File: strainphlan.py

package info (click to toggle)
metaphlan2 2.6.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 72,684 kB
  • ctags: 351
  • sloc: python: 4,352; sh: 26; makefile: 7
file content (1538 lines) | stat: -rwxr-xr-x 57,086 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
#!/usr/bin/env python
# Author: Duy Tin Truong (duytin.truong@unitn.it)
#		at CIBIO, University of Trento, Italy

__author__ = 'Duy Tin Truong (duytin.truong@unitn.it)'
__version__ = '1.0.0'
__date__ = '2nd August 2016'

import sys
import os
import shutil
ABS_PATH = os.path.abspath(sys.argv[0])
MAIN_DIR = os.path.dirname(ABS_PATH)
os.environ['PATH'] += ':' + MAIN_DIR
os.environ['PATH'] += ':' + os.path.join(MAIN_DIR, 'strainphlan_src')
sys.path.append(os.path.join(MAIN_DIR, 'strainphlan_src'))

import which
import argparse as ap
import cPickle as pickle
import msgpack
import glob
from mixed_utils import statistics
import ooSubprocess
from ooSubprocess import trace_unhandled_exceptions
import bz2
import gzip
from collections import defaultdict
from tempfile import SpooledTemporaryFile, NamedTemporaryFile
from Bio import SeqIO, Seq, SeqRecord
from Bio.Alphabet import IUPAC
import pandas
import logging
import logging.config
import sample2markers
import copy
import threading
import numpy
import random
import gc
#import ipdb

shared_variables = type('shared_variables', (object,), {})

logging.basicConfig(level=logging.DEBUG, stream=sys.stderr,
                    disable_existing_loggers=False,
                    format='%(asctime)s | %(levelname)s | %(name)s | %(funcName)s | %(lineno)d | %(message)s')
logger = logging.getLogger(__name__)

# get the directory that contains this script
metaphlan2_script_install_folder=os.path.dirname(os.path.abspath(__file__))

# functions
def read_params():
    p = ap.ArgumentParser()
    p.add_argument(
        '--ifn_samples',
        nargs='+',
        required=False,
        default=[],
        type=str,
        help='The list of sample files (space separated).'\
             'The wildcard can also be used.')

    p.add_argument(
        '--ifn_second_samples',
        nargs='+',
        required=False,
        default=[],
        type=str,
        help='The list of second sample files (space separated).'\
             'The wildcard can also be used. '\
             'Note that only the markers found in the samples or '\
             'reference genomes '
             'specified by --ifn_samples or --ifn_representative_sample '\
             'or --ifn_ref_genomes with '\
             'add_reference_genomes_as_second_samples=False '\
             'will be used to build the phylogenetic trees. '
             )

    p.add_argument(
        '--ifn_representative_sample',
        required=False,
        default=None,
        type=str,
        help='The representative sample. The marker list of each species '\
             'extracted from this sample will be used for all other samples.')

    p.add_argument(
        '--mpa_pkl', 
        required=False, 
        default=os.path.join(metaphlan2_script_install_folder,"db_v20","mpa_v20_m200.pkl"), 
        type=str, 
        help='The database of metaphlan3.py.')

    p.add_argument(
        '--output_dir', 
        required=True, 
        default='strainer_output', 
        type=str,
        help='The output directory.')

    p.add_argument(
        '--ifn_markers', 
        required=False, 
        default=None, 
        type=str,
        help='The marker file in fasta format.')

    p.add_argument(
        '--nprocs_main', 
        required=False, 
        default=1, 
        type=int,
        help='The number of processors are used for the main threads. '\
             'Default 1.')

    p.add_argument(
        '--nprocs_load_samples', 
        required=False, 
        default=None, 
        type=int,
        help='The number of processors are used for loading samples. '\
             'Default nprocs_main.')

    p.add_argument(
        '--nprocs_align_clean', 
        required=False, 
        default=None, 
        type=int,
        help='The number of processors are used for aligning and cleaning markers. '\
             'Default nprocs_main.')

    p.add_argument(
        '--nprocs_raxml', 
        required=False, 
        default=None, 
        type=int,
        help='The number of processors are used for running raxml. '\
             'Default nprocs_main.')

    p.add_argument(
        '--bootstrap_raxml', 
        required=False, 
        default=0, 
        type=int,
        help='The number of runs for bootstraping when building the tree. '\
             'Default 0.')

    p.add_argument(
        '--ifn_ref_genomes',
        nargs='+',
        required=False,
        default=None,
        type=str,
        help='The reference genome file names. They are separated by spaces.')

    p.add_argument(
        '--add_reference_genomes_as_second_samples', 
        required=False, 
        dest='add_reference_genomes_as_second_samples',
        action='store_true',
        help='Add reference genomes as second samples. '\
             'Default "False". ' \
             'Note that only the markers found in the samples or '\
             'reference genomes '
             'specified by --ifn_samples or --ifn_representative_sample '\
             'or --ifn_ref_genomes with '\
             'add_reference_genomes_as_second_samples=False '\
             'will be used to build the phylogenetic trees. '
             )
    p.set_defaults(add_reference_genomes_as_second_samples=False)

    p.add_argument(
        '--N_in_marker',
        required=False,
        default=0.2,
        type=float,
        help='The consensus markers with the rate of N nucleotides greater than '\
                'this threshold are removed. Default 0.2.')

    p.add_argument(
        '--marker_strip_length',
        required=False,
        default=50,
        type=int,
        help='The number of nucleotides will be deleted from each of two ends '\
                'of a marker. Default 50.')

    p.add_argument(
        '--marker_in_clade',
        required=False,
        default=0.8,
        type=float,
        help='In each sample, the clades with the rate of present markers less than '\
                'this threshold are removed. Default 0.8.')

    p.add_argument(
        '--second_marker_in_clade',
        required=False,
        default=0.8,
        type=float,
        help='In each sample/reference genomes specified by --ifn_second_samples, '\
             'or --add_reference_genomes_as_second_samples, '\
             'the clades with the rate of present markers less than '\
             'this threshold are removed. Default 0.8.')

    p.add_argument(
        '--sample_in_clade',
        required=False,
        default=2,
        type=int,
        help='Only clades present in at least sample_in_clade samples '\
             'are kept. Default 2.')

    p.add_argument(
        '--sample_in_marker',
        required=False,
        default=0.8,
        type=float,
        help='If the percentage of samples that a marker present in is '\
             'less than this threshold, that marker is removed. Default 0.8.')

    p.add_argument(
        '--gap_in_trailing_col',
        required=False,
        default=0.2,
        type=float,
        help='If the number of the trailing nucleotide columns in aligned '\
              'markers with the percentage of gaps greater than '\
              'gap_in_trailing_col is less than gap_trailing_col_limit, '\
              'these columns will be removed. '\
              'Default 0.2.')

    p.add_argument(
        '--gap_trailing_col_limit',
        required=False,
        default=101,
        type=float,
        help='If the number of the trailing nucleotide columns in aligned '\
              'markers with the percentage of gaps greater than '\
              'gap_in_trailing_col is less than gap_trailing_col_limit, '\
              'these columns will be removed. '\
              'Default 101.')

    p.add_argument(
        '--gap_in_internal_col',
        required=False,
        default=0.3,
        type=float,
        help='The internal nucleotide columns in aligned '\
              'markers with the percentage of gaps greater than '\
              'gap_in_internal_col will be removed. '\
              'Default 0.3.')

    p.add_argument(
        '--gap_in_sample',
        required=False,
        default=0.2,
        type=float,
        help='The samples with full sequences from all markers '\
            'and having the percentage of gaps greater than this threshold '\
            'will be removed. Default 0.2.')

    p.add_argument(
        '--second_gap_in_sample',
        required=False,
        default=0.2,
        type=float,
        help='The samples specified by --ifn_second_samples with full sequences from all markers '\
            'and having the percentage of gaps greater than this threshold '\
            'will be removed. Default 0.2.')

    p.add_argument(
        '--N_col',
        required=False,
        default=0.8,
        type=float,
        help='In aligned markers, if the percentage of nucleotide columns '\
              'containing more than N_count Ns '\
              'less than this threshold, these columns will be removed. '
              'Default 0.8.')

    p.add_argument(
        '--N_count',
        required=False,
        default=0,
        type=int,
        help='In aligned markers, if the percentage of nucleotide columns '\
              'containing more than N_count Ns '\
              'less than N_col threshold, these columns will be removed. '\
              'Default 0.')

    p.add_argument(
        '--long_gap_length',
        required=False,
        default=2,
        type=int,
        help='In each concatenated sequence of a sample, sequential '\
                'gap positions is a gap group. '\
                'A gap group with length greater than this '\
                'threshold is considered as '\
                'a long gap group. If the ratio between the number of unique '\
                'positions in all long gap groups and the concatenated sequence '\
                'length is less than long_gap_percentage, these positions '\
                'will be removed from all concatenated sequences. '\
                'Default 2.')

    p.add_argument(
        '--long_gap_percentage',
        required=False,
        default=0.8,
        type=float,
        help='Combining this threshold with long_gap_length to removed long '\
             'gaps. Default 0.8.')

    p.add_argument(
        '--p_value',
        required=False,
        default=0.05,
        type=float,
        help='The p_value to reject a non-polymorphic site.'\
             'Default 0.05.')

    p.add_argument(
        '--clades', 
        nargs='+',
        required=False, 
        default=['all'], 
        type=str,
        help='The clades (space separated) for which the script will compute '\
                'the marker alignments in fasta format and the phylogenetic '\
                'trees. If a file name is specified, the clade list in that '\
                'file where each clade name is on a line will be read.'
                'Default "automatically identify all clades".')

    p.add_argument(
        '--marker_list_fn', 
        required=False, 
        default=None, 
        type=str,
        help='The file name containing the list of considered markers. '\
                'The other markers will be discarded. '\
                'Default "None".')
    p.add_argument(
        '--print_clades_only', 
        required=False, 
        dest='print_clades_only',
        action='store_true',
        help='Only print the potential clades and stop without building any '\
             'tree. This option is useful when you want to check quickly '\
             'all possible clades and rerun only for some specific ones. '\
             'Default "False".')
    p.set_defaults(print_clades_only=False)

    p.add_argument(
        '--alignment_program', 
        required=False, 
        default='muscle', 
        choices=['muscle', 'mafft'],
        type=str,
        help='The alignment program. Default "muscle".')

    p.add_argument(
        '--relaxed_parameters', 
        required=False, 
        dest='relaxed_parameters',
        action='store_true',
        help='Set marker_in_clade=0.5, sample_in_marker=0.5, '\
             'N_in_marker=0.5, gap_in_sample=0.5. '\
             'Default "False".')
    p.set_defaults(relaxed_parameters=False)

    p.add_argument(
        '--relaxed_parameters2', 
        required=False, 
        dest='relaxed_parameters2',
        action='store_true',
        help='Set marker_in_clade=0.2, sample_in_marker=0.2, '\
             'N_in_marker=0.8, gap_in_sample=0.8. '\
             'Default "False".')
    p.set_defaults(relaxed_parameters2=False)

    p.add_argument(
        '--relaxed_parameters3', 
        required=False, 
        dest='relaxed_parameters3',
        action='store_true',
        help='Set gap_in_trailing_col=0.9, gap_in_internal_col=0.9, '\
             'gap_in_sample=0.9, second_gap_in_sample=0.5, '\
             'sample_in_marker=0.1, marker_in_clade=0.1, '\
             'second_marker_in_clade=0.1, '\
             'Default "False".')
    p.set_defaults(relaxed_parameters3=False)

    p.add_argument(
        '--keep_alignment_files', 
        required=False, 
        dest='keep_alignment_files',
        action='store_true',
        help='Keep the alignment files of all markers before cleaning step.')
    p.set_defaults(keep_alignment_files=False)

    p.add_argument(
        '--keep_full_alignment_files', 
        required=False, 
        dest='keep_full_alignment_files',
        action='store_true',
        help='Keep the alignment files of all markers before '\
             'truncating the starting and ending parts, and cleaning step. '
             'This is equivalent to '\
             '--keep_alignment_files --marker_strip_length 0')
    p.set_defaults(keep_full_alignment_files=False)

    p.add_argument(
        '--save_sample2fullfreq', 
        required=False, 
        dest='save_sample2fullfreq',
        action='store_true',
        help='Save sample2fullfreq to a msgpack file sample2fullfreq.msgpack.')
    p.set_defaults(save_sample2fullfreq=False)

    p.add_argument(
        '--use_threads', 
        required=False, 
        action='store_true',
        dest='use_threads',
        help='Use multithreading. Default "Use multiprocessing".')
    p.set_defaults(use_threads=False)

    return vars(p.parse_args())



def filter_sequence(sample, marker2seq, marker_strip_length, N_in_marker):
    '''
    Filter markers with percentage of N-bases greater than a threshold.

    :param marker2seq: a dictionary containing sequences of a sample.
    marker2seq[marker]['seq'] should return the sequence of the marker.
    :returns: a dictionary containing filtered sequences of samples.
    '''
    remove_markers = [marker for marker in marker2seq if
                      float(marker2seq[marker]['seq'].count('N')) /
                      len(marker2seq[marker]['seq']) > N_in_marker]
    for marker in remove_markers:
        del marker2seq[marker]
    log_line = 'sample %s, number of markers after N_in_marker: %d\n'\
               %(sample, len(marker2seq))

    remove_markers = []
    for marker in marker2seq:
        if marker_strip_length > 0:
            marker2seq[marker]['seq'] = \
                marker2seq[marker]['seq'][marker_strip_length:-marker_strip_length]
            marker2seq[marker]['freq'] = \
                marker2seq[marker]['freq'][marker_strip_length:-marker_strip_length]
        #marker2seq[marker]['seq'] = marker2seq[marker]['seq'].strip('N')
        if len(marker2seq[marker]['seq']) == 0:
            remove_markers.append(marker)
    for marker in remove_markers:
        del marker2seq[marker]
    logger.debug(log_line + \
                 'sample %s, number of markers after marker_strip_length: %d'\
                 %(sample, len(marker2seq)))

    return marker2seq




def get_db_clades(db):
    # find singleton clades
    sing_clades = []
    clade2subclades = defaultdict(set)
    for tax in db['taxonomy']:
        tax_clades = tax.split('|')
        for i, clade in enumerate(tax_clades):
            if 't__' not in clade and 's__' not in clade:
                if i < len(tax_clades)-1:
                    if 't__' in tax_clades[-1]:
                        clade2subclades[clade].add('|'.join(tax_clades[i+1:-1]))
                    else:
                        clade2subclades[clade].add('|'.join(tax_clades[i+1:]))
    sing_clades = [clade for clade in clade2subclades if
                             len(clade2subclades[clade]) == 1]

    # extract species
    clade2num_markers = defaultdict(int)
    level = 's__'
    for marker in db['markers']:
        clade = db['markers'][marker]['taxon'].split('|')[-1]
        if level in clade or clade in sing_clades:
            clade2num_markers[clade] = clade2num_markers[clade] + 1
    clade2num_markers = dict(clade2num_markers)

    return sing_clades, clade2num_markers, clade2subclades




def align(marker_fn, alignment_program):
    oosp = ooSubprocess.ooSubprocess()
    if alignment_program == 'muscle':
        ifile = open(marker_fn, 'r')
        alignment_file = oosp.ex(
            'muscle',
            args=['-quiet', '-in', '-', '-out', '-'],
            in_pipe=ifile,
            get_out_pipe=True,
            verbose=False)
        ifile.close()
    elif alignment_program == 'mafft':
        alignment_file = oosp.ex(
            'mafft',
            args=['--auto', marker_fn],
            get_out_pipe=True,
            verbose=False)
    else:
        raise Exception('Unknown alignment_program %s!'%alignment_program)
    return alignment_file




def clean_alignment(
        samples,
        sample2seq,
        sample2freq,
        gap_in_trailing_col,
        gap_trailing_col_limit,
        gap_in_internal_col,
        N_count,
        N_col):

    length = len(sample2seq[sample2seq.keys()[0]])
    logger.debug('marker length: %d', length)
    aligned_samples = sample2seq.keys()
    for sample in samples:
        if sample not in aligned_samples:
            sample2seq[sample] = ['-' for i in range(length)]
            sample2freq[sample] = [(0.0, 0.0, 0.0) for i in range(length)]

    df_seq = pandas.DataFrame.from_dict(sample2seq, orient='index')
    df_freq = pandas.DataFrame.from_dict(sample2freq, orient='index')

    # remove trailing gap columns
    del_cols = []
    for i in range(len(df_seq.columns)):
        if float(list(df_seq[df_seq.columns[i]]).count('-')) / len(samples) <= gap_in_trailing_col:
            break
        else:
            del_cols.append(df_seq.columns[i])
    for i in reversed(range(len(df_seq.columns))):
        if float(list(df_seq[df_seq.columns[i]]).count('-')) / len(samples) <= gap_in_trailing_col:
            break
        else:
            del_cols.append(df_seq.columns[i])
    if len(del_cols) < gap_trailing_col_limit:
        df_seq.drop(del_cols, axis=1, inplace=True)
        df_freq.drop(del_cols, axis=1, inplace=True)
        logger.debug('length after gap_in_trailing_col: %d', len(df_seq.columns))
    else:
        logger.debug('do not use gap_in_trailing_col as the number of del_cols is %d'%len(del_cols))

    # remove internal gap columns
    del_cols = []
    for i in range(len(df_seq.columns)):
        if float(list(df_seq[df_seq.columns[i]]).count('-')) / len(samples) > gap_in_internal_col:
            del_cols.append(df_seq.columns[i])
    df_seq.drop(del_cols, axis=1, inplace=True)
    df_freq.drop(del_cols, axis=1, inplace=True)
    logger.debug('length after gap_in_internal_col: %d', len(df_seq.columns))

    # remove N columns
    if len(df_seq.columns) > 0:
        del_cols = []
        remove_N_col = False
        for i in range(len(df_seq.columns)):
            if list(df_seq[df_seq.columns[i]]).count('N') > N_count:
                del_cols.append(df_seq.columns[i])
        if float(len(del_cols)) / len(df_seq.columns) < N_col:
            remove_N_col = True
            df_seq.drop(del_cols, axis=1, inplace=True)   
            df_freq.drop(del_cols, axis=1, inplace=True)   
            logger.debug('length after N_col: %d', len(df_seq.columns))
            
        if N_count > 0 or not remove_N_col:
            logger.debug('replace Ns by gaps for all samples')
            for sample in samples:
                seq = ''.join(df_seq.loc[sample])
                logger.debug('sample %s, number of Ns: %d'\
                                %(sample, seq.count('N')))
                sample2seq[sample] = list(seq.replace('N', '-'))
        else:
            for sample in samples:
                sample2seq[sample] = df_seq.loc[sample].tolist()
        for sample in samples:
            sample2freq[sample] = df_freq.loc[sample].tolist()
    else:
        sample2seq = {}
        sample2freq = {}

    return sample2seq, sample2freq




def add_ref_genomes(genome2marker, marker_records, ifn_ref_genomes, tmp_dir):
    ifn_ref_genomes = sorted(list(set(ifn_ref_genomes)))
    logger.debug('add %d reference genomes'%len(ifn_ref_genomes))
    logger.debug('Number of samples: %d'%len(genome2marker))

    # marker list
    if len(genome2marker) == 0:
        unique_markers = set(marker_records.keys())
    else:
        unique_markers = set([])
        for sample in genome2marker:
            for marker in genome2marker[sample]:
                if marker not in unique_markers:
                    unique_markers.add(marker)
    logger.debug('Number of unique markers: %d'%len(unique_markers))

    # add ifn_ref_genomes
    oosp = ooSubprocess.ooSubprocess(tmp_dir=tmp_dir)
    logger.debug('load genome contigs')
    p1 = SpooledTemporaryFile(dir=tmp_dir)
    contigs = defaultdict(dict)
    for ifn_genome in ifn_ref_genomes:
        genome = ooSubprocess.splitext(ifn_genome)[0]
        if ifn_genome[-4:] == '.bz2':
            ifile_genome = bz2.BZ2File(ifn_genome, 'r')
        elif ifn_genome[-3:] == '.gz':
            ifile_genome = gzip.GzipFile(ifn_genome, 'r')
        elif ifn_genome[-4:] == '.fna':
            ifile_genome = open(ifn_genome, 'r')
        else:
            logger.error('Unknown file type of %s. '%ifn_genome +\
                            'It should be .fna.bz2, .fna.gz, or .fna!')
            exit(1)

        # extract genome contigs
        for rec in SeqIO.parse(ifile_genome, 'fasta'):
            #rec.name = genome + '___' + rec.name
            if rec.name in contigs:
                logger.error(
                            'Error: Contig %s in genome%s'\
                            %(rec.name.split('___')[-1], genome)\
                            + ' are not unique!')
                exit(1)
            contigs[rec.name]['seq'] = str(rec.seq)
            contigs[rec.name]['genome'] = genome
            SeqIO.write(rec, p1, 'fasta')

        ifile_genome.close()
    p1.seek(0)
                        
    # build blastdb
    logger.debug('build blastdb')
    blastdb_prefix = oosp.ftmp('genome_blastn_db_%s'%(random.random()))
    if len(glob.glob('%s*'%blastdb_prefix)):
        logger.error('blastdb exists! Please remove it or rerun!')
        exit(1)
    oosp.ex('makeblastdb', 
                args=[
                        '-dbtype', 'nucl', 
                        '-title', 'genome_db',
                        '-out', blastdb_prefix],
                in_pipe=p1,
                verbose=True)

    # blast markers against contigs
    logger.debug('blast markers against contigs')
    p1 = SpooledTemporaryFile(dir=tmp_dir)
    for marker in unique_markers:
        SeqIO.write(marker_records[marker], p1, 'fasta')
    p1.seek(0)
    blastn_args = [
                    '-db', blastdb_prefix,
                    '-outfmt', '6',
                    '-evalue', '1e-10',
                    '-max_target_seqs', '1000000000']
    if args['nprocs_main'] > 1:
        blastn_args += ['-num_threads', str(args['nprocs_main'])]
    output = oosp.ex(
                        'blastn', 
                        args=blastn_args,
                        in_pipe=p1,
                        get_out_pipe=True,
                        verbose=True)
    
    #output = output.split('\n')
    for line in output:
        if line.strip() == '':
            break
        line = line.strip().split()
        query = line[0]
        target = line[1]
        pstart = int(line[8])-1
        pend = int(line[9])-1
        genome = contigs[target]['genome']
        if query not in genome2marker[genome]:
            genome2marker[genome][query] = {}
            if pstart < pend:
                genome2marker[genome][query]['seq'] = contigs[target]['seq'][pstart:pend+1]
            else:
                genome2marker[genome][query]['seq'] = \
                     str(Seq.Seq(
                                contigs[target]['seq'][pend:pstart+1],
                                IUPAC.unambiguous_dna).reverse_complement())
            genome2marker[genome][query]['freq'] = [(0.0, 0.0, 0.0) for i in \
                                                    range(len(genome2marker[genome][query]['seq']))]
            genome2marker[genome][query]['seq'] = genome2marker[genome][query]['seq'].upper()

    # remove database
    for fn in glob.glob('%s*'%blastdb_prefix):
        os.remove(fn)

    logger.debug('Number of samples and genomes: %d'%len(genome2marker))
    return genome2marker




@trace_unhandled_exceptions
def align_clean(args):
    marker = args['marker']
    sample2marker = shared_variables.sample2marker #args['sample2marker']
    clade = args['clade']
    gap_in_trailing_col = args['gap_in_trailing_col']
    gap_trailing_col_limit = args['gap_trailing_col_limit']
    gap_in_internal_col = args['gap_in_internal_col']
    N_col = args['N_col']
    N_count = args['N_count']
    sample_in_marker = args['sample_in_marker']
    tmp_dir = args['tmp_dir']
    alignment_program = args['alignment_program']
    alignment_fn = args['alignment_fn']

    logger.debug('align and clean for marker: %s'%marker)
    marker_file = NamedTemporaryFile(dir=tmp_dir, delete=False)
    marker_fn = marker_file.name
    sample_count = 0
    for sample in iter(sample2marker.keys()):
        if marker in iter(sample2marker[sample].keys()):
            sample_count += 1
            SeqIO.write(
                SeqRecord.SeqRecord(
                    id=sample,
                    description='',
                    seq=Seq.Seq(sample2marker[sample][marker]['seq'])),
                marker_file,
                'fasta')
    marker_file.close()
    ratio = float(sample_count) / len(sample2marker)
    if  ratio < sample_in_marker:
        os.remove(marker_fn)
        logger.debug('skip this marker because percentage of samples '\
                     'it present is %f < sample_in_marker'%ratio)
        return {}, {}

    alignment_file = align(marker_fn, alignment_program)
    os.remove(marker_fn)

    sample2seq = {}
    sample2freq = {}
    for rec in SeqIO.parse(alignment_file, 'fasta'):
        sample = rec.name
        sample2seq[sample] = list(str(rec.seq))
        sample2freq[sample] = list(sample2marker[sample][marker]['freq'])
        for i, c in enumerate(sample2seq[sample]):
            if c == '-':
                sample2freq[sample].insert(i, (0.0, 0.0, 0.0))
        logger.debug('alignment length of sample %s is %d, %d'%(
                        sample,
                        len(sample2seq[sample]),
                        len(sample2freq[sample])))
    if alignment_fn:
        shutil.copyfile(alignment_file.name, alignment_fn)

    alignment_file.close()
    logger.debug('alignment for marker %s is done'%marker)


    if len(sample2seq) == 0:
        logger.error('Fatal error in alignment step!')
        exit(1)

    sample2seq, sample2freq = clean_alignment(
                                    sample2marker.keys(),
                                    sample2seq, 
                                    sample2freq,
                                    gap_in_trailing_col,
                                    gap_trailing_col_limit,
                                    gap_in_internal_col,
                                    N_count,
                                    N_col)
    logger.debug('cleaning for marker %s is done'%marker)

    return sample2seq, sample2freq




def build_tree(
        clade,
        sample2marker, 
        sample2order,
        clade2num_markers,
        sample_in_clade,
        sample_in_marker,
        gap_in_trailing_col,
        gap_trailing_col_limit,
        gap_in_internal_col,
        N_count,
        N_col,
        gap_in_sample,
        second_gap_in_sample,
        long_gap_length,
        long_gap_percentage,
        p_value,
        output_dir,
        nprocs_align_clean,
        alignment_program,
        nprocs_raxml,
        keep_alignment_files,
        bootstrap_raxml,
        save_sample2fullfreq,
        use_threads):

    # build the tree for each clade
    if len(sample2marker) < sample_in_clade:
        logger.debug(
                        'skip clade %s because number of present samples '
                        'is %d'%(clade, len(sample2marker)))
        return

    ofn_cladeinfo = os.path.join(output_dir, '%s.info'%clade)
    ofile_cladeinfo = open(ofn_cladeinfo, 'w')

    logger.debug('clade: %s', clade)
    ofile_cladeinfo.write('clade: %s\n'%clade)
    logger.debug('number of samples: %d', len(sample2marker))
    ofile_cladeinfo.write('number of samples: %d\n'\
                          %len(sample2marker))
    if clade in clade2num_markers:
        logger.debug('number of markers of the clade in db: %d'\
                     %clade2num_markers[clade])
        ofile_cladeinfo.write('number of markers of the clade in db: %d\n'\
                          %clade2num_markers[clade])

    # align sequences in each marker
    markers = set([]) 
    for sample in sample2marker:
        if sample2order[sample] == 'first':
            for marker in sample2marker[sample]:
                if marker not in markers:
                    markers.add(marker)
    markers = sorted(list(markers))

    logger.debug('number of used markers: %d'%len(markers))
    ofile_cladeinfo.write('number of used markers: %d\n'%len(markers))
    if clade in clade2num_markers:
        logger.debug('fraction of used markers: %f'\
                    %(float(len(markers)) / clade2num_markers[clade]))
        ofile_cladeinfo.write('fraction of used markers: %f\n'\
                    %(float(len(markers)) / clade2num_markers[clade]))

    logger.debug('align and clean')
    args_list = []

    # parallelize
    for i in range(len(markers)):
        args_list.append({})
        args_list[i]['marker'] = markers[i]
        args_list[i]['clade'] = clade
        args_list[i]['gap_in_trailing_col'] = gap_in_trailing_col
        args_list[i]['gap_trailing_col_limit'] = gap_trailing_col_limit
        args_list[i]['gap_in_internal_col'] = gap_in_internal_col
        args_list[i]['N_count'] = N_count
        args_list[i]['N_col'] = N_col
        args_list[i]['sample_in_marker'] = sample_in_marker
        args_list[i]['tmp_dir'] = output_dir
        args_list[i]['alignment_program'] = alignment_program
        if keep_alignment_files:
            args_list[i]['alignment_fn'] = os.path.join(output_dir, markers[i] + '.marker_aligned')
        else:
            args_list[i]['alignment_fn'] = None

    logger.debug('start to align_clean for all markers')
    results = ooSubprocess.parallelize(
                                       align_clean, 
                                       args_list, 
                                       nprocs_align_clean,
                                       use_threads=use_threads)

    sample2seqs, sample2freqs = zip(*results)
    sample2fullseq = defaultdict(list)
    sample2fullfreq = defaultdict(list)
    empty_markers = []
    pos = 0
    marker_pos = []
    for i in range(len(sample2seqs)):
        #logger.debug('marker_name: %s, seq: %s'%(markers[i], sample2seqs[i]))
        if len(sample2seqs[i]):
            for sample in sample2seqs[i]:
                sample2fullseq[sample] += sample2seqs[i][sample]
                sample2fullfreq[sample] += sample2freqs[i][sample]
            marker_pos.append([markers[i], pos])
            pos += len(sample2seqs[i][sample])
        else:
            empty_markers.append(markers[i])

    logger.debug(
            'number of markers after deleting empty markers: %d',
            len(markers) - len(empty_markers))
    ofile_cladeinfo.write('number of markers after deleting '\
                          'empty markers: %d\n'%
                          (len(markers) - len(empty_markers)))

    if clade in clade2num_markers:
        logger.debug('fraction of used markers after deleting empty markers: '\
                '%f'%(float(len(markers) - len(empty_markers)) / clade2num_markers[clade]))
        ofile_cladeinfo.write('fraction of used markers after deleting empty '\
                'markers: %f\n'\
                %(float(len(markers) - len(empty_markers)) / clade2num_markers[clade]))


    if len(sample2fullseq) == 0:
        logger.debug('all markers were removed, skip this clade!')
        ofile_cladeinfo.write('all markers were removed, skip this clade!\n')
        return
    
    # remove long gaps
    logger.debug('full sequence length before long_gap_length: %d'\
                    %(len(sample2fullseq[sample2fullseq.keys()[0]])))
    ofile_cladeinfo.write(
                    'full sequence length before long_gap_length: %d\n'\
                    %(len(sample2fullseq[sample2fullseq.keys()[0]])))

    df_seq = pandas.DataFrame.from_dict(sample2fullseq, orient='index')
    df_freq = pandas.DataFrame.from_dict(sample2fullfreq, orient='index')
    del_cols = []
    del_pos = []
    for sample in sample2fullseq:
        row = df_seq.loc[sample]
        gap_in_cols = []
        gap_in_pos = []
        for i in range(len(row)):
            if row[df_seq.columns[i]] == '-':
                gap_in_cols.append(df_seq.columns[i])
                gap_in_pos.append(i)
            else:
                if len(gap_in_cols) > long_gap_length:
                    del_cols += gap_in_cols
                    del_pos += gap_in_pos
                gap_in_cols = []
                gap_in_pos = []

        if len(gap_in_cols) > long_gap_length:
            del_cols += gap_in_cols
            del_pos += gap_in_pos

    del_cols = list(set(del_cols))
    del_pos = sorted(list(set(del_pos)))
    del_ratio = float(len(del_cols)) / len(sample2fullseq[sample])
    if del_ratio < long_gap_percentage:
        df_seq.drop(del_cols, axis=1, inplace=True)
        df_freq.drop(del_cols, axis=1, inplace=True)
        for sample in sample2fullseq:
            sample2fullseq[sample] = df_seq.loc[sample].tolist()
            sample2fullfreq[sample] = df_freq.loc[sample].tolist()
        logger.debug('full sequence length after long_gap_length: %d'\
                        %(len(sample2fullseq[sample2fullseq.keys()[0]])))
        ofile_cladeinfo.write(
                        'full sequence length after long_gap_length: %d\n'\
                        %(len(sample2fullseq[sample2fullseq.keys()[0]])))

        for i in range(len(marker_pos)):
            num_del = 0 
            for p in del_pos:
                if marker_pos[i][1] > p:
                    num_del += 1
            marker_pos[i][1] -= num_del
    else:
        logger.debug('do not apply long_gap_length because '\
                        'long_gap_percentage is not satisfied. '\
                        'del_ratio: %f'%del_ratio)
        ofile_cladeinfo.write('do not apply long_gap_length because '\
                                'long_gap_percentage is not satisfied. '\
                                'del_ratio: %f\n'%del_ratio)

    ofn_clademarker = os.path.join(output_dir, '%s.marker_pos'%clade)
    with open(ofn_clademarker, 'w') as ofile_clademarker:
        for m, p in marker_pos:
            ofile_clademarker.write('%s\t%d\n'%(m, p))

    # remove samples with too many gaps
    logger.debug(
            'number of samples before gap_in_sample: %d'\
            %len(sample2fullseq))
    ofile_cladeinfo.write(
            'number of samples before gap_in_sample: %d\n'\
            %len(sample2fullseq))
    for sample in sample2marker:
        ratio = float(sample2fullseq[sample].count('-')) / len(sample2fullseq[sample]) 
        gap_ratio = gap_in_sample if (sample2order[sample] == 'first') else second_gap_in_sample
        if ratio > gap_ratio:
            del sample2fullseq[sample]
            del sample2fullfreq[sample]
            if sample2order[sample] == 'first':
                logger.debug('remove sample %s by gap_in_sample %f'%(sample, ratio))
            else:
                logger.debug('remove sample %s by second_gap_in_sample %f'%(sample, ratio))
    logger.debug(
            'number of samples after gap_in_sample: %d'\
            %len(sample2fullseq))
    ofile_cladeinfo.write(
            'number of samples after gap_in_sample: %d\n'\
            %len(sample2fullseq))

    # log gaps
    sequential_gaps = []
    all_gaps = []
    for sample in sample2fullseq:
        agap = 0
        sgap = 0
        row2 = sample2fullseq[sample]
        for i in range(len(row2)):
            if row2[i] == '-':
                sgap += 1
                agap += 1
            elif sgap > 0:
                sequential_gaps.append(sgap)
                sgap = 0
        all_gaps.append(agap)
        
    ofile_cladeinfo.write('all_gaps:\n' + statistics(all_gaps)[1])
    if sequential_gaps == []:
        sequential_gaps = [0]
    ofile_cladeinfo.write('sequential_gaps:\n' + \
                          statistics(sequential_gaps)[1])
    ofile_cladeinfo.close()

    # compute ppercentage of polymorphic sites
    if save_sample2fullfreq:
        with open(os.path.join(output_dir, 'sample2fullfreq.msgpack'), 'wb') as ofile:
            msgpack.dump(sample2fullfreq, ofile)

    ofn_pol = os.path.join(output_dir, '%s.polymorphic'%clade)
    logger.debug('polymorphic file: %s'%ofn_pol)
    with open(ofn_pol, 'w') as ofile:
        ofile.write('#sample\tpercentage_of_polymorphic_sites\tavg_freq\tmedian_freq\tstd_freq\tmin_freq\tmax_freq\tq90_freq\tq10_freq\tavg_coverage\tmedian_coverage\tstd_coverage\tmin_coverage\tmax_coverage\tq90_coverage\tq10_coverage\n')
        for sample in sample2fullfreq:
            freqs = [x[0] for x in sample2fullfreq[sample] if x[0] > 0 and x[0] < 1 and x[2] < p_value]
            coverages = [x[1] for x in sample2fullfreq[sample] if x[0] > 0 and x[0] < 1 and x[2] < p_value]
            ofile.write('%s\t%f'%(sample, float(len(freqs)) * 100 / len(sample2fullfreq[sample])))
            for vals in [freqs, coverages]:
                if len(vals):
                    ofile.write('\t%f\t%f\t%f\t%f\t%f\t%f\t%f'%(\
                                numpy.average(vals),
                                numpy.percentile(vals,50),
                                numpy.std(vals),
                                numpy.min(vals),
                                numpy.max(vals),
                                numpy.percentile(vals,90),
                                numpy.percentile(vals,10),
                               ))
                else:
                    ofile.write('\t0\t0\t0\t0\t0\t0\t0')
            ofile.write('\n')


    # save merged alignment
    ofn_align = os.path.join(output_dir, '%s.fasta'%clade)
    logger.debug('alignment file: %s'%ofn_align)
    with open(ofn_align, 'w') as ofile:
        for sample in sample2fullseq:
            SeqIO.write(
                SeqRecord.SeqRecord(
                    id=sample,
                    description='',
                    seq=Seq.Seq(''.join(sample2fullseq[sample]))),
                ofile, 
                'fasta')

    # produce tree
    oosp = ooSubprocess.ooSubprocess() 
    #ofn_tree = os.path.join(output_dir, '%s.tree'%clade)
    #oosp.ex('FastTree', args=['-quiet', '-nt', ofn_align], out_fn=ofn_tree)
    ofn_tree = clade + '.tree'
    logger.debug('tree file: %s'%ofn_tree)
    try:
        for fn in glob.glob('%s/RAxML_*%s'
                    %(os.path.abspath(output_dir), ofn_tree)):
            os.remove(fn)
        raxml_args = [
                            '-s', os.path.abspath(ofn_align), 
                            '-w', os.path.abspath(output_dir),
                            '-n', ofn_tree,
                            '-p', '1234'
                        ]
        if bootstrap_raxml:
            raxml_args += ['-f', 'a',
                           '-m', 'GTRGAMMA',
                           '-x', '1234',
                           '-N', str(bootstrap_raxml)]
        else:
            raxml_args += ['-m', 'GTRCAT']

        if nprocs_raxml > 1:
            raxml_args += ['-T', str(nprocs_raxml)]
            raxml_prog = 'raxmlHPC-PTHREADS-SSE3'
        else:
            raxml_prog = 'raxmlHPC'
        oosp.ex(
                raxml_prog,
                args=raxml_args
                )
    except:
        logger.info('Cannot build the tree! The number of samples is too few '\
                    'or there is some error with raxmlHMP')
        pass




@trace_unhandled_exceptions
def load_sample(args):
    ifn_sample = args['ifn_sample']
    logger.debug('load %s'%ifn_sample)
    output_dir = args['output_dir'] 
    ifn_markers = args['ifn_markers']
    clades = args['clades']
    kept_clade = args['kept_clade']
    db = shared_variables.db
    sing_clades = shared_variables.sing_clades
    clade2num_markers = shared_variables.clade2num_markers
    marker_in_clade = args['marker_in_clade']
    kept_markers = args['kept_markers']
    sample = ooSubprocess.splitext(ifn_sample)[0]
    with open(ifn_sample, 'rb') as ifile:
        marker2seq = msgpack.load(ifile, use_list=False)

    if kept_clade:
        if kept_clade == 'singleton':
            nmarkers = len(marker2seq)
        else:
            # remove redundant clades and markers
            nmarkers = 0
            for marker in marker2seq.keys():
                clade = db['markers'][marker]['taxon'].split('|')[-1]
                if kept_markers:
                    if marker in kept_markers and clade == kept_clade:
                        nmarkers += 1
                    else:
                        del marker2seq[marker]
                elif clade == kept_clade:
                    nmarkers += 1
                else:
                    del marker2seq[marker]
        total_num_markers = clade2num_markers[kept_clade] if not kept_markers else len(kept_markers)
        if float(nmarkers) / total_num_markers < marker_in_clade:
            marker2seq = {}

        # reformat 'pileup'
        for m in marker2seq:
            freq = marker2seq[m]['freq']
            marker2seq[m]['freq'] = [(0.0, 0.0, 0.0) for i in \
                                     range(len(marker2seq[m]['seq']))]
            for p in freq:
                marker2seq[m]['freq'][p] = freq[p]
            marker2seq[m]['seq'] = marker2seq[m]['seq'].replace('-', 'N') # make sure we have no gaps in the sequence

        return marker2seq
    else:
        # remove redundant clades and markers
        clade2n_markers = defaultdict(int)
        remove_clade = []
        for marker in marker2seq:
            clade = db['markers'][marker]['taxon'].split('|')[-1]
            if 's__' in clade or clade in sing_clades:
                clade2n_markers[clade] = clade2n_markers[clade] + 1
            else:
                remove_clade.append(clade)
        remove_clade += [clade for clade in clade2n_markers if
                         float(clade2n_markers[clade]) \
                         / float(clade2num_markers[clade]) < marker_in_clade]
        remove_marker = [marker for marker in marker2seq if
                         db['markers'][marker]['taxon'].split('|')[-1] in
                         remove_clade]
        for marker in remove_marker:
            del marker2seq[marker]
     
        sample_clades = set([])
        for marker in marker2seq:
            clade = db['markers'][marker]['taxon'].split('|')[-1]
            sample_clades.add(clade)
        return sample_clades




def load_all_samples(args, sample2order, kept_clade, kept_markers):
    ifn_samples = args['ifn_samples'] + args['ifn_second_samples'] 
    if args['ifn_representative_sample']:
        ifn_samples.append(args['ifn_representative_sample'])
    ifn_samples = sorted(list(set(ifn_samples)))
    if not ifn_samples:
        return None
    else:
        args_list = []
        for ifn_sample in ifn_samples:
            func_args = {}
            func_args['ifn_sample'] = ifn_sample
            func_args['kept_clade'] = kept_clade
            func_args['kept_markers'] = kept_markers
            for k in [ 
                      'output_dir',
                      'ifn_markers', 'nprocs_load_samples', 
                      'clades',
                      'mpa_pkl',
                      ]:
                func_args[k] = args[k]
            sample = ooSubprocess.splitext(ifn_sample)[0]
            if sample2order[sample] == 'first':
                func_args['marker_in_clade'] = args['marker_in_clade']
            else:
                func_args['marker_in_clade'] = args['second_marker_in_clade']
            args_list.append(func_args)

        results = ooSubprocess.parallelize(
                                           load_sample,
                                           args_list,
                                           args['nprocs_load_samples'],
                                           use_threads=args['use_threads'])
        if kept_clade:
            sample2marker = {}
            for i in range(len(ifn_samples)):
                sample = ooSubprocess.splitext(ifn_samples[i])[0]
                if len(results[i]): # skip samples with no markers
                    sample2marker[sample] = results[i] 
            return sample2marker
        else:
            all_clades = set([])
            for r in results:
                for c in r:
                    all_clades.add(c)
            all_clades = sorted(list(all_clades))
            return all_clades




def strainer(args):
    # auto-set some params
    if args['relaxed_parameters']:
        args['sample_in_marker'] = 0.5
        args['N_in_marker'] = 0.5
        args['gap_in_sample'] = 0.5
    elif args['relaxed_parameters2']:
        args['sample_in_marker'] = 0.2
        args['N_in_marker'] = 0.8
        args['gap_in_sample'] = 0.8
    elif args['relaxed_parameters3']:
        args['gap_in_trailing_col'] = 0.9
        args['gap_in_internal_col'] = 0.9
        args['gap_in_sample'] = 0.9
        args['second_gap_in_sample'] = 0.5
        args['sample_in_marker'] = 0.1
        args['marker_in_clade'] = 0.1
        args['second_marker_in_clade'] = 0.1

    if args['keep_full_alignment_files']:
        args['keep_alignment_files'] = True
        args['marker_strip_length'] = 0
        
    if os.path.isfile(args['clades'][0]):
        with open(args['clades'][0], 'r') as ifile:
            args['clades'] = [line.strip() for line in ifile]

 
    # check conditions
    ooSubprocess.mkdir(args['output_dir'])
    with open(os.path.join(args['output_dir'], 'arguments.txt'), 'w') as ofile:
        #for para in args:
        #    ofile.write('%s\n'%para)
        #    ofile.write('%s\n'%args[para])
        ofile.write('%s\n'%' '.join(sys.argv))
        ofile.write('%s'%args)

    if args['ifn_markers'] == None and args['ifn_ref_genomes'] != None:
        logger.error('ifn_ref_genomes is set but ifn_markers is not set!')
        exit(1)

    if args['ifn_markers'] != None and args['ifn_ref_genomes'] != None:
        if len(args['clades']) != 1 or args['clades'] == ['all']:
            logger.error('Only one clade can be specified when adding '\
                         'reference genomes')
            exit(1)

    if args['ifn_markers'] == None and args['clades'] == ['singleton']:
        logger.error('clades is set to singleton but ifn_markers is not set!')
        exit(1)

    if args['ifn_samples'] == []:
        args['clades'] = ['singleton']

    if args['nprocs_load_samples'] == None:
        args['nprocs_load_samples'] = args['nprocs_main']

    if args['nprocs_align_clean'] == None:
        args['nprocs_align_clean'] = args['nprocs_main']

    if args['nprocs_raxml'] == None:
        args['nprocs_raxml'] = args['nprocs_main']

    if args['clades'] == ['singleton']:
        shared_variables.db = None
        shared_variables.sing_clades = []
        nmarkers = 0
        for rec in SeqIO.parse(args['ifn_markers'], 'fasta'):
            nmarkers += 1
        clade2num_markers = {'singleton': nmarkers}
        shared_variables.clade2num_markers = clade2num_markers
    else:
        # load mpa_pkl
        logger.info('Load mpa_pkl')
        db = pickle.load(bz2.BZ2File(args['mpa_pkl']))
        shared_variables.db = db

        # reduce and convert to shared memory
        #logger.debug('converting db')
        db['taxonomy'] = db['taxonomy'].keys()
        for m in db['markers']:
            del db['markers'][m]['clade']
            del db['markers'][m]['ext']
            del db['markers'][m]['len']
            del db['markers'][m]['score']
        gc.collect()
        #logger.debug('converted db')
        
        # get clades from db
        logger.info('Get clades from db')
        sing_clades, clade2num_markers, clade2subclades = get_db_clades(db)
        shared_variables.sing_clades = sing_clades
        shared_variables.clade2num_markers = clade2num_markers

    # set order
    sample2order = {}
    if args['ifn_representative_sample']:
        sample = ooSubprocess.splitext(args['ifn_representative_sample'])[0]
        sample2order[sample] = 'first'

    for ifn in args['ifn_samples']:
        sample = ooSubprocess.splitext(ifn)[0]
        sample2order[sample] = 'first'

    for ifn in args['ifn_second_samples']:
        sample = ooSubprocess.splitext(ifn)[0]
        if sample not in sample2order:
            sample2order[sample] = 'second'
    
    kept_markers = set([])
    if args['marker_list_fn']:
        with open(args['marker_list_fn'], 'r') as ifile:
            for line in ifile:
                kept_markers.add(line.strip())
        if not kept_markers:
            raise Exception('Number of markers in the marker_list_fn is 0!'%args['marker_list_fn'])
    elif args['ifn_representative_sample']:
        with open(args['ifn_representative_sample'], 'rb') as ifile:
            repr_marker2seq = msgpack.load(ifile, use_list=False)
        if args['clades'] != ['all'] and args['clades'] != ['singleton']:
            for marker in repr_marker2seq:
                clade = db['markers'][marker]['taxon'].split('|')[-1]
                if clade in args['clades']:
                    kept_markers.add(marker)
        else:
            kept_markers = set(repr_marker2seq.keys())
        logger.debug('Number of markers in the representative '\
                     'sample: %d'%len(kept_markers))
        if not kept_markers:
            raise Exception('Number of markers in the representative sample is 0!')
    
    # get clades from samples
    if args['clades'] == ['all']:
        logger.info('Get clades from samples')
        args['clades'] = load_all_samples(args, 
                                          sample2order,
                                          kept_clade=None,
                                          kept_markers=kept_markers)

    if args['print_clades_only']:
        for c in args['clades']:
            if c.startswith('s__'):
                print c
            else:
                print c, '(%s)'%(','.join(list(clade2subclades[c])))
        return

    # add reference genomes
    ref2marker = defaultdict(dict)
    if args['ifn_markers'] != None and args['ifn_ref_genomes'] != None:
        logger.info('Add reference genomes')
        marker_records = {}
        for rec in SeqIO.parse(open(args['ifn_markers'], 'r'), 'fasta'):
            if rec.id in kept_markers or (not kept_markers):
                marker_records[rec.id] = rec
        add_ref_genomes(
                        ref2marker, 
                        marker_records, 
                        args['ifn_ref_genomes'],
                        args['output_dir'])

        # remove bad reference genomes
        if not kept_markers:
            nmarkers = shared_variables.clade2num_markers[args['clades'][0]]
        else:
            nmarkers = len(kept_markers)
        remove_ref = []
        mic = args['second_marker_in_clade'] if args['add_reference_genomes_as_second_samples'] else args['marker_in_clade']
        for ref in ref2marker:
            if float(len(ref2marker[ref])) / nmarkers < mic:
                remove_ref.append(ref)
        for ref in remove_ref:
            del ref2marker[ref]
    ref2marker = dict(ref2marker)
    for ref in ref2marker:
        if args['add_reference_genomes_as_second_samples']:
            sample2order[ref] = 'second'
        else:
            sample2order[ref] = 'first'

    # build tree for each clade
    for clade in args['clades']:
        logger.info('Build the tree for %s'%clade)

        # load samples and reference genomes
        sample2marker = load_all_samples(args, 
                                         sample2order,
                                         kept_clade=clade,
                                         kept_markers=kept_markers)

        for r in ref2marker:
            sample2marker[r] = ref2marker[r]
        logger.debug('number of samples and reference genomes: %d'%len(sample2marker))

        for sample in sample2marker:
            logger.debug('number of markers in sample %s: %d'%(
                          sample,
                          len(sample2marker[sample])))

        # Filter sequences
        logger.debug('Filter consensus marker sequences')
        for sample in sample2marker:
            sample2marker[sample] = filter_sequence(
                                                    sample,
                                                    sample2marker[sample],
                                                    args['marker_strip_length'],
                                                    args['N_in_marker'])

        # remove samples with percentage of markers less than marker_in_clade
        logger.debug('remove samples with percentage of markers '\
                     'less than marker_in_clade')
        for sample in sample2marker.keys():
            if len(sample2marker[sample]):
                if clade == 'singleton':
                    c = 'singleton'
                else:
                    marker = sample2marker[sample].keys()[0]
                    c = db['markers'][marker]['taxon'].split('|')[-1]
                if len(sample2marker[sample]) / \
                    float(clade2num_markers[c]) < args['marker_in_clade']:
                        del sample2marker[sample]
            else:
                del sample2marker[sample]

        # build trees
        shared_variables.sample2marker = sample2marker
        build_tree(
            clade=clade,
            sample2marker=sample2marker, 
            sample2order=sample2order,
            clade2num_markers=clade2num_markers,
            sample_in_clade=args['sample_in_clade'],
            sample_in_marker=args['sample_in_marker'],
            gap_in_trailing_col=args['gap_in_trailing_col'],
            gap_trailing_col_limit=args['gap_trailing_col_limit'],
            gap_in_internal_col=args['gap_in_internal_col'],
            N_count=args['N_count'],
            N_col=args['N_col'],
            gap_in_sample=args['gap_in_sample'],
            second_gap_in_sample=args['second_gap_in_sample'],
            long_gap_length=args['long_gap_length'],
            long_gap_percentage=args['long_gap_percentage'],
            p_value=args['p_value'],
            output_dir=args['output_dir'],
            nprocs_align_clean=args['nprocs_align_clean'],
            alignment_program=args['alignment_program'],
            nprocs_raxml=args['nprocs_raxml'],
            keep_alignment_files=args['keep_alignment_files'],
            bootstrap_raxml=args['bootstrap_raxml'],
            save_sample2fullfreq=args['save_sample2fullfreq'],
            use_threads=args['use_threads'])
        del shared_variables.sample2marker
        del sample2marker
        #gc.collect()

    logger.info('Finished!')




def check_dependencies(args):
    programs = ['muscle']

    if args['ifn_markers'] != None or args['ifn_ref_genomes'] != None:
            programs += ['blastn', 'makeblastdb']

    if args['nprocs_main'] > 1:
        programs += ['raxmlHPC-PTHREADS-SSE3']
    else:
        programs += ['raxmlHPC']

    for prog in programs:
        if not which.is_exe(prog):
            logger.error('Cannot find %s in the executable path!'%prog)
            exit(1)




if __name__ == "__main__":
    args = read_params()
    check_dependencies(args)
    strainer(args)