dp53lemd orcom orass tr lan lear mldual2i 3tr lea leror bltr letr
      ) EBKQREBERZFQJHIQRZQZRZBEFULQZRZQZABCDEFGHIJKLMNOPSUNUKUPQZUQUNEUOUKQZRU
      PUKQURUMUSEUMUKUOQUSUKFULUAUKUOTUBUCUKUOEBEUDUEUPUKTUFUKBUPBEUGUHUIUJ $.
      $( [3-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53lemf $p |- ( a0 v p )
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leo lbtr anass tr lan cm leao4 bltr lea orcom ler2an mldual2i ror
      ancom lelor letr dp53leme df-le2 lel2or ) BBEFJHIQRQRZQZABURSZAEBKQZRZUSQ
      ZUSAVBBQZVCAVAEBQZRZVDABEQZCFQZDGQZRZRZVFAVGVHRVIRVKPVGVHVIUAUBVKVAVEVKVG
      KRZVAVLVKKVJVGOUCUDKVGBUEUFVKVGVEVGVJUGBEUHTUIUFVFVAERZBQVDBEVABKSUJVMVBB
      VAEULUKUBTBUSVBUTUMUNVBUSABCDEFGHIJKLMNOPUOUPTUQ $.
      $( [3-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    dp53lemg $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leor dp53lemf letr ) ABAQBEFJHIQRQRQABSABCDEFGHIJKLMNOPTUA $.
      $( [2-Apr-2012] $)
  $}

  ${
    dp53.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp53.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp53.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp53.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (5)=>(3) $)
    dp53 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa id dp53lemg ) ABCDEFGHIJCFODGOPZKLMSQNR $.
      $( [2-Apr-2012] $)
  $}

  ${
    dp35lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp35lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp35lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp35lem.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    dp35lem.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lemg $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( dp53 ) ABCDEFGHIJLMNPQ $.
      $( [12-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lemf $p |- ( a0 v p )
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leo dp35lemg lel2or ) BBEFJHIQRQRZQABUBSABCDEFGHIJKLMNOPTUA $.
      $( [12-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35leme $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa lor ancom leor bile le2an anass cm leo mlduali 3tr1 dp35lemf bltr
      tr letr ) EBKQZRBEQZBCFQZDGQZRZQZRZBEFJHIQRQRQZEUNUMUREBUAUMURKUQBOSUBUCU
      SBAQZUTBUQUNRZQZBUNUORUPRZQUSVAVBVDBVBUNUQRZVDUQUNTVDVEUNUOUPUDUEUKSUSURU
      NRVCUNURTBUQUNBEUFUGUKAVDBPSUHABCDEFGHIJKLMNOPUIUJUL $.
      $( [12-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lemd $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa lea ler2an dp35leme mldual2i lel2or ancom bile lear le2or cm lbtr
      orass bltr letr ) EBKQZRZEBEFJHIQRZQZRZQZRZEBERZFQUOQZRZUNEUREUMSABCDEFGH
      IJKLMNOPUATUSEBRZUQQZVBUQBEEUPSZUBVDEVAVCEUQEBSVEUCVDUTUPQZVAVCUTUQUPVCUT
      EBUDUEEUPUFUGVAVFUTFUOUJUHUITUKUL $.
      $( [12-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lemc $p |- ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) )
        = ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ( wa wo leo le2an or32 orcom cm lbtr lerr ler2an df-le2 lor 3tr lan ) BEQ
      ZFRJHIRZQZRZFUMRZEUNUKUMRZFRFUPRUOUKFUMUAUPFUBUPUMFUKUMUKJULUKBCRZEFRZQZJ
      BUQEURBCSEFSTJUSNUCUDUKIHUKBDRZEGRZQZIBUTEVABDSEGSTIVBMUCUDUEUFUGUHUIUJ
      $.
      $( [2-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lemb $p |- ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) )
        = ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa ran 3tr an32 tr lor leor ml2i ancom lan anass cm anabs ) EFJHIQZR
      ZQZREEFQZFBCQZUKRZQZRZRZEUNRZUQRZEUQRUMUREUMFUPUNRZQUQUNRURULVBFULUOUNRZU
      KRVBJVCUKNSUOUNUKUAUBUCUNUPFFEUDUEUQUNUFTUGVAUSEUNUQUHUIUTEUQEFUJST $.
      $( [2-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lembb $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa dp35lemd dp35lemc dp35lemb tr lbtr ) EBKQREBERFQJHIQZRZQRZEFBCQUD
      RQRZABCDEFGHIJKLMNOPSUFEFUEQRUGABCDEFGHIJKLMNOPTABCDEFGHIJKLMNOPUAUBUC $.
      $( [12-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lema $p |- ( b1 v ( b0 ^ ( a0 v p0 ) ) )
       =< ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) $=
      ( wo wa leo dp35lembb lear letr lel2or ) FFBCQHIQRZQZEBKQRZFUDSUFEUERUEAB
      CDEFGHIJKLMNOPTEUEUAUBUC $.
      $( [12-Apr-2012] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    dp35lem0 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa orcom letr leid bltr dp35lema lelan id lea mldual2i tr ancom lbtr
      ror lear lelor ) BCQZEBKQRZFQZRZFUNRZUNHIQZRZQZUSURQZUQUNFUTQZRZVAUPVCUNU
      PFUOQZVCUPVEVEUOFSVEUAUBABCDEFGHIJKLMNOPUCTUDVDUNFRZUTQZVAVDVDVGVDUEUTFUN
      UNUSUFUGUHVFURUTUNFUIUKUHUJVAURUSQVBUTUSURUNUSULUMURUSSUJT $.
      $( [12-Apr-2012] $)
  $}

  ${
    dp35.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp35.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp35.3 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (3)=>(5) $)
    dp35 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa id dp35lem0 ) ADMBEMNCFMNZABCDEFGHABMDEMNZIJKROLQOP $.
      $( [12-Apr-2012] $)
  $}

  ${
    dp34.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp34.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp34.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp34.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (3)=>(4) $)
    dp34 $p |- p =< ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) $=
      ( wo wa dp53 lear lelor letr orass cm lbtr ) ABFJHIOPZOZOZBFOUDOZABEUEPZO
      UFABCDEFGHIJKLMNQUHUEBEUERSTUGUFBFUDUAUBUC $.
      $( [3-Apr-2012] $)
  $}

  ${
    dp41lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp41lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp41lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp41lem.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    dp41lem.5 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $.
    dp41lem.6 $e |- p2 =< ( a2 v b2 ) $.
    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lema $p |- ( ( a0 v b0 ) ^ ( a1 v b1 ) )
         =< ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) $=
      ( wo wa cm bltr df2le2 tr dp34 ) BERCFRSZABFRJHIRSRUEUEDGRZSZAUGUEUEUFUEK
      UFKUEPTQUAUBTAUGOTUCABCDEFGHIJLMNOUDUA $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemb $p |- c2
          = ( ( c2 ^ ( ( a0 v b0 ) v b1 ) ) ^ ( ( a0 v a1 ) v b1 ) ) $=
      ( wo wa tr ancom leor leror leo le2an bltr df2le2 cm anass ) JJBERZFRZBCR
      ZFRZSZSZJUKSUMSZUOJJUNJEFRZULSZUNJULUQSURNULUQUATUQUKULUMEUJFEBUBUCULFUDU
      EUFUGUHUPUOJUKUMUIUHT $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemc0 $p |- ( ( ( a0 v b0 ) v b1 ) ^ ( ( a0 v a1 ) v b1 ) )
          = ( ( a0 v b1 ) v ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ) $=
      ( wo wa tr ax-a2 ror or32 lan ancom leor ler mldual2i leo 3tr orass orcom
      ) BERZFRZBCRZFRZSZUMCFRZSZBRZFRZUSBFRZRVBUSRUQURBRZUNSZVCUMSZFRVAUQUNVCSV
      DUPVCUNUPCBRZFRVCUOVFFBCUAUBCBFUCTUDUNVCUETFUMVCFURBFCUFUGUHVEUTFVEUMVCSU
      TVCUMUEBURUMBEUIUHTUBUJUSBFUKUSVBULUJ $.
      $( [4-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemc $p |- ( ( c2 ^ ( ( a0 v b0 ) v b1 ) ) ^ ( ( a0 v a1 ) v b1 ) )
          =< ( c2 ^ ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa bltr anass dp41lemc0 leo dp41lema lel2or lelan ) JBERZFRZSBCRFRZS
      JUHUISZSJBFRZJHIRSZRZSJUHUIUAUJUMJUJUKUGCFRSZRUMABCDEFGHIJKLMNOPQUBUKUMUN
      UKULUCABCDEFGHIJKLMNOPQUDUETUFT $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemd $p |- ( c2 ^ ( ( a0 v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) )
          = ( c2 ^ ( ( c0 v c1 ) v ( c2 ^ ( a0 v b1 ) ) ) ) $=
      ( wo wa ancom mldual lor lea ml2i ax-a2 lan 3tr ) JBFRZJHIRZSZRSJUHSZUJRU
      KUIJSZRZJUIUKRZSZJUHUIUAUJULUKJUITUBUMUKUIRZJSJUPSUOJUIUKJUHUCUDUPJTUPUNJ
      UKUIUEUFUGUG $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41leme $p |- ( c2 ^ ( ( c0 v c1 ) v ( c2 ^ ( a0 v b1 ) ) ) )
        =< ( ( c0 v c1 ) v ( ( a0 ^ ( b0 v b1 ) ) v ( b1 ^ ( a0 v a1 ) ) ) ) $=
      ( wo wa lor mldual ran anass leor mldual2i orcom ancom 3tr lan leao1 lear
      tr leror bltr ) JHIRZJBFRZSZRSZJUOSZBEFRZSZFBCRZSZRZRZUOVDRURUSUQRVEJUOUP
      UAUQVDUSUQVBUTSZUPSVBUTUPSZSZVDJVFUPNUBVBUTUPUCVHVBFVARZSVBFSZVARZVDVGVIV
      BVGUTBSZFRFVLRVIFBUTFEUDUEVLFUFVLVAFUTBUGTUHUIVAFVBBUTCUJUEVKVAVJRVDVJVAU
      FVJVCVAVBFUGTULUHUHTULUSUOVDJUOUKUMUN $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemf $p |- ( ( c0 v c1 ) v
                        ( ( a0 ^ ( b0 v b1 ) ) v ( b1 ^ ( a0 v a1 ) ) ) )
       = ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a0 ^ ( b0 v b1 ) ) ) ) ) $=
      ( wo wa tr orcom lor or4 ancom ror 2or leao1 mli 3tr ) HIRZBEFRZSZFBCRZSZ
      RZRUJUNULRZRZFGRZCDRZSZUNRZBDRZEGRZSZULRZRZURUSUNRSZVBVCULRSZRUOUPUJULUNU
      AUBUQHUNRZIULRZRVFHIUNULUCVIVAVJVEHUTUNHUSURSUTLUSURUDTUEIVDULMUEUFTVAVGV
      EVHURUSUNFUMGUGUHVBVCULBUKDUGUHUFUI $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemg $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b1 ^ ( a0 v a1 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a0 ^ ( b0 v b1 ) ) ) ) )
       = ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a0 v b0 ) ) ) ) ) $=
      ( wo wa or32 ml3 orcom lan lor tr ror 3tr 2or ) FGRZCDRZFBCRSZRZSUIUJBCFR
      ZSZRZSBDRZEGRZBEFRZSZRZSUPUQFBERSZRZSULUOUIULCUKRZDRCUNRZDRUOCDUKTVCVDDVC
      CBFCRZSZRVDCFBUAVFUNCVEUMBFCUBUCUDUEUFCUNDTUGUCUTVBUPUTEUSRZGREVARZGRVBEG
      USTVGVHGVGEBFERZSZRVHUSVJEURVIBEFUBUCUDEBFUAUEUFEVAGTUGUCUH $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982.  "By CP(a,b)". $)
    dp41lemh $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a1 v b1 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a0 v b0 ) ) ) ) )
       =< ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a2 v b2 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a2 v b2 ) ) ) ) ) $=
      ( wo wa ler2an lea leo leran cm bltr letr lelor lelan lear leao3 le2or )
      FGRZCDRZBCFRZSZRZSULUMBDGRZSZRZSBDRZEGRZFBERZSZRZSUTVAFUQSZRZSUPUSULUOURU
      MUOBUQBUNUAUOVBUNSZUQBVBUNBEUBUCVGKUQKVGPUDQUEZUFTUGUHVDVFUTVCVEVAVCFUQFV
      BUAVCVGUQVCVBUNFVBUIFVBCUJTVHUFTUGUHUK $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemj $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( a0 ^ ( a2 v b2 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( b1 ^ ( a2 v b2 ) ) ) ) )
       = ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b2 ^ ( a0 v a2 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a2 ^ ( b1 v b2 ) ) ) ) ) $=
      ( wo wa orass ax-a2 lan lor ml3 tr 3tr1 2or ) FGRZCDRZBDGRZSZRZSUHUIGBDRZ
      SZRZSUMEGRZFUJSZRZSUMUPDUHSZRZSULUOUHCDUKRZRCDUNRZRULUOVAVBCVADBGDRZSZRVB
      UKVDDUJVCBDGUAUBUCDBGUDUEUCCDUKTCDUNTUFUBURUTUMEGUQRZREGUSRZRURUTVEVFEGFD
      UDUCEGUQTEGUSTUFUBUG $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemk $p |- ( ( ( b1 v b2 ) ^ ( ( a1 v a2 ) v ( b2 ^ ( a0 v a2 ) ) ) )
                v ( ( a0 v a2 ) ^ ( ( b0 v b2 ) v ( a2 ^ ( b1 v b2 ) ) ) ) )
       = ( ( c0 v ( b2 ^ ( a0 v a2 ) ) ) v ( c1 v ( a2 ^ ( b1 v b2 ) ) ) ) $=
      ( wo wa tr leao3 mldual2i ancom ror cm 2or ) FGRZCDRZGBDRZSZRSZHUJRZUIEGR
      ZDUGSZRSZIUNRZUKUGUHSZUJRZULUJUHUGGUIFUAUBULURHUQUJHUHUGSUQLUHUGUCTUDUETU
      OUIUMSZUNRZUPUNUMUIDUGBUAUBUPUTIUSUNMUDUETUF $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41leml $p |- ( ( c0 v ( b2 ^ ( a0 v a2 ) ) )
                  v ( c1 v ( a2 ^ ( b1 v b2 ) ) ) )
       = ( c0 v c1 ) $=
      ( wo wa orcom or4 ancom leor lelan bltr leran le2or 2or cm tr lbtr df-le2
      3tr ) HGBDRZSZRIDFGRZSZRRHIRZUOUQRZRUSURRURHUOIUQUAURUSTUSURUSUNEGRZSZCDR
      ZUPSZRZURUOVAUQVCUOUNGSVAGUNUBGUTUNGEUCUDUEDVBUPDCUCUFUGVDIHRZURVEVDIVAHV
      CMLUHUIIHTUJUKULUM $.
      $( [3-Apr-2012] $)

    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    dp41lemm $p |- c2 =< ( c0 v c1 ) $=
      ( wo wa lbtr dp41lemb dp41lemc dp41lemd dp41leme dp41lemf dp41lemg tr 3tr
      bltr letr dp41lemh dp41lemj dp41lemk dp41leml ) JFGRZCDRZBDGRZSRSBDRZEGRZ
      FUQSRSRZHIRZJUOUPBCFRSRSURUSFBERZSRSRZUTJVABEFRSZFBCRZSZRRZVCJJVAJBFRZSRS
      ZVGJJVHJVASRSZVIJJVBFRSVEFRSVJABCDEFGHIJKLMNOPQUAABCDEFGHIJKLMNOPQUBUIABC
      DEFGHIJKLMNOPQUCTABCDEFGHIJKLMNOPQUDUJVGUOUPVFRSURUSVDRSRVCABCDEFGHIJKLMN
      OPQUEABCDEFGHIJKLMNOPQUFUGTABCDEFGHIJKLMNOPQUKUJUTUOUPGURSZRSURUSDUOSZRSR
      HVKRIVLRRVAABCDEFGHIJKLMNOPQULABCDEFGHIJKLMNOPQUMABCDEFGHIJKLMNOPQUNUHT
      $.
      $( [3-Apr-2012] $)
  $}

  ${
    dp41.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp41.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp41.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp41.4 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $.
    dp41.5 $e |- p2 =< ( a2 v b2 ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (4)=>(1) $)
    dp41 $p |- c2 =< ( c0 v c1 ) $=
      ( wo wa id dp41lemm ) ADPBEPQCFPQZABCDEFGHIJKLMTRNOS $.
      $( [3-Apr-2012] $)
  $}

  ${
    dp32.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp32.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp32.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp32.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (3)=>(2) $)
    dp32 $p |- p =< ( ( a0 ^ ( a1 v ( c2 ^ ( c0 v c1 ) ) ) )
                    v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa ancom tr orcom ler2an dp53 2an leao1 mldual2i mldual cm lbtr lerr
      leao2 ml2i lea df-le2 ran 3tr ror ) ABEFJHIOZPZOZPZOZEBCUQOZPZOZPZVBUSOZA
      UTVCABCDEFGHIJKLMNUAAEFGBCDHIJHCDOZFGOZPVGVFPKVFVGQRIBDOZEGOZPZVIVHPLVHVI
      QRJBCOZEFOZPZVLVKPMVKVLQRABEOZCFOZPZDGOZPEBOZFCOZPZGDOZPNVPVTVQWAVNVRVOVS
      BESCFSUBDGSUBRUATVDUTEPZVBOUSVBOVEVBEUTBVAUSUCUDWBUSVBWBEUTPEBPZUSOZUSUTE
      QEBURUEWDWCEOZURPUSUREWCWCUQFWCJUPWCVMJWCVKVLBECUIEBFUCTJVMMUFUGWCIHWCVJI
      WCVHVIBEDUIEBGUCTIVJLUFUGUHTUHUJWEEURWCEEBUKULUMRUNUOUSVBSUNUG $.
      $( [4-Apr-2012] $)
  $}

  ${
    dp23.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    dp23.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    dp23.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    dp23.4 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (2)=>(3) $)
    dp23 $p |- p =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa dp32 lea leror letr ) ABCJHIOPZOZPZEFUAOPZOBUDOABCDEFGHIJKLMNQUCB
      UDBUBRST $.
      $( [4-Apr-2012] $)
  $}


  ${
    xdp41.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    xdp41.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    xdp41.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    xdp41.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    xdp41.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $.
    xdp41.1 $e |- p2 =< ( a2 v b2 ) $.
    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    xdp41 $p |- c2 =< ( c0 v c1 ) $=
      ( wo wa tr ancom leor leror leo le2an bltr df2le2 cm anass ax-a2 ror or32
      lan ler mldual2i 3tr orass orcom dp34 lel2or mldual lor lea ml2i lbtr ran
      lelan leao1 lear letr or4 2or mli ml3 leran ler2an lelor leao3 le2or 3tr1
      df-le2 ) JFGRZCDRZBDGRZSZRZSZBDRZEGRZFWDSZRZSZRZHIRZJWBWCBCFRZSZRZSZWHWIF
      BERZSZRZSZRZWMJWNBEFRZSZFBCRZSZRZRZXCJJWNJBFRZSZRZSZXIJJXJJWNSZRZSZXMJJWS
      FRZSXFFRZSZXPJJXQXRSZSZXSYAJJXTJXDXFSZXTJXFXDSZYBNXFXDUATXDXQXFXREWSFEBUB
      UCXFFUDUEUFUGUHXSYAJXQXRUIZUHTXSYAXPYDXTXOJXTXJWSWOSZRZXOXTYEBRZFRZYEXJRY
      FXTWOBRZXQSZYIWSSZFRYHXTXQYISYJXRYIXQXRCBRZFRYIXFYLFBCUJUKCBFULTUMXQYIUAT
      FWSYIFWOBFCUBUNUOYKYGFYKWSYISYGYIWSUABWOWSBEUDZUOTUKUPYEBFUQYEXJURUPXJXOY
      EXJXNUDYEAXOYEYEWDSZAYNYEYEWDYEKWDKYEPUHQUFZUGUHAYNOUHTABCDEFGHIJLMNOUSUF
      UTUFVGUFUFXPXKXNRXKWNJSZRZXMJXJWNVAXNYPXKJWNUAVBYQXKWNRZJSJYRSXMJWNXKJXJV
      CVDYRJUAYRXLJXKWNUJUMUPUPVEXMXNXHRZXIXMXNXKRYSJWNXJVAXKXHXNXKYCXJSXFXDXJS
      ZSZXHJYCXJNVFXFXDXJUIUUAXFFXERZSXFFSZXERZXHYTUUBXFYTXDBSZFRFUUERUUBFBXDFE
      UBUOUUEFURUUEXEFXDBUAVBUPUMXEFXFBXDCVHUOUUDXEUUCRXHUUCXEURUUCXGXEXFFUAVBT
      UPUPVBTXNWNXHJWNVIUCUFVJXIWBWCXGRZSZWHWIXERZSZRZXCXIWNXGXERZRZWBWCSZXGRZW
      HWISZXERZRZUUJXHUUKWNXEXGURVBUULHXGRZIXERZRUUQHIXGXEVKUURUUNUUSUUPHUUMXGH
      WCWBSZUUMLWCWBUATZUKIUUOXEMUKVLTUUNUUGUUPUUIWBWCXGFXFGVHVMWHWIXEBXDDVHVMV
      LUPUUGWRUUIXBUUFWQWBUUFCXGRZDRCWPRZDRWQCDXGULUVBUVCDUVBCBFCRZSZRUVCCFBVNU
      VEWPCUVDWOBFCURUMVBTUKCWPDULUPUMUUHXAWHUUHEXERZGREWTRZGRXAEGXEULUVFUVGGUV
      FEBFERZSZRUVGXEUVIEXDUVHBEFURUMVBEBFVNTUKEWTGULUPUMVLTVEWRWGXBWLWQWFWBWPW
      EWCWPBWDBWOVCWPYEWDBWSWOYMVOYOVJVPVQVGXAWKWHWTWJWIWTFWDFWSVCWTYEWDWTWSWOF
      WSVIFWSCVRVPYOVJVPVQVGVSVJWMWBWCGWHSZRZSZWHWIDWBSZRZSZRHUVJRZIUVMRZRZWNWG
      UVLWLUVOWFUVKWBCDWERZRCDUVJRZRWFUVKUVSUVTCUVSDBGDRZSZRUVTWEUWBDWDUWABDGUJ
      UMVBDBGVNTVBCDWEUQCDUVJUQVTUMWKUVNWHEGWJRZREGUVMRZRWKUVNUWCUWDEGFDVNVBEGW
      JUQEGUVMUQVTUMVLUVLUVPUVOUVQUVLUUMUVJRZUVPUVJWCWBGWHFVRUOUVPUWEHUUMUVJUVA
      UKUHTUVOUUOUVMRZUVQUVMWIWHDWBBVRUOUVQUWFIUUOUVMMUKUHTVLUVRWNUVJUVMRZRUWGW
      NRWNHUVJIUVMVKWNUWGURUWGWNUWGUUOUUTRZWNUVJUUOUVMUUTUVJWHGSUUOGWHUAGWIWHGE
      UBVGUFDWCWBDCUBVOVSUWHIHRZWNUWIUWHIUUOHUUTMLVLUHIHURTVEWAUPUPVE $.
      $( [3-Apr-2012] $)
  $}

  ${
    xdp15.d $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $.
    xdp15.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    xdp15.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $.
    xdp15.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    xdp15.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    xdp15 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa tr ror lor lan ran wt le1 leran lelor an1r orass cm oridm 3tr lea
      orcom mlduali lear leror bltr or32 lbtr letr ax-arg 2an le3tr2 or12 orabs
      2or ax-a2 ml3le lelan leao1 mldual2i ancom 3tr2 bile le2or ) CDQZFCKQZRZG
      QZRZDEQZGHQZRZCEQZFHQZRZGVQRZQZQZIJQWHQZWAWEVSHQZRZWBWHQZWCRZQZWJWAWMWBCD
      GQZRZQZWCRZQZWPWACEWRQZQZWLRZDXBQZWCRZQZXAVQBGQZRCAQZBHQZRZDAQZWCRZQWAXGC
      DABGHCBQZWQRCFCWQEHQZRZQZRZQZWQRZAHQZXNXSWQBXRCBVSXRNVRXQFKXPCMUAUBSUAUCX
      TCUDXQRZQZWQRZYAXSYCWQXRYBCFUDXQFUEUFUGUFYDXOWRQZYAYDXPWRQZYEYDXPCQZWQRYF
      YCYGWQYCCXQQZCCQZXPQZYGYBXQCXQUHUAYJYHCCXPUIUJYJXQYGYICXPCUKTCXPUNSULUCXP
      CWQWQXOUMUOSXPXOWRWQXOUPUQURYEXBHQZYAEHWRUSYAYKAXBHLTUJSUTVAURVBXHVTVQBVS
      GNTUBXKXDXMXFXIXCXJWLAXBCLUABVSHNTVCXLXEWCAXBDLUAUCVGVDXDWMXFWTXCWEWLXCEC
      WRQZQECQWECEWRVEYLCECWQVFUAECUNULUCWTXFWSXEWCDEWRUIUCUJVGUTWTWOWMWSWNWCWS
      EDWHQZQZWNWSEDCGDQZRZQZQZYNWSEDQZYPQYRWBYSWRYPDEVHWQYOCDGVHUBVGEDYPUISYQY
      MEDCGVIUGURYNYSWHQZWNYTYNEDWHUIUJYSWBWHEDVHTSUTUFUGVAWPWGWDWHQZQWJWMWGWOU
      UAWLWFWEVSFHFVRUMUQVJWOUUAWCWNRWCWBRZWHQWOUUAWHWBWCGVQHVKVLWCWNVMUUBWDWHW
      CWBVMTVNVOVPWGWDWHVEUTVAWJIJWHQZQZWKUUDWJIWDUUCWIOJWGWHPTVGUJWKUUDIJWHUIU
      JSUT $.
      $( [11-Apr-2012] $)
  $}

  ${
    xdp53.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    xdp53.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    xdp53.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    xdp53.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    xdp53.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    xdp53 $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leo lbtr leor anass tr lan cm leao4 bltr lea orcom mldual2i ancom
      ler2an ror lelor letr lor lear ax-a3 dp15 leid lel2or or32 le2an lerr 3tr
      df-le2 ran an32 ml2i anabs orass leror ) ABAQBEFJHIQZRZQZRZQZABUABVQABVPS
      ZAEBKQZRZVQQZVQAVTBQZWAAVSEBQZRZWBABEQZCFQZDGQZRZRZWDAWEWFRWGRWIPWEWFWGUB
      UCWIVSWCWIWEKRZVSWJWIKWHWEOUDUEKWEBUFUGWIWEWCWEWHUHBEUITULUGWDVSERZBQWBBE
      VSBKSUJWKVTBVSEUKUMUCTBVQVTVRUNUOVTVQVTEBERZFQVNQZRZVQVTEFBCQZVMRZQZRZWNV
      TEWQEVSUHVTFVTQWQVTFUAFWQVTFWPSZVTWOVTFQZRZWQQZWQVTXAFQZXBVTWTWOFQZRZXCVT
      WTXDVTFSVTEBWHQZRZXDVSXFEKWHBOUPUDXGXFXDEXFUQXFBWFQZXDWHWFBWFWGUHUNXDXHBC
      FURUETUOUGULXEWTWORZFQXCFWOWTFVTUAUJXIXAFWTWOUKUMUCTFWQXAWSUNUOXAWQWQXAWP
      FQZWQXAWPFWORZQZXJXAWOVMXKQZRXLXAWOXMWOWTUHBCDEFGHIKLMOUSULXKVMWOFWOUQUJT
      XKFWPFWOUHUNUOWPFUITWQUTVAUOVAUOULWNWRWNVPWRWMVOEWMWLVNQZFQFXNQVOWLFVNVBX
      NFUIXNVNFWLVNWLJVMWLWOEFQZRZJBWOEXOBCSEFSVCJXPNUETWLIHWLBDQZEGQZRZIBXQEXR
      BDSEGSVCIXSMUETVDULVFUPVEUDVPEXOWQRZRZEXORZWQRZWRVOXTEVOFWPXORZQWQXORXTVN
      YDFVNXPVMRYDJXPVMNVGWOXOVMVHUCUPXOWPFFEUAVIWQXOUKVEUDYCYAEXOWQUBUEYBEWQEF
      VJVGVEUCUETWNWLVPQZVQWNEVOWLQZRVPWLQYEWMYFEWMWLVOQYFWLFVNVKWLVOUIUCUDWLVO
      EBEUQUJVPWLUIVEWLBVPBEUHVLUGUOVFTVAUO $.
      $( [11-Apr-2012] $)
  $}


  ${
    xxdp.1 $e |- p2 =< ( a2 v b2 ) $.
    xxdp.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    xxdp.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    xxdp.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    xxdp.d $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $.
    xxdp.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $.
    xxdp.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    xxdp.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    xxdp.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $.
    $( Part of proof (4)=>(1) in Day/Pickering 1982. $)
    xxdp41 $p |- c2 =< ( c0 v c1 ) $=
      ( wo wa ancom tr leor leror leo le2an bltr df2le2 cm anass ax-a2 ror or32
      lan ler mldual2i 3tr orass orcom dp34 lel2or mldual lor lea ml2i lbtr ran
      lelan leao1 lear letr or4 2or mli ml3 leran ler2an lelor leao3 le2or 3tr1
      df-le2 ) LHIUDZEFUDZDFIUDZUEZUDZUEZDFUDZGIUDZHWJUEZUDZUEZUDZJKUDZLWHWIDEH
      UDZUEZUDZUEZWNWOHDGUDZUEZUDZUEZUDZWSLWTDGHUDZUEZHDEUDZUEZUDZUDZXILLWTLDHU
      DZUEZUDZUEZXOLLXPLWTUEZUDZUEZXSLLXEHUDZUEXLHUDZUEZYBLLYCYDUEZUEZYEYGLLYFL
      XJXLUEZYFLXLXJUEZYHRXLXJUFUGXJYCXLYDGXEHGDUHUIXLHUJUKULUMUNYEYGLYCYDUOZUN
      UGYEYGYBYJYFYALYFXPXEXAUEZUDZYAYFYKDUDZHUDZYKXPUDYLYFXADUDZYCUEZYOXEUEZHU
      DYNYFYCYOUEYPYDYOYCYDEDUDZHUDYOXLYRHDEUPUQEDHURUGUSYCYOUFUGHXEYOHXADHEUHU
      TVAYQYMHYQXEYOUEYMYOXEUFDXAXEDGUJZVAUGUQVBYKDHVCYKXPVDVBXPYAYKXPXTUJYKCYA
      YKYKWJUEZCYTYKYKWJYKNWJNYKUCUNOULZUMUNCYTUAUNUGCDEFGHIJKLPQRUAVEULVFULVMU
      LULYBXQXTUDXQWTLUEZUDZXSLXPWTVGXTUUBXQLWTUFVHUUCXQWTUDZLUELUUDUEXSLWTXQLX
      PVIVJUUDLUFUUDXRLXQWTUPUSVBVBVKXSXTXNUDZXOXSXTXQUDUUELWTXPVGXQXNXTXQYIXPU
      EXLXJXPUEZUEZXNLYIXPRVLXLXJXPUOUUGXLHXKUDZUEXLHUEZXKUDZXNUUFUUHXLUUFXJDUE
      ZHUDHUUKUDUUHHDXJHGUHVAUUKHVDUUKXKHXJDUFVHVBUSXKHXLDXJEVNVAUUJXKUUIUDXNUU
      IXKVDUUIXMXKXLHUFVHUGVBVBVHUGXTWTXNLWTVOUIULVPXOWHWIXMUDZUEZWNWOXKUDZUEZU
      DZXIXOWTXMXKUDZUDZWHWIUEZXMUDZWNWOUEZXKUDZUDZUUPXNUUQWTXKXMVDVHUURJXMUDZK
      XKUDZUDUVCJKXMXKVQUVDUUTUVEUVBJUUSXMJWIWHUEZUUSPWIWHUFUGZUQKUVAXKQUQVRUGU
      UTUUMUVBUUOWHWIXMHXLIVNVSWNWOXKDXJFVNVSVRVBUUMXDUUOXHUULXCWHUULEXMUDZFUDE
      XBUDZFUDXCEFXMURUVHUVIFUVHEDHEUDZUEZUDUVIEHDVTUVKXBEUVJXADHEVDUSVHUGUQEXB
      FURVBUSUUNXGWNUUNGXKUDZIUDGXFUDZIUDXGGIXKURUVLUVMIUVLGDHGUDZUEZUDUVMXKUVO
      GXJUVNDGHVDUSVHGDHVTUGUQGXFIURVBUSVRUGVKXDWMXHWRXCWLWHXBWKWIXBDWJDXAVIXBY
      KWJDXEXAYSWAUUAVPWBWCVMXGWQWNXFWPWOXFHWJHXEVIXFYKWJXFXEXAHXEVOHXEEWDWBUUA
      VPWBWCVMWEVPWSWHWIIWNUEZUDZUEZWNWOFWHUEZUDZUEZUDJUVPUDZKUVSUDZUDZWTWMUVRW
      RUWAWLUVQWHEFWKUDZUDEFUVPUDZUDWLUVQUWEUWFEUWEFDIFUDZUEZUDUWFWKUWHFWJUWGDF
      IUPUSVHFDIVTUGVHEFWKVCEFUVPVCWFUSWQUVTWNGIWPUDZUDGIUVSUDZUDWQUVTUWIUWJGIH
      FVTVHGIWPVCGIUVSVCWFUSVRUVRUWBUWAUWCUVRUUSUVPUDZUWBUVPWIWHIWNHWDVAUWBUWKJ
      UUSUVPUVGUQUNUGUWAUVAUVSUDZUWCUVSWOWNFWHDWDVAUWCUWLKUVAUVSQUQUNUGVRUWDWTU
      VPUVSUDZUDUWMWTUDWTJUVPKUVSVQWTUWMVDUWMWTUWMUVAUVFUDZWTUVPUVAUVSUVFUVPWNI
      UEUVAIWNUFIWOWNIGUHVMULFWIWHFEUHWAWEUWNKJUDZWTUWOUWNKUVAJUVFQPVRUNKJVDUGV
      KWGVBVBVK $.
      $( [3-Apr-2012] $)

    $( Part of proof (1)=>(5) in Day/Pickering 1982. $)
    xxdp15 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa lor lan tr ran wt le1 leran lelor an1r orass cm oridm ror 3tr lea
      orcom mlduali lear leror bltr or32 lbtr letr ax-arg 2an le3tr2 or12 orabs
      2or ax-a2 ml3le lelan leao1 mldual2i ancom 3tr2 bile le2or ) DEUDZGDMUDZU
      EZHUDZUEZEFUDZHIUDZUEZDFUDZGIUDZUEZHWDUEZUDZUDZJKUDWOUDZWHWLWFIUDZUEZWIWO
      UDZWJUEZUDZWQWHWTWIDEHUDZUEZUDZWJUEZUDZXCWHDFXEUDZUDZWSUEZEXIUDZWJUEZUDZX
      HWDBHUDZUEDAUDZBIUDZUEZEAUDZWJUEZUDWHXNDEABHIDBUDZXDUEDGDXDFIUDZUEZUDZUEZ
      UDZXDUEZAIUDZYAYFXDBYEDBWFYETWEYDGMYCDUBUFUGUHUFUIYGDUJYDUEZUDZXDUEZYHYFY
      JXDYEYIDGUJYDGUKULUMULYKYBXEUDZYHYKYCXEUDZYLYKYCDUDZXDUEYMYJYNXDYJDYDUDZD
      DUDZYCUDZYNYIYDDYDUNUFYQYODDYCUOUPYQYDYNYPDYCDUQURDYCVAUHUSUIYCDXDXDYBUTV
      BUHYCYBXEXDYBVCVDVEYLXIIUDZYHFIXEVFYHYRAXIISURUPUHVGVHVEVIXOWGWDBWFHTURUG
      XRXKXTXMXPXJXQWSAXIDSUFBWFITURVJXSXLWJAXIESUFUIVNVKXKWTXMXGXJWLWSXJFDXEUD
      ZUDFDUDWLDFXEVLYSDFDXDVMUFFDVAUSUIXGXMXFXLWJEFXEUOUIUPVNVGXGXBWTXFXAWJXFF
      EWOUDZUDZXAXFFEDHEUDZUEZUDZUDZUUAXFFEUDZUUCUDUUEWIUUFXEUUCEFVOXDUUBDEHVOU
      GVNFEUUCUOUHUUDYTFEDHVPUMVEUUAUUFWOUDZXAUUGUUAFEWOUOUPUUFWIWOFEVOURUHVGUL
      UMVHXCWNWKWOUDZUDWQWTWNXBUUHWSWMWLWFGIGWEUTVDVQXBUUHWJXAUEWJWIUEZWOUDXBUU
      HWOWIWJHWDIVRVSWJXAVTUUIWKWOWJWIVTURWAWBWCWNWKWOVLVGVHWQJKWOUDZUDZWRUUKWQ
      JWKUUJWPPKWNWOQURVNUPWRUUKJKWOUOUPUHVG $.
      $( [11-Apr-2012] $)

    $( Part of proof (5)=>(3) in Day/Pickering 1982. $)
    xxdp53 $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom
      ler2an ror lelor letr lor lear ax-a3 dp15 leid lel2or or32 le2an lerr 3tr
      df-le2 ran an32 ml2i anabs orass leror ) CDCUDDGHLJKUDZUEZUDZUEZUDZCDUFDW
      DCDWCUGZCGDMUDZUEZWDUDZWDCWGDUDZWHCWFGDUDZUEZWICDGUDZEHUDZFIUDZUEZUEZWKCW
      LWMUEWNUEWPUAWLWMWNUHUIWPWFWJWPWLMUEZWFWQWPMWOWLUBUJUKMWLDULUMWPWLWJWLWOU
      NDGUOUPUSUMWKWFGUEZDUDWIDGWFDMUGUQWRWGDWFGURUTUIUPDWDWGWEVAVBWGWDWGGDGUEZ
      HUDWAUDZUEZWDWGGHDEUDZVTUEZUDZUEZXAWGGXDGWFUNWGHWGUDXDWGHUFHXDWGHXCUGZWGX
      BWGHUDZUEZXDUDZXDWGXHHUDZXIWGXGXBHUDZUEZXJWGXGXKWGHUGWGGDWOUDZUEZXKWFXMGM
      WODUBVCUJXNXMXKGXMVDXMDWMUDZXKWOWMDWMWNUNVAXKXODEHVEUKUPVBUMUSXLXGXBUEZHU
      DXJHXBXGHWGUFUQXPXHHXGXBURUTUIUPHXDXHXFVAVBXHXDXDXHXCHUDZXDXHXCHXBUEZUDZX
      QXHXBVTXRUDZUEXSXHXBXTXBXGUNDEFGHIJKMPQUBVFUSXRVTXBHXBVDUQUPXRHXCHXBUNVAV
      BXCHUOUPXDVGVHVBVHVBUSXAXEXAWCXEWTWBGWTWSWAUDZHUDHYAUDWBWSHWAVIYAHUOYAWAH
      WSWAWSLVTWSXBGHUDZUEZLDXBGYBDEUGGHUGVJLYCRUKUPWSKJWSDFUDZGIUDZUEZKDYDGYED
      FUGGIUGVJKYFQUKUPVKUSVMVCVLUJWCGYBXDUEZUEZGYBUEZXDUEZXEWBYGGWBHXCYBUEZUDX
      DYBUEYGWAYKHWAYCVTUEYKLYCVTRVNXBYBVTVOUIVCYBXCHHGUFVPXDYBURVLUJYJYHGYBXDU
      HUKYIGXDGHVQVNVLUIUKUPXAWSWCUDZWDXAGWBWSUDZUEWCWSUDYLWTYMGWTWSWBUDYMWSHWA
      VRWSWBUOUIUJWSWBGDGVDUQWCWSUOVLWSDWCDGUNVSUMVBVMUPVHVB $.
      $( [11-Apr-2012] $)

    $( Part of proof (4)=>(5) in Day/Pickering 1982. $)
    xdp45lem $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa ax-a2 2an ancom tr leor leror leo le2an bltr df2le2 cm anass or32
      ror lan ler mldual2i 3tr orass orcom lor ran wt le1 leran lelor oridm lea
      an1r mlduali lear lbtr letr id dp34 lel2or lelan mldual leao1 or4 2or mli
      ml2i ml3 ler2an leao3 le2or 3tr1 df-le2 le3tr2 or12 orabs ml3le 3tr2 bile
      ) DEUDZGDMUDZUEZHUDZUEZEFUDZHIUDZUEZDFUDZGIUDZUEZHXAUEZUDZUDZJKUDXLUDZXEX
      IXCIUDZUEZXFXLUDZXGUEZUDZXNXEXQXFDEHUDZUEZUDZXGUEZUDZXTXEDFYBUDZUDZXPUEZE
      YFUDZXGUEZUDZYEXABHUDZUEZDAUDZBIUDZUEZEAUDZXGUEZUDZXEYKYMYOYNEAIUDZUEZUDZ
      UEZYQXGBYTUEZUDZUEZUDZYSYMYOYNEDBUDZUEZUDZUEZYQXGBYAUEZUDZUEZUDZUUGYMYSEH
      BUDZUEZBEDUDZUEZUDZUDZUUOYMYMYSYMEBUDZUEZUDZUEZUVAYMYMUVBYMYSUEZUDZUEZUVE
      YMYMYABUDZUEUURBUDZUEZUVHYMYMUVIUVJUEZUEZUVKUVMYMYMUVLYMUUPUURUEZUVLYMUUR
      UUPUEZUVNXAUURYLUUPDEUFBHUFUGZUURUUPUHUIUUPUVIUURUVJHYABHEUJUKUURBULUMUNU
      OUPUVKUVMYMUVIUVJUQZUPUIUVKUVMUVHUVQUVLUVGYMUVLUVBYAUUHUEZUDZUVGUVLUVREUD
      ZBUDZUVRUVBUDUVSUVLUUHEUDZUVIUEZUWBYAUEZBUDUWAUVLUVIUWBUEUWCUVJUWBUVIUVJX
      ABUDUWBUURXABEDUFUSDEBURUIUTUVIUWBUHUIBYAUWBBUUHEBDUJVAVBUWDUVTBUWDYAUWBU
      EUVTUWBYAUHEUUHYAEHULZVBUIUSVCUVREBVDUVRUVBVEVCUVBUVGUVRUVBUVFULUVRUVRYTU
      EZUVGUVRUWFUWFUWFUVRUVRYTUVRUUHYAUEZYTUWGUVRUUHYAUHUPUWGDGDYAFIUDZUEZUDZU
      EZUDZYAUEZYTUUHUWLYABUWKDBXCUWKTXBUWJGMUWIDUBVFUTUIVFVGUWMDVHUWJUEZUDZYAU
      EZYTUWLUWOYAUWKUWNDGVHUWJGVIVJVKVJUWPUWHYBUDZYTUWPUWIYBUDZUWQUWPUWIDUDZYA
      UEUWRUWOUWSYAUWODUWJUDZDDUDZUWIUDZUWSUWNUWJDUWJVNVFUXBUWTDDUWIVDUPUXBUWJU
      WSUXADUWIDVLUSDUWIVEUIVCVGUWIDYAYAUWHVMVOUIUWIUWHYBYAUWHVPUKUNUWQYFIUDZYT
      FIYBURYTUXCAYFISUSUPUIVQVRUNUNZUOUPUWFUWFUWFVSZUPUIUWFEDAHBIYPYRYMYPVSZYR
      VSZXAUURYLUUPDEVEBHVEUGUXEVTUNWAUNWBUNUNUVHUVCUVFUDUVCYSYMUEZUDZUVEYMUVBY
      SWCUVFUXHUVCYMYSUHVFUXIUVCYSUDZYMUEYMUXJUEUVEYMYSUVCYMUVBVMWHUXJYMUHUXJUV
      DYMUVCYSUFUTVCVCVQUVEUVFUUTUDZUVAUVEUVFUVCUDUXKYMYSUVBWCUVCUUTUVFUVCUVOUV
      BUEUURUUPUVBUEZUEZUUTYMUVOUVBUVPVGUURUUPUVBUQUXMUURBUUQUDZUEUURBUEZUUQUDZ
      UUTUXLUXNUURUXLUUPEUEZBUDBUXQUDUXNBEUUPBHUJVBUXQBVEUXQUUQBUUPEUHVFVCUTUUQ
      BUUREUUPDWDVBUXPUUQUXOUDUUTUXOUUQVEUXOUUSUUQUURBUHVFUIVCVCVFUIUVFYSUUTYMY
      SVPUKUNVRUVAYOYNUUSUDZUEZYQXGUUQUDZUEZUDZUUOUVAYSUUSUUQUDZUDZYOYNUEZUUSUD
      ZYRUUQUDZUDZUYBUUTUYCYSUUQUUSVEVFUYDYPUUSUDZUYGUDUYHYPYRUUSUUQWEUYIUYFUYG
      UYGYPUYEUUSYPYPUYEUXFYNYOUHUIZUSYRYRUUQUXGUSWFUIUYFUXSUYGUYAYOYNUUSBUURIW
      DWGYQXGUUQEUUPAWDWGWFVCUXSUUKUYAUUNUXRUUJYOUXRDUUSUDZAUDDUUIUDZAUDUUJDAUU
      SURUYKUYLAUYKDEBDUDZUEZUDUYLDBEWIUYNUUIDUYMUUHEBDVEUTVFUIUSDUUIAURVCUTUXT
      UUMYQUXTHUUQUDZIUDHUULUDZIUDUUMHIUUQURUYOUYPIUYOHEYLUEZUDUYPUUQUYQHUUPYLE
      HBVEUTVFHEBWIUIUSHUULIURVCUTWFUIVQUUKUUCUUNUUFUUJUUBYOUUIUUAYNUUIEYTEUUHV
      MUUIUVRYTEYAUUHUWEVJUXDVRWJVKWBUUMUUEYQUULUUDXGUULBYTBYAVMUULUVRYTUULYAUU
      HBYAVPBYADWKWJUXDVRWJVKWBWLVRUUGYOYNIYQUEZUDZUEZYQXGAYOUEZUDZUEZUDYPUYRUD
      ZYRVUAUDZUDZYSUUCUYTUUFVUCUUBUYSYODAUUAUDZUDDAUYRUDZUDUUBUYSVUGVUHDVUGAEI
      AUDZUEZUDVUHUUAVUJAYTVUIEAIUFUTVFAEIWIUIVFDAUUAVDDAUYRVDWMUTUUEVUBYQHIUUD
      UDZUDHIVUAUDZUDUUEVUBVUKVULHIBAWIVFHIUUDVDHIVUAVDWMUTWFUYTVUDVUCVUEUYTUYE
      UYRUDZVUDUYRYNYOIYQBWKVBVUDVUMYPUYEUYRUYJUSUPUIVUCVUEVUEVUAXGYQAYOEWKVBVU
      EVUEYRYRVUAUXGUSUPUIWFVUFYSUYRVUAUDZUDVUNYSUDYSYPUYRYRVUAWEYSVUNVEVUNYSVU
      NYRYPUDZYSUYRYRVUAYPUYRYQIUEYRIYQUHIXGYQIHUJWBUNAYNYOADUJVJWLVUOVUOYSVUOV
      UOYRYRYPYPUXGUXFWFUPYRYPVEUIVQWNVCVCVQYLXDXABXCHTUSUTYPYHYRYJYNYGYOXPAYFD
      SVFBXCITUSUGYQYIXGAYFESVFVGWFWOYHXQYJYDYGXIXPYGFDYBUDZUDFDUDXIDFYBWPVUPDF
      DYAWQVFFDVEVCVGYDYJYCYIXGEFYBVDVGUPWFVQYDXSXQYCXRXGYCFEXLUDZUDZXRYCFEDHEU
      DZUEZUDZUDZVURYCFEUDZVUTUDVVBXFVVCYBVUTEFUFYAVUSDEHUFUTWFFEVUTVDUIVVAVUQF
      EDHWRVKUNVURVVCXLUDZXRVVDVURFEXLVDUPVVCXFXLFEUFUSUIVQVJVKVRXTXKXHXLUDZUDX
      NXQXKXSVVEXPXJXIXCGIGXBVMUKWBXSVVEXGXRUEXGXFUEZXLUDXSVVEXLXFXGHXAIWDVBXGX
      RUHVVFXHXLXGXFUHUSWSWTWLXKXHXLWPVQVRXNJKXLUDZUDZXOVVHXNJXHVVGXMPKXKXLQUSW
      FUPXOVVHJKXLVDUPUIVQ $.
      $( [11-Apr-2012] $)

    $( Part of proof (4)=>(5) in Day/Pickering 1982.  Proof before putting in
       id's, ancom/orcom/2an (why?) $)
$(
    xdp45lemtest $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa ancom tr leor leror leo le2an bltr df2le2 cm anass ax-a2 ror
      or32 lan ler mldual2i 3tr orass orcom lor ran le1 leran lelor an1r oridm
      lea mlduali lear lbtr letr dp34 lel2or lelan mldual ml2i leao1 or4 2or
      mli ml3 ler2an leao3 le2or 3tr1 df-le2 2an le3tr2 or12 orabs ml3le 3tr2
      bile ) DEUDZGDMUDZUEZHUDZUEZEFUDZHIUDZUEZDFUDZGIUDZUEZHWSUEZUDZUDZJKUDXJU
      DZXCXGXAIUDZUEZXDXJUDZXEUEZUDZXLXCXOXDDEHUDZUEZUDZXEUEZUDZXRXCDFXTUDZUDZX
      NUEZEYDUDZXEUEZUDZYCWSBHUDZUEDAUDZBIUDZUEZEAUDZXEUEZUDXCYI???????????????
      ???????????????????UFZUGZ?????????UHZUI??UJZUKULUMUN?????UOZUNUG???YT????
      ????????????????????????UPZUQ???URZUGUSYPUG??????YRUTVA??????YP???YSVAUGU
      QVB???VCZ??VDZVB???YS????????????????UNZ????????????T??????UBVEUSUGVEVF??
      ???????????VGVHVIVH????????????????????VJVE??UUCUN???????VKUQUUDUGVBVF???
      ??VLZVMUG?????VNZUIZUL???UUB?????SUQUNUGVOVPULULZUMUNUUEUG??????????????V
      QULVRULVSULUL???????VTZ???YPVEZ???????UUFWAYP???UUAUSZVBVBVO??????UUJ????
      ???????VFYT??????????????YRVAUUDUUKVBUS??????WBZVA???UUDUUKUGVBVBVEUGUUHU
      LVP??????????UUDVE???????WCZ???????YQUQZ????UQZWDUG???????UUMWEZUUQWDVB??
      ?????????UUB?????????WFZ??????UUDUSVEZUGUQUUBVBUS???????UUB??????UUSUURUG
      UQUUBVBUSWDUGVO?????????????UUF??????YSVHUUIVPWGVIVS?????????UUF??????UUG
      ???WHZWGUUIVPWGVIVSWIVP????????????????????????UULVEUURUGVEUUCUUCWJUS????
      ??????UURVEUUCUUCWJUSWD??????????UUTVAZ??UUOUNUG???UVA??UUPUNUGWD????UUNU
      UD????????????YP???YRVSUL???YRVHWI???????????WDUNUUDUGVOWKVBVBVOYJXBWSBXA
      HTUQUSYMYFYOYHYKYEYLXNAYDDSVEBXAITUQWLYNYGXEAYDESVEVFWDWMYFXOYHYBYEXGXNYE
      FDXTUDZUDFDUDXGDFXTWNUVBDFDXSWOVEFDVDVBVFYBYHYAYGXEEFXTVCVFUNWDVOYBXQXOYA
      XPXEYAFEXJUDZUDZXPYAFEDHEUDZUEZUDZUDZUVDYAFEUDZUVFUDUVHXDUVIXTUVFEFUPXSUV
      EDEHUPUSWDFEUVFVCUGUVGUVCFEDHWPVIULUVDUVIXJUDZXPUVJUVDFEXJVCUNUVIXDXJFEUP
      UQUGVOVHVIVPXRXIXFXJUDZUDXLXOXIXQUVKXNXHXGXAGIGWTVLUIVSXQUVKXEXPUEXEXDUEZ
      XJUDXQUVKXJXDXEHWSIWBVAXEXPUFUVLXFXJXEXDUFUQWQWRWIXIXFXJWNVOVPXLJKXJUDZUD
      ZXMUVNXLJXFUVMXKPKXIXJQUQWDUNXMUVNJKXJVCUNUGVO $.
$)
      $( [11-Apr-2012] $)

    $( Part of proof (4)=>(3) in Day/Pickering 1982. $)
    xdp43lem $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom
      ler2an ror lelor letr lor lear ax-a3 ax-a2 2an leror le2an df2le2 ler 3tr
      or32 orass ran wt le1 leran an1r oridm mlduali id dp34 lel2or mldual ml2i
      lelan leao1 or4 2or mli ml3 leao3 le2or 3tr1 df-le2 or12 orabs ml3le 3tr2
      le3tr2 bile leid lerr an32 anabs ) CDCUDDGHLJKUDZUEZUDZUEZUDZCDUFDXKCDXJU
      GZCGDMUDZUEZXKUDZXKCXNDUDZXOCXMGDUDZUEZXPCDGUDZEHUDZFIUDZUEZUEZXRCXSXTUEY
      AUEYCUAXSXTYAUHUIYCXMXQYCXSMUEZXMYDYCMYBXSUBUJUKMXSDULUMYCXSXQXSYBUNDGUOU
      PUSUMXRXMGUEZDUDXPDGXMDMUGUQYEXNDXMGURUTUIUPDXKXNXLVAVBXNXKXNGDGUEZHUDXHU
      DZUEZXKXNGHDEUDZXGUEZUDZUEZYHXNGYKGXMUNZXNHXNUDYKXNHUFHYKXNHYJUGZXNYIXNHU
      DZUEZYKUDZYKXNYPHUDZYQXNYOYIHUDZUEZYRXNYOYSXNHUGXNGDYBUDZUEZYSXMUUAGMYBDU
      BVCUJZUUBUUAYSGUUAVDUUADXTUDZYSYBXTDXTYAUNZVAYSUUDDEHVEUKUPVBUMUSYTYOYIUE
      ZHUDYRHYIYOHXNUFUQUUFYPHYOYIURUTUIUPHYKYPYNVAVBYPYKYKYPYJHUDZYKYPYJHYIUEZ
      UDZUUGYPYIXGUUHUDZUEUUIYPYIUUJYIYOUNYPEFUDZHIUDZUEZDFUDZGIUDZUEZUUHUDZUDZ
      UUJYPUUNXNIUDZUEZUUKUUHUDZUULUEZUDZUURYPUUTUUKDXTUEZUDZUULUEZUDZUVCYPDFUV
      DUDZUDZUUSUEZEUVHUDZUULUEZUDZUVGYIBHUDZUEZDAUDZBIUDZUEZEAUDZUULUEZUDZYPUV
      MUVOUVQUVPEAIUDZUEZUDZUEZUVSUULBUWBUEZUDZUEZUDZUWAUVOUVQUVPEDBUDZUEZUDZUE
      ZUVSUULBXTUEZUDZUEZUDZUWIUVOUWAEHBUDZUEZBEDUDZUEZUDZUDZUWQUVOUVOUWAUVOEBU
      DZUEZUDZUEZUXCUVOUVOUXDUVOUWAUEZUDZUEZUXGUVOUVOXTBUDZUEUWTBUDZUEZUXJUVOUV
      OUXKUXLUEZUEZUXMUXOUVOUVOUXNUVOUWRUWTUEZUXNUVOUWTUWRUEZUXPYIUWTUVNUWRDEVF
      BHVFVGZUWTUWRURUIUWRUXKUWTUXLHXTBHEUFVHUWTBUGVIUMVJUKUXMUXOUVOUXKUXLUHZUK
      UIUXMUXOUXJUXSUXNUXIUVOUXNUXDXTUWJUEZUDZUXIUXNUXTEUDZBUDZUXTUXDUDUYAUXNUW
      JEUDZUXKUEZUYDXTUEZBUDUYCUXNUXKUYDUEUYEUXLUYDUXKUXLYIBUDUYDUWTYIBEDVFUTDE
      BVMUIUJUXKUYDURUIBXTUYDBUWJEBDUFVKUQUYFUYBBUYFXTUYDUEUYBUYDXTUREUWJXTEHUG
      ZUQUIUTVLUXTEBVNUXTUXDUOVLUXDUXIUXTUXDUXHUGUXTUXTUWBUEZUXIUXTUYHUYHUYHUXT
      UXTUWBUXTUWJXTUEZUWBUYIUXTUWJXTURUKUYIDUUBUDZXTUEZUWBUWJUYJXTBUUBDBXNUUBT
      UUCUIVCVOUYKDVPUUAUEZUDZXTUEZUWBUYJUYMXTUUBUYLDGVPUUAGVQVRVAVRUYNYAUVDUDZ
      UWBUYNYBUVDUDZUYOUYNYBDUDZXTUEUYPUYMUYQXTUYMDUUAUDZDDUDZYBUDZUYQUYLUUADUU
      AVSVCUYTUYRDDYBVNUKUYTUUAUYQUYSDYBDVTUTDYBUOUIVLVOYBDXTUUEWAUIYBYAUVDXTYA
      VDVHUMUYOUVHIUDZUWBFIUVDVMUWBVUAAUVHISUTUKUIUPVBUMUMZVJUKUYHUYHUYHWBZUKUI
      UYHEDAHBIUVRUVTUVOUVRWBZUVTWBZYIUWTUVNUWRDEUOBHUOVGVUCWCUMWDUMWGUMUMUXJUX
      EUXHUDUXEUWAUVOUEZUDZUXGUVOUXDUWAWEUXHVUFUXEUVOUWAURVCVUGUXEUWAUDZUVOUEUV
      OVUHUEUXGUVOUWAUXEUVOUXDUNWFVUHUVOURVUHUXFUVOUXEUWAVFUJVLVLUPUXGUXHUXBUDZ
      UXCUXGUXHUXEUDVUIUVOUWAUXDWEUXEUXBUXHUXEUXQUXDUEUWTUWRUXDUEZUEZUXBUVOUXQU
      XDUXRVOUWTUWRUXDUHVUKUWTBUWSUDZUEUWTBUEZUWSUDZUXBVUJVULUWTVUJUWREUEZBUDBV
      UOUDVULBEUWRBHUFUQVUOBUOVUOUWSBUWREURVCVLUJUWSBUWTEUWRDWHUQVUNUWSVUMUDUXB
      VUMUWSUOVUMUXAUWSUWTBURVCUIVLVLVCUIUXHUWAUXBUVOUWAVDVHUMVBUXCUVQUVPUXAUDZ
      UEZUVSUULUWSUDZUEZUDZUWQUXCUWAUXAUWSUDZUDZUVQUVPUEZUXAUDZUVTUWSUDZUDZVUTU
      XBVVAUWAUWSUXAUOVCVVBUVRUXAUDZVVEUDVVFUVRUVTUXAUWSWIVVGVVDVVEVVEUVRVVCUXA
      UVRUVRVVCVUDUVPUVQURUIZUTUVTUVTUWSVUEUTWJUIVVDVUQVVEVUSUVQUVPUXABUWTIWHWK
      UVSUULUWSEUWRAWHWKWJVLVUQUWMVUSUWPVUPUWLUVQVUPDUXAUDZAUDDUWKUDZAUDUWLDAUX
      AVMVVIVVJAVVIDEBDUDZUEZUDVVJDBEWLVVLUWKDVVKUWJEBDUOUJVCUIUTDUWKAVMVLUJVUR
      UWOUVSVURHUWSUDZIUDHUWNUDZIUDUWOHIUWSVMVVMVVNIVVMHEUVNUEZUDVVNUWSVVOHUWRU
      VNEHBUOUJVCHEBWLUIUTHUWNIVMVLUJWJUIUPUWMUWEUWPUWHUWLUWDUVQUWKUWCUVPUWKEUW
      BEUWJUNUWKUXTUWBEXTUWJUYGVRVUBVBUSVAWGUWOUWGUVSUWNUWFUULUWNBUWBBXTUNUWNUX
      TUWBUWNXTUWJBXTVDBXTDWMUSVUBVBUSVAWGWNVBUWIUVQUVPIUVSUEZUDZUEZUVSUULAUVQU
      EZUDZUEZUDUVRVVPUDZUVTVVSUDZUDZUWAUWEVVRUWHVWAUWDVVQUVQDAUWCUDZUDDAVVPUDZ
      UDUWDVVQVWEVWFDVWEAEIAUDZUEZUDVWFUWCVWHAUWBVWGEAIVFUJVCAEIWLUIVCDAUWCVNDA
      VVPVNWOUJUWGVVTUVSHIUWFUDZUDHIVVSUDZUDUWGVVTVWIVWJHIBAWLVCHIUWFVNHIVVSVNW
      OUJWJVVRVWBVWAVWCVVRVVCVVPUDZVWBVVPUVPUVQIUVSBWMUQVWBVWKUVRVVCVVPVVHUTUKU
      IVWAVWCVWCVVSUULUVSAUVQEWMUQVWCVWCUVTUVTVVSVUEUTUKUIWJVWDUWAVVPVVSUDZUDVW
      LUWAUDUWAUVRVVPUVTVVSWIUWAVWLUOVWLUWAVWLUVTUVRUDZUWAVVPUVTVVSUVRVVPUVSIUE
      UVTIUVSURIUULUVSIHUFWGUMAUVPUVQADUFVRWNVWMVWMUWAVWMVWMUVTUVTUVRUVRVUEVUDW
      JUKUVTUVRUOUIUPWPVLVLUPUVNYOYIBXNHTUTUJUVRUVJUVTUVLUVPUVIUVQUUSAUVHDSVCBX
      NITUTVGUVSUVKUULAUVHESVCVOWJXAUVJUUTUVLUVFUVIUUNUUSUVIFDUVDUDZUDFDUDUUNDF
      UVDWQVWNDFDXTWRVCFDUOVLVOUVFUVLUVEUVKUULEFUVDVNVOUKWJUPUVFUVBUUTUVEUVAUUL
      UVEFEUUHUDZUDZUVAUVEFEDHEUDZUEZUDZUDZVWPUVEFEUDZVWRUDVWTUUKVXAUVDVWREFVFX
      TVWQDEHVFUJWJFEVWRVNUIVWSVWOFEDHWSVAUMVWPVXAUUHUDZUVAVXBVWPFEUUHVNUKVXAUU
      KUUHFEVFUTUIUPVRVAVBUVCUUPUUMUUHUDZUDUURUUTUUPUVBVXCUUSUUOUUNXNGIYMVHWGUV
      BVXCUULUVAUEUULUUKUEZUUHUDUVBVXCUUHUUKUULHYIIWHUQUULUVAURVXDUUMUUHUULUUKU
      RUTWTXBWNUUPUUMUUHWQUPVBUURJKUUHUDZUDZUUJVXFUURJUUMVXEUUQPKUUPUUHQUTWJUKU
      UJVXFJKUUHVNUKUIUPUSUUHXGYIHYIVDUQUPUUHHYJHYIUNVAVBYJHUOUPYKXCWDVBWDVBUSY
      HYLYHXJYLYGXIGYGYFXHUDZHUDHVXGUDXIYFHXHVMVXGHUOVXGXHHYFXHYFLXGYFYIGHUDZUE
      ZLDYIGVXHDEUGGHUGVILVXIRUKUPYFKJYFUUPKDUUNGUUODFUGGIUGVIKUUPQUKUPXDUSWPVC
      VLUJXJGVXHYKUEZUEZGVXHUEZYKUEZYLXIVXJGXIHYJVXHUEZUDYKVXHUEVXJXHVXNHXHVXIX
      GUEVXNLVXIXGRVOYIVXHXGXEUIVCVXHYJHHGUFWFYKVXHURVLUJVXMVXKGVXHYKUHUKVXLGYK
      GHXFVOVLUIUKUPYHYFXJUDZXKYHGXIYFUDZUEXJYFUDVXOYGVXPGYGYFXIUDVXPYFHXHVNYFX
      IUOUIUJYFXIGDGVDUQXJYFUOVLYFDXJDGUNVHUMVBWPUPWDVB $.
      $( [11-Apr-2012] $)
  $}


  ${
    xxxdp.c0 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    xxxdp.c1 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    xxxdp.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    xxxdp.d $e |- d = ( a2 v ( a0 ^ ( a1 v b1 ) ) ) $.
    xxxdp.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $.
    xxxdp.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    xxxdp.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    xxxdp.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $.
    $( Part of proof (4)=>(5) in Day/Pickering 1982. $)
    xdp45 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa ax-a2 2an ancom tr leor leror leo le2an bltr df2le2 cm anass or32
      ror lan ler mldual2i 3tr orass orcom lor ran wt le1 leran lelor oridm lea
      an1r mlduali lear lbtr letr id dp34 lel2or lelan mldual leao1 or4 2or mli
      ml2i ml3 ler2an leao3 le2or 3tr1 df-le2 le3tr2 or12 orabs ml3le 3tr2 bile
      ) DEUCZGDMUCZUDZHUCZUDZEFUCZHIUCZUDZDFUCZGIUCZUDZHWTUDZUCZUCZJKUCXKUCZXDX
      HXBIUCZUDZXEXKUCZXFUDZUCZXMXDXPXEDEHUCZUDZUCZXFUDZUCZXSXDDFYAUCZUCZXOUDZE
      YEUCZXFUDZUCZYDWTBHUCZUDZDAUCZBIUCZUDZEAUCZXFUDZUCZXDYJYLYNYMEAIUCZUDZUCZ
      UDZYPXFBYSUDZUCZUDZUCZYRYLYNYMEDBUCZUDZUCZUDZYPXFBXTUDZUCZUDZUCZUUFYLYREH
      BUCZUDZBEDUCZUDZUCZUCZUUNYLYLYRYLEBUCZUDZUCZUDZUUTYLYLUVAYLYRUDZUCZUDZUVD
      YLYLXTBUCZUDUUQBUCZUDZUVGYLYLUVHUVIUDZUDZUVJUVLYLYLUVKYLUUOUUQUDZUVKYLUUQ
      UUOUDZUVMWTUUQYKUUODEUEBHUEUFZUUQUUOUGUHUUOUVHUUQUVIHXTBHEUIUJUUQBUKULUMU
      NUOUVJUVLYLUVHUVIUPZUOUHUVJUVLUVGUVPUVKUVFYLUVKUVAXTUUGUDZUCZUVFUVKUVQEUC
      ZBUCZUVQUVAUCUVRUVKUUGEUCZUVHUDZUWAXTUDZBUCUVTUVKUVHUWAUDUWBUVIUWAUVHUVIW
      TBUCUWAUUQWTBEDUEURDEBUQUHUSUVHUWAUGUHBXTUWABUUGEBDUIUTVAUWCUVSBUWCXTUWAU
      DUVSUWAXTUGEUUGXTEHUKZVAUHURVBUVQEBVCUVQUVAVDVBUVAUVFUVQUVAUVEUKUVQUVQYSU
      DZUVFUVQUWEUWEUWEUVQUVQYSUVQUUGXTUDZYSUWFUVQUUGXTUGUOUWFDGDXTFIUCZUDZUCZU
      DZUCZXTUDZYSUUGUWKXTBUWJDBXBUWJSXAUWIGMUWHDUAVEUSUHVEVFUWLDVGUWIUDZUCZXTU
      DZYSUWKUWNXTUWJUWMDGVGUWIGVHVIVJVIUWOUWGYAUCZYSUWOUWHYAUCZUWPUWOUWHDUCZXT
      UDUWQUWNUWRXTUWNDUWIUCZDDUCZUWHUCZUWRUWMUWIDUWIVMVEUXAUWSDDUWHVCUOUXAUWIU
      WRUWTDUWHDVKURDUWHVDUHVBVFUWHDXTXTUWGVLVNUHUWHUWGYAXTUWGVOUJUMUWPYEIUCZYS
      FIYAUQYSUXBAYEIRURUOUHVPVQUMUMZUNUOUWEUWEUWEVRZUOUHUWEEDAHBIYOYQYLYOVRZYQ
      VRZWTUUQYKUUODEVDBHVDUFUXDVSUMVTUMWAUMUMUVGUVBUVEUCUVBYRYLUDZUCZUVDYLUVAY
      RWBUVEUXGUVBYLYRUGVEUXHUVBYRUCZYLUDYLUXIUDUVDYLYRUVBYLUVAVLWGUXIYLUGUXIUV
      CYLUVBYRUEUSVBVBVPUVDUVEUUSUCZUUTUVDUVEUVBUCUXJYLYRUVAWBUVBUUSUVEUVBUVNUV
      AUDUUQUUOUVAUDZUDZUUSYLUVNUVAUVOVFUUQUUOUVAUPUXLUUQBUUPUCZUDUUQBUDZUUPUCZ
      UUSUXKUXMUUQUXKUUOEUDZBUCBUXPUCUXMBEUUOBHUIVAUXPBVDUXPUUPBUUOEUGVEVBUSUUP
      BUUQEUUODWCVAUXOUUPUXNUCUUSUXNUUPVDUXNUURUUPUUQBUGVEUHVBVBVEUHUVEYRUUSYLY
      RVOUJUMVQUUTYNYMUURUCZUDZYPXFUUPUCZUDZUCZUUNUUTYRUURUUPUCZUCZYNYMUDZUURUC
      ZYQUUPUCZUCZUYAUUSUYBYRUUPUURVDVEUYCYOUURUCZUYFUCUYGYOYQUURUUPWDUYHUYEUYF
      UYFYOUYDUURYOYOUYDUXEYMYNUGUHZURYQYQUUPUXFURWEUHUYEUXRUYFUXTYNYMUURBUUQIW
      CWFYPXFUUPEUUOAWCWFWEVBUXRUUJUXTUUMUXQUUIYNUXQDUURUCZAUCDUUHUCZAUCUUIDAUU
      RUQUYJUYKAUYJDEBDUCZUDZUCUYKDBEWHUYMUUHDUYLUUGEBDVDUSVEUHURDUUHAUQVBUSUXS
      UULYPUXSHUUPUCZIUCHUUKUCZIUCUULHIUUPUQUYNUYOIUYNHEYKUDZUCUYOUUPUYPHUUOYKE
      HBVDUSVEHEBWHUHURHUUKIUQVBUSWEUHVPUUJUUBUUMUUEUUIUUAYNUUHYTYMUUHEYSEUUGVL
      UUHUVQYSEXTUUGUWDVIUXCVQWIVJWAUULUUDYPUUKUUCXFUUKBYSBXTVLUUKUVQYSUUKXTUUG
      BXTVOBXTDWJWIUXCVQWIVJWAWKVQUUFYNYMIYPUDZUCZUDZYPXFAYNUDZUCZUDZUCYOUYQUCZ
      YQUYTUCZUCZYRUUBUYSUUEVUBUUAUYRYNDAYTUCZUCDAUYQUCZUCUUAUYRVUFVUGDVUFAEIAU
      CZUDZUCVUGYTVUIAYSVUHEAIUEUSVEAEIWHUHVEDAYTVCDAUYQVCWLUSUUDVUAYPHIUUCUCZU
      CHIUYTUCZUCUUDVUAVUJVUKHIBAWHVEHIUUCVCHIUYTVCWLUSWEUYSVUCVUBVUDUYSUYDUYQU
      CZVUCUYQYMYNIYPBWJVAVUCVULYOUYDUYQUYIURUOUHVUBVUDVUDUYTXFYPAYNEWJVAVUDVUD
      YQYQUYTUXFURUOUHWEVUEYRUYQUYTUCZUCVUMYRUCYRYOUYQYQUYTWDYRVUMVDVUMYRVUMYQY
      OUCZYRUYQYQUYTYOUYQYPIUDYQIYPUGIXFYPIHUIWAUMAYMYNADUIVIWKVUNVUNYRVUNVUNYQ
      YQYOYOUXFUXEWEUOYQYOVDUHVPWMVBVBVPYKXCWTBXBHSURUSYOYGYQYIYMYFYNXOAYEDRVEB
      XBISURUFYPYHXFAYEERVEVFWEWNYGXPYIYCYFXHXOYFFDYAUCZUCFDUCXHDFYAWOVUODFDXTW
      PVEFDVDVBVFYCYIYBYHXFEFYAVCVFUOWEVPYCXRXPYBXQXFYBFEXKUCZUCZXQYBFEDHEUCZUD
      ZUCZUCZVUQYBFEUCZVUSUCVVAXEVVBYAVUSEFUEXTVURDEHUEUSWEFEVUSVCUHVUTVUPFEDHW
      QVJUMVUQVVBXKUCZXQVVCVUQFEXKVCUOVVBXEXKFEUEURUHVPVIVJVQXSXJXGXKUCZUCXMXPX
      JXRVVDXOXIXHXBGIGXAVLUJWAXRVVDXFXQUDXFXEUDZXKUCXRVVDXKXEXFHWTIWCVAXFXQUGV
      VEXGXKXFXEUGURWRWSWKXJXGXKWOVPVQXMJKXKUCZUCZXNVVGXMJXGVVFXLOKXJXKPURWEUOX
      NVVGJKXKVCUOUHVP $.
      $( [11-Apr-2012] $)

    $( Part of proof (4)=>(3) in Day/Pickering 1982. $)
    xdp43 $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom
      ler2an ror lelor letr lor lear ax-a3 ax-a2 2an leror le2an df2le2 ler 3tr
      or32 orass ran wt le1 leran an1r oridm mlduali id dp34 lel2or mldual ml2i
      lelan leao1 or4 2or mli ml3 leao3 le2or 3tr1 df-le2 or12 orabs ml3le 3tr2
      le3tr2 bile leid lerr an32 anabs ) CDCUCDGHLJKUCZUDZUCZUDZUCZCDUEDXJCDXIU
      FZCGDMUCZUDZXJUCZXJCXMDUCZXNCXLGDUCZUDZXOCDGUCZEHUCZFIUCZUDZUDZXQCXRXSUDX
      TUDYBTXRXSXTUGUHYBXLXPYBXRMUDZXLYCYBMYAXRUAUIUJMXRDUKULYBXRXPXRYAUMDGUNUO
      URULXQXLGUDZDUCXODGXLDMUFUPYDXMDXLGUQUSUHUODXJXMXKUTVAXMXJXMGDGUDZHUCXGUC
      ZUDZXJXMGHDEUCZXFUDZUCZUDZYGXMGYJGXLUMZXMHXMUCYJXMHUEHYJXMHYIUFZXMYHXMHUC
      ZUDZYJUCZYJXMYOHUCZYPXMYNYHHUCZUDZYQXMYNYRXMHUFXMGDYAUCZUDZYRXLYTGMYADUAV
      BUIZUUAYTYRGYTVCYTDXSUCZYRYAXSDXSXTUMZUTYRUUCDEHVDUJUOVAULURYSYNYHUDZHUCY
      QHYHYNHXMUEUPUUEYOHYNYHUQUSUHUOHYJYOYMUTVAYOYJYJYOYIHUCZYJYOYIHYHUDZUCZUU
      FYOYHXFUUGUCZUDUUHYOYHUUIYHYNUMYOEFUCZHIUCZUDZDFUCZGIUCZUDZUUGUCZUCZUUIYO
      UUMXMIUCZUDZUUJUUGUCZUUKUDZUCZUUQYOUUSUUJDXSUDZUCZUUKUDZUCZUVBYODFUVCUCZU
      CZUURUDZEUVGUCZUUKUDZUCZUVFYHBHUCZUDZDAUCZBIUCZUDZEAUCZUUKUDZUCZYOUVLUVNU
      VPUVOEAIUCZUDZUCZUDZUVRUUKBUWAUDZUCZUDZUCZUVTUVNUVPUVOEDBUCZUDZUCZUDZUVRU
      UKBXSUDZUCZUDZUCZUWHUVNUVTEHBUCZUDZBEDUCZUDZUCZUCZUWPUVNUVNUVTUVNEBUCZUDZ
      UCZUDZUXBUVNUVNUXCUVNUVTUDZUCZUDZUXFUVNUVNXSBUCZUDUWSBUCZUDZUXIUVNUVNUXJU
      XKUDZUDZUXLUXNUVNUVNUXMUVNUWQUWSUDZUXMUVNUWSUWQUDZUXOYHUWSUVMUWQDEVEBHVEV
      FZUWSUWQUQUHUWQUXJUWSUXKHXSBHEUEVGUWSBUFVHULVIUJUXLUXNUVNUXJUXKUGZUJUHUXL
      UXNUXIUXRUXMUXHUVNUXMUXCXSUWIUDZUCZUXHUXMUXSEUCZBUCZUXSUXCUCUXTUXMUWIEUCZ
      UXJUDZUYCXSUDZBUCUYBUXMUXJUYCUDUYDUXKUYCUXJUXKYHBUCUYCUWSYHBEDVEUSDEBVLUH
      UIUXJUYCUQUHBXSUYCBUWIEBDUEVJUPUYEUYABUYEXSUYCUDUYAUYCXSUQEUWIXSEHUFZUPUH
      USVKUXSEBVMUXSUXCUNVKUXCUXHUXSUXCUXGUFUXSUXSUWAUDZUXHUXSUYGUYGUYGUXSUXSUW
      AUXSUWIXSUDZUWAUYHUXSUWIXSUQUJUYHDUUAUCZXSUDZUWAUWIUYIXSBUUADBXMUUASUUBUH
      VBVNUYJDVOYTUDZUCZXSUDZUWAUYIUYLXSUUAUYKDGVOYTGVPVQUTVQUYMXTUVCUCZUWAUYMY
      AUVCUCZUYNUYMYADUCZXSUDUYOUYLUYPXSUYLDYTUCZDDUCZYAUCZUYPUYKYTDYTVRVBUYSUY
      QDDYAVMUJUYSYTUYPUYRDYADVSUSDYAUNUHVKVNYADXSUUDVTUHYAXTUVCXSXTVCVGULUYNUV
      GIUCZUWAFIUVCVLUWAUYTAUVGIRUSUJUHUOVAULULZVIUJUYGUYGUYGWAZUJUHUYGEDAHBIUV
      QUVSUVNUVQWAZUVSWAZYHUWSUVMUWQDEUNBHUNVFVUBWBULWCULWFULULUXIUXDUXGUCUXDUV
      TUVNUDZUCZUXFUVNUXCUVTWDUXGVUEUXDUVNUVTUQVBVUFUXDUVTUCZUVNUDUVNVUGUDUXFUV
      NUVTUXDUVNUXCUMWEVUGUVNUQVUGUXEUVNUXDUVTVEUIVKVKUOUXFUXGUXAUCZUXBUXFUXGUX
      DUCVUHUVNUVTUXCWDUXDUXAUXGUXDUXPUXCUDUWSUWQUXCUDZUDZUXAUVNUXPUXCUXQVNUWSU
      WQUXCUGVUJUWSBUWRUCZUDUWSBUDZUWRUCZUXAVUIVUKUWSVUIUWQEUDZBUCBVUNUCVUKBEUW
      QBHUEUPVUNBUNVUNUWRBUWQEUQVBVKUIUWRBUWSEUWQDWGUPVUMUWRVULUCUXAVULUWRUNVUL
      UWTUWRUWSBUQVBUHVKVKVBUHUXGUVTUXAUVNUVTVCVGULVAUXBUVPUVOUWTUCZUDZUVRUUKUW
      RUCZUDZUCZUWPUXBUVTUWTUWRUCZUCZUVPUVOUDZUWTUCZUVSUWRUCZUCZVUSUXAVUTUVTUWR
      UWTUNVBVVAUVQUWTUCZVVDUCVVEUVQUVSUWTUWRWHVVFVVCVVDVVDUVQVVBUWTUVQUVQVVBVU
      CUVOUVPUQUHZUSUVSUVSUWRVUDUSWIUHVVCVUPVVDVURUVPUVOUWTBUWSIWGWJUVRUUKUWREU
      WQAWGWJWIVKVUPUWLVURUWOVUOUWKUVPVUODUWTUCZAUCDUWJUCZAUCUWKDAUWTVLVVHVVIAV
      VHDEBDUCZUDZUCVVIDBEWKVVKUWJDVVJUWIEBDUNUIVBUHUSDUWJAVLVKUIVUQUWNUVRVUQHU
      WRUCZIUCHUWMUCZIUCUWNHIUWRVLVVLVVMIVVLHEUVMUDZUCVVMUWRVVNHUWQUVMEHBUNUIVB
      HEBWKUHUSHUWMIVLVKUIWIUHUOUWLUWDUWOUWGUWKUWCUVPUWJUWBUVOUWJEUWAEUWIUMUWJU
      XSUWAEXSUWIUYFVQVUAVAURUTWFUWNUWFUVRUWMUWEUUKUWMBUWABXSUMUWMUXSUWAUWMXSUW
      IBXSVCBXSDWLURVUAVAURUTWFWMVAUWHUVPUVOIUVRUDZUCZUDZUVRUUKAUVPUDZUCZUDZUCU
      VQVVOUCZUVSVVRUCZUCZUVTUWDVVQUWGVVTUWCVVPUVPDAUWBUCZUCDAVVOUCZUCUWCVVPVWD
      VWEDVWDAEIAUCZUDZUCVWEUWBVWGAUWAVWFEAIVEUIVBAEIWKUHVBDAUWBVMDAVVOVMWNUIUW
      FVVSUVRHIUWEUCZUCHIVVRUCZUCUWFVVSVWHVWIHIBAWKVBHIUWEVMHIVVRVMWNUIWIVVQVWA
      VVTVWBVVQVVBVVOUCZVWAVVOUVOUVPIUVRBWLUPVWAVWJUVQVVBVVOVVGUSUJUHVVTVWBVWBV
      VRUUKUVRAUVPEWLUPVWBVWBUVSUVSVVRVUDUSUJUHWIVWCUVTVVOVVRUCZUCVWKUVTUCUVTUV
      QVVOUVSVVRWHUVTVWKUNVWKUVTVWKUVSUVQUCZUVTVVOUVSVVRUVQVVOUVRIUDUVSIUVRUQIU
      UKUVRIHUEWFULAUVOUVPADUEVQWMVWLVWLUVTVWLVWLUVSUVSUVQUVQVUDVUCWIUJUVSUVQUN
      UHUOWOVKVKUOUVMYNYHBXMHSUSUIUVQUVIUVSUVKUVOUVHUVPUURAUVGDRVBBXMISUSVFUVRU
      VJUUKAUVGERVBVNWIWTUVIUUSUVKUVEUVHUUMUURUVHFDUVCUCZUCFDUCUUMDFUVCWPVWMDFD
      XSWQVBFDUNVKVNUVEUVKUVDUVJUUKEFUVCVMVNUJWIUOUVEUVAUUSUVDUUTUUKUVDFEUUGUCZ
      UCZUUTUVDFEDHEUCZUDZUCZUCZVWOUVDFEUCZVWQUCVWSUUJVWTUVCVWQEFVEXSVWPDEHVEUI
      WIFEVWQVMUHVWRVWNFEDHWRUTULVWOVWTUUGUCZUUTVXAVWOFEUUGVMUJVWTUUJUUGFEVEUSU
      HUOVQUTVAUVBUUOUULUUGUCZUCUUQUUSUUOUVAVXBUURUUNUUMXMGIYLVGWFUVAVXBUUKUUTU
      DUUKUUJUDZUUGUCUVAVXBUUGUUJUUKHYHIWGUPUUKUUTUQVXCUULUUGUUKUUJUQUSWSXAWMUU
      OUULUUGWPUOVAUUQJKUUGUCZUCZUUIVXEUUQJUULVXDUUPOKUUOUUGPUSWIUJUUIVXEJKUUGV
      MUJUHUOURUUGXFYHHYHVCUPUOUUGHYIHYHUMUTVAYIHUNUOYJXBWCVAWCVAURYGYKYGXIYKYF
      XHGYFYEXGUCZHUCHVXFUCXHYEHXGVLVXFHUNVXFXGHYEXGYELXFYEYHGHUCZUDZLDYHGVXGDE
      UFGHUFVHLVXHQUJUOYEKJYEUUOKDUUMGUUNDFUFGIUFVHKUUOPUJUOXCURWOVBVKUIXIGVXGY
      JUDZUDZGVXGUDZYJUDZYKXHVXIGXHHYIVXGUDZUCYJVXGUDVXIXGVXMHXGVXHXFUDVXMLVXHX
      FQVNYHVXGXFXDUHVBVXGYIHHGUEWEYJVXGUQVKUIVXLVXJGVXGYJUGUJVXKGYJGHXEVNVKUHU
      JUOYGYEXIUCZXJYGGXHYEUCZUDXIYEUCVXNYFVXOGYFYEXHUCVXOYEHXGVMYEXHUNUHUIYEXH
      GDGVCUPXIYEUNVKYEDXIDGUMVGULVAWOUOWCVA $.
      $( [11-Apr-2012] $)
  $}


  ${
    3dp.c0 $e |- c0 = ( ( a1 v a1 ) ^ ( b1 v b1 ) ) $.
    3dp.c1 $e |- c1 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    3dp.c2 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    3dp.d $e |- d = ( a1 v ( a0 ^ ( a1 v b1 ) ) ) $.
    3dp.e $e |- e = ( b0 ^ ( a0 v p0 ) ) $.
    3dp.p $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a1 v b1 ) ) $.
    3dp.p0 $e |- p0 = ( ( a1 v b1 ) ^ ( a1 v b1 ) ) $.
    3dp.p2 $e |- p2 = ( ( a0 v b0 ) ^ ( a1 v b1 ) ) $.
    $( "3OA" version of ~ xdp43 .  Changed ` a2 ` to ` a1 ` and ` b2 ` to
       ` b1 ` . $)
    3dp43 $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leor leo anass tr lan cm leao4 bltr lea orcom lbtr mldual2i ancom
      ler2an ror lelor letr lor lear ax-a3 ax-a2 2an leror le2an df2le2 ler 3tr
      or32 orass ran wt le1 leran an1r oridm mlduali id dp34 lel2or mldual ml2i
      lelan leao1 or4 2or mli ml3 leao3 le2or 3tr1 df-le2 or12 orabs ml3le 3tr2
      le3tr2 bile leid lerr an32 anabs ) CDCUADFGJHIUAZUBZUAZUBZUAZCDUCDXHCDXGU
      DZCFDKUAZUBZXHUAZXHCXKDUAZXLCXJFDUAZUBZXMCDFUAZEGUAZXQUBZUBZXOCXPXQUBXQUB
      XSRXPXQXQUEUFXSXJXNXSXPKUBZXJXTXSKXRXPSUGUHKXPDUIUJXSXPXNXPXRUKDFULUMUPUJ
      XOXJFUBZDUAXMDFXJDKUDUNYAXKDXJFUOUQUFUMDXHXKXIURUSXKXHXKFDFUBZGUAXEUAZUBZ
      XHXKFGDEUAZXDUBZUAZUBZYDXKFYGFXJUKZXKGXKUAYGXKGUCGYGXKGYFUDZXKYEXKGUAZUBZ
      YGUAZYGXKYLGUAZYMXKYKYEGUAZUBZYNXKYKYOXKGUDXKFDXRUAZUBZYOXJYQFKXRDSUTUGZY
      RYQYOFYQVAYQDXQUAZYOXRXQDXQXQUKZURYOYTDEGVBUHUMUSUJUPYPYKYEUBZGUAYNGYEYKG
      XKUCUNUUBYLGYKYEUOUQUFUMGYGYLYJURUSYLYGYGYLYFGUAZYGYLYFGYEUBZUAZUUCYLYEXD
      UUDUAZUBUUEYLYEUUFYEYKUKYLEEUAZGGUAZUBZYEFGUAZUBZUUDUAZUAZUUFYLYLUUGUUDUA
      ZUUHUBZUAZUUMYLYLUUGDXQUBZUAZUUHUBZUAZUUPYLDEUUQUAZUAZYKUBZEUVAUAZUUHUBZU
      AZUUTYEBGUAZUBZDAUAZUVGUBZEAUAZUUHUBZUAZYLUVFUVHUVGUVIEAGUAZUBZUAZUBZUVKU
      UHBUVNUBZUAZUBZUAZUVMUVHUVGUVIEDBUAZUBZUAZUBZUVKUUHBXQUBZUAZUBZUAZUWAUVHU
      VMEGBUAZUBZBEDUAZUBZUAZUAZUWIUVHUVHUVMUVHEBUAZUBZUAZUBZUWOUVHUVHUWPUVHUVM
      UBZUAZUBZUWSUVHUVHXQBUAZUBUWLBUAZUBZUXBUVHUVHUXCUXDUBZUBZUXEUXGUVHUVHUXFU
      VHUWJUWLUBZUXFUVHUWLUWJUBZUXHYEUWLUVGUWJDEVCBGVCVDZUWLUWJUOUFUWJUXCUWLUXD
      GXQBGEUCVEUWLBUDVFUJVGUHUXEUXGUVHUXCUXDUEZUHUFUXEUXGUXBUXKUXFUXAUVHUXFUWP
      XQUWBUBZUAZUXAUXFUXLEUAZBUAZUXLUWPUAUXMUXFUWBEUAZUXCUBZUXPXQUBZBUAUXOUXFU
      XCUXPUBUXQUXDUXPUXCUXDYEBUAUXPUWLYEBEDVCUQDEBVJUFUGUXCUXPUOUFBXQUXPBUWBEB
      DUCVHUNUXRUXNBUXRXQUXPUBUXNUXPXQUOEUWBXQEGUDZUNUFUQVIUXLEBVKUXLUWPULVIUWP
      UXAUXLUWPUWTUDUXLUXLUVNUBZUXAUXLUXTUXTUXTUXLUXLUVNUXLUWBXQUBZUVNUYAUXLUWB
      XQUOUHUYADYRUAZXQUBZUVNUWBUYBXQBYRDBXKYRQYSUFUTVLUYCDVMYQUBZUAZXQUBZUVNUY
      BUYEXQYRUYDDFVMYQFVNVOURVOUYFXQUUQUAZUVNUYFXRUUQUAZUYGUYFXRDUAZXQUBUYHUYE
      UYIXQUYEDYQUAZDDUAZXRUAZUYIUYDYQDYQVPUTUYLUYJDDXRVKUHUYLYQUYIUYKDXRDVQUQD
      XRULUFVIVLXRDXQUUAVRUFXRXQUUQXQXQVAVEUJUYGUVAGUAZUVNEGUUQVJUVNUYMAUVAGPUQ
      UHUFUMUSUJUJZVGUHUXTUXTUXTVSZUHUFUXTEDAGBGUVJUVLUVHUVJVSZUVLVSZYEUWLUVGUW
      JDEULBGULVDUYOVTUJWAUJWDUJUJUXBUWQUWTUAUWQUVMUVHUBZUAZUWSUVHUWPUVMWBUWTUY
      RUWQUVHUVMUOUTUYSUWQUVMUAZUVHUBUVHUYTUBUWSUVHUVMUWQUVHUWPUKWCUYTUVHUOUYTU
      WRUVHUWQUVMVCUGVIVIUMUWSUWTUWNUAZUWOUWSUWTUWQUAVUAUVHUVMUWPWBUWQUWNUWTUWQ
      UXIUWPUBUWLUWJUWPUBZUBZUWNUVHUXIUWPUXJVLUWLUWJUWPUEVUCUWLBUWKUAZUBUWLBUBZ
      UWKUAZUWNVUBVUDUWLVUBUWJEUBZBUABVUGUAVUDBEUWJBGUCUNVUGBULVUGUWKBUWJEUOUTV
      IUGUWKBUWLEUWJDWEUNVUFUWKVUEUAUWNVUEUWKULVUEUWMUWKUWLBUOUTUFVIVIUTUFUWTUV
      MUWNUVHUVMVAVEUJUSUWOUVGUVIUWMUAZUBZUVKUUHUWKUAZUBZUAZUWIUWOUVMUWMUWKUAZU
      AZUVGUVIUBZUWMUAZUVLUWKUAZUAZVULUWNVUMUVMUWKUWMULUTVUNUVJUWMUAZVUQUAVURUV
      JUVLUWMUWKWFVUSVUPVUQVUQUVJVUOUWMUVJUVJVUOUYPUVIUVGUOUFZUQUVLUVLUWKUYQUQW
      GUFVUPVUIVUQVUKUVGUVIUWMBUWLGWEWHUVKUUHUWKEUWJAWEWHWGVIVUIUWEVUKUWHVUHUWD
      UVGVUHDUWMUAZAUADUWCUAZAUAUWDDAUWMVJVVAVVBAVVADEBDUAZUBZUAVVBDBEWIVVDUWCD
      VVCUWBEBDULUGUTUFUQDUWCAVJVIUGVUJUWGUVKVUJGUWKUAZGUAGUWFUAZGUAUWGGGUWKVJV
      VEVVFGVVEGEUVGUBZUAVVFUWKVVGGUWJUVGEGBULUGUTGEBWIUFUQGUWFGVJVIUGWGUFUMUWE
      UVQUWHUVTUWDUVPUVGUWCUVOUVIUWCEUVNEUWBUKUWCUXLUVNEXQUWBUXSVOUYNUSUPURWDUW
      GUVSUVKUWFUVRUUHUWFBUVNBXQUKUWFUXLUVNUWFXQUWBBXQVABXQDWJUPUYNUSUPURWDWKUS
      UWAUVGUVIGUVKUBZUAZUBZUVKUUHAUVGUBZUAZUBZUAUVJVVHUAZUVLVVKUAZUAZUVMUVQVVJ
      UVTVVMUVPVVIUVGDAUVOUAZUADAVVHUAZUAUVPVVIVVQVVRDVVQAEGAUAZUBZUAVVRUVOVVTA
      UVNVVSEAGVCUGUTAEGWIUFUTDAUVOVKDAVVHVKWLUGUVSVVLUVKGGUVRUAZUAGGVVKUAZUAUV
      SVVLVWAVWBGGBAWIUTGGUVRVKGGVVKVKWLUGWGVVJVVNVVMVVOVVJVUOVVHUAZVVNVVHUVIUV
      GGUVKBWJUNVVNVWCUVJVUOVVHVUTUQUHUFVVMVVOVVOVVKUUHUVKAUVGEWJUNVVOVVOUVLUVL
      VVKUYQUQUHUFWGVVPUVMVVHVVKUAZUAVWDUVMUAUVMUVJVVHUVLVVKWFUVMVWDULVWDUVMVWD
      UVLUVJUAZUVMVVHUVLVVKUVJVVHUVKGUBUVLGUVKUOGUUHUVKGGUCWDUJAUVIUVGADUCVOWKV
      WEVWEUVMVWEVWEUVLUVLUVJUVJUYQUYPWGUHUVLUVJULUFUMWMVIVIUMUVGYKYEBXKGQUQZUG
      UVJUVCUVLUVEUVIUVBUVGYKAUVADPUTVWFVDUVKUVDUUHAUVAEPUTVLWGWRUVCYLUVEUUSUVB
      YEYKUVBEDUUQUAZUAUWLYEDEUUQWNVWGDEDXQWOUTEDULVIVLUUSUVEUURUVDUUHEEUUQVKVL
      UHWGUMUUSUUOYLUURUUNUUHUUREEUUDUAZUAZUUNUUREEDGEUAZUBZUAZUAZVWIUURUUGVWKU
      AVWMUUGUUGUUQVWKEEVCZXQVWJDEGVCUGWGEEVWKVKUFVWLVWHEEDGWPURUJVWIUUNUUNUUNV
      WIEEUUDVKUHUUGUUGUUDVWNUQUFUMVOURUSUUPUUKUUIUUDUAZUAUUMYLUUKUUOVWOYKUUJYE
      XKFGYIVEWDUUOVWOUUHUUNUBUUHUUGUBZUUDUAUUOVWOUUDUUGUUHGYEGWEUNUUHUUNUOVWPU
      UIUUDUUHUUGUOUQWQWSWKUUKUUIUUDWNUMUSUUMHIUUDUAZUAZUUFVWRUUMHUUIVWQUULMIUU
      KUUDNUQWGUHUUFVWRHIUUDVKUHUFUMUPUUDXDYEGYEVAUNUMUUDGYFGYEUKURUSYFGULUMYGW
      TWAUSWAUSUPYDYHYDXGYHYCXFFYCYBXEUAZGUAGVWSUAXFYBGXEVJVWSGULVWSXEGYBXEYBJX
      DYBUUKJDYEFUUJDEUDFGUDVFZJUUKOUHUMYBIHYBUUKIVWTIUUKNUHUMXAUPWMUTVIUGXGFUU
      JYGUBZUBZFUUJUBZYGUBZYHXFVXAFXFGYFUUJUBZUAYGUUJUBVXAXEVXEGXEUUKXDUBVXEJUU
      KXDOVLYEUUJXDXBUFUTUUJYFGGFUCWCYGUUJUOVIUGVXDVXBFUUJYGUEUHVXCFYGFGXCVLVIU
      FUHUMYDYBXGUAZXHYDFXFYBUAZUBXGYBUAVXFYCVXGFYCYBXFUAVXGYBGXEVKYBXFULUFUGYB
      XFFDFVAUNXGYBULVIYBDXGDFUKVEUJUSWMUMWAUS $.
      $( [11-Apr-2012] $)
  $}


  ${
    oadp35lem.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    oadp35lem.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    oadp35lem.3 $e |- c2 = ( ( a0 v a1 ) ^ ( b0 v b1 ) ) $.
    oadp35lem.4 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    oadp35lem.5 $e |- p = ( ( ( a0 v b0 ) ^ ( a1 v b1 ) ) ^ ( a2 v b2 ) ) $.
    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    oadp35lemg $p |- p
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( dp53 ) ABCDEFGHIJLMNPQ $.
      $( [12-Jul-2015] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    oadp35lemf $p |- ( a0 v p )
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ( wo wa leo oadp35lemg lel2or ) BBEFJHIQRQRZQABUBSABCDEFGHIJKLMNOPTUA $.
      $( [12-Jul-2015] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
$(
    oadp35leme $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( a0 v ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) ) $=
      ? $.
$)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
$(
    oadp35lemd $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ? $.
$)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
    oadp35lemc $p |- ( b0 ^ ( ( ( a0 ^ b0 ) v b1 ) v ( c2 ^ ( c0 v c1 ) ) ) )
        = ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) ) $=
      ( wa wo leo le2an or32 orcom cm lbtr lerr ler2an df-le2 lor 3tr lan ) BEQ
      ZFRJHIRZQZRZFUMRZEUNUKUMRZFRFUPRUOUKFUMUAUPFUBUPUMFUKUMUKJULUKBCRZEFRZQZJ
      BUQEURBCSEFSTJUSNUCUDUKIHUKBDRZEGRZQZIBUTEVABDSEGSTIVBMUCUDUEUFUGUHUIUJ
      $.
      $( [12-Jul-2015] $)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
$(
    oadp35lemb $p |- ( b0 ^ ( b1 v ( c2 ^ ( c0 v c1 ) ) ) )
        = ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $=
      ? $.
$)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
$(
    oadp35lembb $p |- ( b0 ^ ( a0 v p0 ) )
        =< ( b0 ^ ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) ) $=
      ( wo wa oadp35lemd oadp35lemc oadp35lemb tr lbtr )
      EBKQREBERFQJHIQZRZQRZEFBCQUD
      RQRZABCDEFGHIJKLMNOPSUFEFUEQRUGABCDEFGHIJKLMNOPTABCDEFGHIJKLMNOPUAUBUC $.
$)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
$(
    oadp35lema $p |- ( b1 v ( b0 ^ ( a0 v p0 ) ) )
       =< ( b1 v ( ( a0 v a1 ) ^ ( c0 v c1 ) ) ) $=
    ( wo wa leo oadp35lembb lear letr lel2or ) FFBCQHIQRZQZEBKQRZFUDSUFEUERUEAB
      CDEFGHIJKLMNOPTEUEUAUBUC $.
$)

    $( Part of proof (3)=>(5) in Day/Pickering 1982. $)
$(
    oadp35lem0 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ? $.
$)
  $}


  ${
    oadp35.1 $e |- c0 = ( ( a1 v a2 ) ^ ( b1 v b2 ) ) $.
    oadp35.2 $e |- c1 = ( ( a0 v a2 ) ^ ( b0 v b2 ) ) $.
    oadp35.3 $e |- p0 = ( ( a1 v b1 ) ^ ( a2 v b2 ) ) $.
    $( Part of theorem from Alan Day and Doug Pickering, "A note on the
       Arguesian lattice identity," Studia Sci.  Math.  Hungar. 19:303-305
       (1982).  (3)=>(5) $)
    oadp35 $p |- ( ( a0 v a1 ) ^ ( ( b0 ^ ( a0 v p0 ) ) v b1 ) )
                  =< ( ( c0 v c1 ) v ( b1 ^ ( a0 v a1 ) ) ) $=
      ( wo wa id dp35lem0 ) ADMBEMNCFMNZABCDEFGHABMDEMNZIJKROLQOP $.
      $( [12-Apr-2012] $)
  $}

  $( A modular law experiment. $)
  testmod $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) )
             ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) )
     = ( ( b ^ ( ( ( ( a v c ) v ( ( b v c
            ) ^ ( d v a ) ) ) ^ d ) v ( ( a v c ) ^ ( b v d ) ) ) ) v a ) $=
    ( wo wa leao1 mli orass ran tr lan ror an12 leo orcom or32 2an 3tr cm ) BAC
    EZBCEDAEFZEZDFUABDEZFZEZFZAEZCAEUBEZABDUEEZFZEZFZUHACUBEZEZUKFZAEZUOUKAEZFU
    MUHBUOUJFZFZAEUQUGUTAUFUSBUFUCUJFUSUCDUEUAUDUBGHUCUOUJACUBIJKLMUTUPABUOUJNM
    KUOUKAAUNOHUOUIURULUOUNAEUIAUNPCUBAQKUKAPRST $.
    $( [21-Apr-2012] $)

  $( A modular law experiment. $)
  testmod1 $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) )
             ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) )
     = ( a v ( b ^ ( ( ( a v c ) ^ ( b v d ) )
         v ( d ^ ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ) ) ) ) $=
    ( wo wa testmod orcom ancom lor tr lan ) CAEBCEDAEFZEABDACEZBDEFZEFEFBNMEZD
    FZOEZFZAEZABODPFZEZFZEZABCDGTASEUDSAHSUCARUBBROQEUBQOHQUAOPDIJKLJKK $.
    $( [21-Apr-2012] $)

  $( A modular law experiment. $)
  testmod2 $p |- ( ( a v b ) ^ ( a v ( c v d ) ) )
     = ( a v ( b ^ ( ( ( a v c ) ^ ( b v d ) )
         v ( d ^ ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ) ) ) ) $=
    ( wo wa orass lan cm leo ler mlduali leor df2le2 ran anass ancom orcom lor
    tr ler2an an32 mldual2i ror lea leror l42modlem1 2an leao1 ) ABEZACDEEZFZAB
    ACEZDEZFZEZABUMBDEZFZDUMBCEZDAEZFZEZFEZFZEULUJUNFZUPVEULUNUKUJACDGHIABUNAUM
    DACJKLTUOVDAUOBUQUMBEZFZUNFZFZVDUOBVGFZUNFZVIVKUOVJBUNBVGBUQVFBDJBUMMUANOIB
    VGUNPTVHVCBVHURDEZVBFZVCVHVLUNVFFZFZVMVHVLUNFZVFFZVOVHVLVFFZVQVHUQUNFZVFFVR
    UQVFUNUBVSVLVFVSUQUMFZDEVLDUMUQDBMUCVTURDUQUMQUDTOTVQVRVPVLVFVLUNURUMDUMUQU
    EUFNOITVLUNVFPTVNVBVLVNUMADEZCBEZFZEVBACDBUGWCVAUMWCUTUSFVAWAUTWBUSADRCBRUH
    UTUSQTSTHTURDVBUMUQVAUILTHTST $.
    $( [21-Apr-2012] $)

  $( A modular law experiment. $)
  testmod2expanded $p |- ( ( a v b ) ^ ( a v ( c v d ) ) )
     = ( a v ( b ^ ( ( ( a v c ) ^ ( b v d ) )
         v ( d ^ ( ( a v c ) v ( ( b v c ) ^ ( d v a ) ) ) ) ) ) ) $=
    ( wo wa orass lan cm leo ler mlduali leor df2le2 ran lor anass ancom orcom
    tr ler2an an32 mldual2i ror lea leror l42modlem1 2an leao1 ) ABEZACDEEZFZAB
    ACEZBDEZFZDEZUMBCEZDAEZFZEZFZFZEZABUODUTFEZFZEULABUPUMADEZCBEZFZEZFZFZEZVCU
    LABUPUMDEZUMBEZFZFZFZEZVLULABUPVNFZFZEZVRULABUNUMFZDEZVNFZFZEZWAULABUNVMFZV
    NFZFZEZWFULABUNVNFZVMFZFZEZWJULABWKFZVMFZEZWNULABVMFZEZWQULUJVMFZWSWTULVMUK
    UJACDGHIABVMAUMDACJKLTWRWPAWPWRWOBVMBWKBUNVNBDJBUMMUANOIPTWPWMABWKVMQPTWMWI
    AWLWHBUNVNVMUBHPTWIWEAWHWDBWGWCVNDUMUNDBMUCOHPTWEVTAWDVSBWCUPVNWBUODUNUMRUD
    OHPTVTVQAVSVPBVSUPVMFZVNFZVPXBVSXAUPVNUPVMUOUMDUMUNUEUFNOIUPVMVNQTHPTVQVKAV
    PVJBVOVIUPACDBUGHHPTVKVBAVJVABVIUTUPVHUSUMVHURUQFUSVFURVGUQADSCBSUHURUQRTPH
    HPTVBVEAVAVDBUODUTUMUNUSUILHPT $.
    $( [21-Apr-2012] $)

  $( A modular law experiment. $)
  testmod3 $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) )
             ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) )
      = ( a v ( ( ( c v a ) v ( ( b v c ) ^ ( d v
              a ) ) ) ^ ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) $=
    ( wo wa orcom leor ler mli tr lan cm ) ACAEZBCEDAEFZEZBDACEBDEFEFZFZEZPAQEZ
    FZSPQAEZFZUASRAEUCARGPQAANOACHIJKUBTPQAGLKM $.
    $( [21-Apr-2012] $)

  $( A modular law experiment. $)
$(
  testmod4 $p |- ( ( ( c v a ) v ( ( b v c ) ^ ( d v a ) ) )
             ^ ( a v ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) )
      = ( a v ( ( ( c v a ) v ( ( b v c ) ^ ( d v
              a ) ) ) ^ ( b ^ ( d v ( ( a v c ) ^ ( b v d ) ) ) ) ) ) $=
    ( wvx wvr wvy wvq wvp wo wa leo id lor lan lear lea lelor ax-a3 cm lbtr
    letr bltr ler2an leor mldual2i ancom ror tr orcom leid lel2or lebi ) CAJBCJ
    DAJKJZABDACJBDJKJKZJKEFAGJZHKZJZKZAUNUOKJZ?UTUSUTGFAJZIKZJZUS?VCUS?USVAUSGJ
    ZKZVCJZVCUSVEGJZVFUSVDVAGJZKZVGUSVDVHUSGLUSUSVHURUREUQUQFUQMNOUSURVHEURPURF
    UPJZVHUQUPFUPHQRVHVJFAGSTUAUBUCUDVIVDVAKZGJVGGVAVDGUSUEUFVKVEGVDVAUGUHUIUAG
    VCVEGVBLRUBVEVCVCVEVBGJZVCVEVBGVAKZJZVLVEVAIVMJZKVNVEVAVOVAVDQ?UDVMIVAGVAPU
    FUAVMGVBGVAQRUBVBGUJUAVCUKULUBUMUITUI $.
$)
    $( [22-Apr-2012] $)