1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
|
#!/usr/bin/env python
# Author: Duy Tin Truong (duytin.truong@unitn.it)
# at CIBIO, University of Trento, Italy
__author__ = 'Duy Tin Truong (duytin.truong@unitn.it)'
__version__ = '1.0.0'
__date__ = '2nd August 2016'
import sys
import os
import shutil
ABS_PATH = os.path.abspath(sys.argv[0])
MAIN_DIR = os.path.dirname(ABS_PATH)
os.environ['PATH'] += ':' + MAIN_DIR
os.environ['PATH'] += ':' + os.path.join(MAIN_DIR, 'strainphlan_src')
sys.path.append(os.path.join(MAIN_DIR, 'strainphlan_src'))
import which
import argparse as ap
import cPickle as pickle
import msgpack
import glob
from mixed_utils import statistics
import ooSubprocess
from ooSubprocess import trace_unhandled_exceptions
import bz2
import gzip
from collections import defaultdict
from tempfile import SpooledTemporaryFile, NamedTemporaryFile
from Bio import SeqIO, Seq, SeqRecord
from Bio.Alphabet import IUPAC
import pandas
import logging
import logging.config
import sample2markers
import copy
import threading
import numpy
import random
import gc
#import ipdb
shared_variables = type('shared_variables', (object,), {})
logging.basicConfig(level=logging.DEBUG, stream=sys.stderr,
disable_existing_loggers=False,
format='%(asctime)s | %(levelname)s | %(name)s | %(funcName)s | %(lineno)d | %(message)s')
logger = logging.getLogger(__name__)
# get the directory that contains this script
metaphlan2_script_install_folder=os.path.dirname(os.path.abspath(__file__))
# functions
def read_params():
p = ap.ArgumentParser()
p.add_argument(
'--ifn_samples',
nargs='+',
required=False,
default=[],
type=str,
help='The list of sample files (space separated).'\
'The wildcard can also be used.')
p.add_argument(
'--ifn_second_samples',
nargs='+',
required=False,
default=[],
type=str,
help='The list of second sample files (space separated).'\
'The wildcard can also be used. '\
'Note that only the markers found in the samples or '\
'reference genomes '
'specified by --ifn_samples or --ifn_representative_sample '\
'or --ifn_ref_genomes with '\
'add_reference_genomes_as_second_samples=False '\
'will be used to build the phylogenetic trees. '
)
p.add_argument(
'--ifn_representative_sample',
required=False,
default=None,
type=str,
help='The representative sample. The marker list of each species '\
'extracted from this sample will be used for all other samples.')
p.add_argument(
'--mpa_pkl',
required=False,
default=os.path.join(metaphlan2_script_install_folder,"db_v20","mpa_v20_m200.pkl"),
type=str,
help='The database of metaphlan3.py.')
p.add_argument(
'--output_dir',
required=True,
default='strainer_output',
type=str,
help='The output directory.')
p.add_argument(
'--ifn_markers',
required=False,
default=None,
type=str,
help='The marker file in fasta format.')
p.add_argument(
'--nprocs_main',
required=False,
default=1,
type=int,
help='The number of processors are used for the main threads. '\
'Default 1.')
p.add_argument(
'--nprocs_load_samples',
required=False,
default=None,
type=int,
help='The number of processors are used for loading samples. '\
'Default nprocs_main.')
p.add_argument(
'--nprocs_align_clean',
required=False,
default=None,
type=int,
help='The number of processors are used for aligning and cleaning markers. '\
'Default nprocs_main.')
p.add_argument(
'--nprocs_raxml',
required=False,
default=None,
type=int,
help='The number of processors are used for running raxml. '\
'Default nprocs_main.')
p.add_argument(
'--bootstrap_raxml',
required=False,
default=0,
type=int,
help='The number of runs for bootstraping when building the tree. '\
'Default 0.')
p.add_argument(
'--ifn_ref_genomes',
nargs='+',
required=False,
default=None,
type=str,
help='The reference genome file names. They are separated by spaces.')
p.add_argument(
'--add_reference_genomes_as_second_samples',
required=False,
dest='add_reference_genomes_as_second_samples',
action='store_true',
help='Add reference genomes as second samples. '\
'Default "False". ' \
'Note that only the markers found in the samples or '\
'reference genomes '
'specified by --ifn_samples or --ifn_representative_sample '\
'or --ifn_ref_genomes with '\
'add_reference_genomes_as_second_samples=False '\
'will be used to build the phylogenetic trees. '
)
p.set_defaults(add_reference_genomes_as_second_samples=False)
p.add_argument(
'--N_in_marker',
required=False,
default=0.2,
type=float,
help='The consensus markers with the rate of N nucleotides greater than '\
'this threshold are removed. Default 0.2.')
p.add_argument(
'--marker_strip_length',
required=False,
default=50,
type=int,
help='The number of nucleotides will be deleted from each of two ends '\
'of a marker. Default 50.')
p.add_argument(
'--marker_in_clade',
required=False,
default=0.8,
type=float,
help='In each sample, the clades with the rate of present markers less than '\
'this threshold are removed. Default 0.8.')
p.add_argument(
'--second_marker_in_clade',
required=False,
default=0.8,
type=float,
help='In each sample/reference genomes specified by --ifn_second_samples, '\
'or --add_reference_genomes_as_second_samples, '\
'the clades with the rate of present markers less than '\
'this threshold are removed. Default 0.8.')
p.add_argument(
'--sample_in_clade',
required=False,
default=2,
type=int,
help='Only clades present in at least sample_in_clade samples '\
'are kept. Default 2.')
p.add_argument(
'--sample_in_marker',
required=False,
default=0.8,
type=float,
help='If the percentage of samples that a marker present in is '\
'less than this threshold, that marker is removed. Default 0.8.')
p.add_argument(
'--gap_in_trailing_col',
required=False,
default=0.2,
type=float,
help='If the number of the trailing nucleotide columns in aligned '\
'markers with the percentage of gaps greater than '\
'gap_in_trailing_col is less than gap_trailing_col_limit, '\
'these columns will be removed. '\
'Default 0.2.')
p.add_argument(
'--gap_trailing_col_limit',
required=False,
default=101,
type=float,
help='If the number of the trailing nucleotide columns in aligned '\
'markers with the percentage of gaps greater than '\
'gap_in_trailing_col is less than gap_trailing_col_limit, '\
'these columns will be removed. '\
'Default 101.')
p.add_argument(
'--gap_in_internal_col',
required=False,
default=0.3,
type=float,
help='The internal nucleotide columns in aligned '\
'markers with the percentage of gaps greater than '\
'gap_in_internal_col will be removed. '\
'Default 0.3.')
p.add_argument(
'--gap_in_sample',
required=False,
default=0.2,
type=float,
help='The samples with full sequences from all markers '\
'and having the percentage of gaps greater than this threshold '\
'will be removed. Default 0.2.')
p.add_argument(
'--second_gap_in_sample',
required=False,
default=0.2,
type=float,
help='The samples specified by --ifn_second_samples with full sequences from all markers '\
'and having the percentage of gaps greater than this threshold '\
'will be removed. Default 0.2.')
p.add_argument(
'--N_col',
required=False,
default=0.8,
type=float,
help='In aligned markers, if the percentage of nucleotide columns '\
'containing more than N_count Ns '\
'less than this threshold, these columns will be removed. '
'Default 0.8.')
p.add_argument(
'--N_count',
required=False,
default=0,
type=int,
help='In aligned markers, if the percentage of nucleotide columns '\
'containing more than N_count Ns '\
'less than N_col threshold, these columns will be removed. '\
'Default 0.')
p.add_argument(
'--long_gap_length',
required=False,
default=2,
type=int,
help='In each concatenated sequence of a sample, sequential '\
'gap positions is a gap group. '\
'A gap group with length greater than this '\
'threshold is considered as '\
'a long gap group. If the ratio between the number of unique '\
'positions in all long gap groups and the concatenated sequence '\
'length is less than long_gap_percentage, these positions '\
'will be removed from all concatenated sequences. '\
'Default 2.')
p.add_argument(
'--long_gap_percentage',
required=False,
default=0.8,
type=float,
help='Combining this threshold with long_gap_length to removed long '\
'gaps. Default 0.8.')
p.add_argument(
'--p_value',
required=False,
default=0.05,
type=float,
help='The p_value to reject a non-polymorphic site.'\
'Default 0.05.')
p.add_argument(
'--clades',
nargs='+',
required=False,
default=['all'],
type=str,
help='The clades (space separated) for which the script will compute '\
'the marker alignments in fasta format and the phylogenetic '\
'trees. If a file name is specified, the clade list in that '\
'file where each clade name is on a line will be read.'
'Default "automatically identify all clades".')
p.add_argument(
'--marker_list_fn',
required=False,
default=None,
type=str,
help='The file name containing the list of considered markers. '\
'The other markers will be discarded. '\
'Default "None".')
p.add_argument(
'--print_clades_only',
required=False,
dest='print_clades_only',
action='store_true',
help='Only print the potential clades and stop without building any '\
'tree. This option is useful when you want to check quickly '\
'all possible clades and rerun only for some specific ones. '\
'Default "False".')
p.set_defaults(print_clades_only=False)
p.add_argument(
'--alignment_program',
required=False,
default='muscle',
choices=['muscle', 'mafft'],
type=str,
help='The alignment program. Default "muscle".')
p.add_argument(
'--relaxed_parameters',
required=False,
dest='relaxed_parameters',
action='store_true',
help='Set marker_in_clade=0.5, sample_in_marker=0.5, '\
'N_in_marker=0.5, gap_in_sample=0.5. '\
'Default "False".')
p.set_defaults(relaxed_parameters=False)
p.add_argument(
'--relaxed_parameters2',
required=False,
dest='relaxed_parameters2',
action='store_true',
help='Set marker_in_clade=0.2, sample_in_marker=0.2, '\
'N_in_marker=0.8, gap_in_sample=0.8. '\
'Default "False".')
p.set_defaults(relaxed_parameters2=False)
p.add_argument(
'--relaxed_parameters3',
required=False,
dest='relaxed_parameters3',
action='store_true',
help='Set gap_in_trailing_col=0.9, gap_in_internal_col=0.9, '\
'gap_in_sample=0.9, second_gap_in_sample=0.5, '\
'sample_in_marker=0.1, marker_in_clade=0.1, '\
'second_marker_in_clade=0.1, '\
'Default "False".')
p.set_defaults(relaxed_parameters3=False)
p.add_argument(
'--keep_alignment_files',
required=False,
dest='keep_alignment_files',
action='store_true',
help='Keep the alignment files of all markers before cleaning step.')
p.set_defaults(keep_alignment_files=False)
p.add_argument(
'--keep_full_alignment_files',
required=False,
dest='keep_full_alignment_files',
action='store_true',
help='Keep the alignment files of all markers before '\
'truncating the starting and ending parts, and cleaning step. '
'This is equivalent to '\
'--keep_alignment_files --marker_strip_length 0')
p.set_defaults(keep_full_alignment_files=False)
p.add_argument(
'--save_sample2fullfreq',
required=False,
dest='save_sample2fullfreq',
action='store_true',
help='Save sample2fullfreq to a msgpack file sample2fullfreq.msgpack.')
p.set_defaults(save_sample2fullfreq=False)
p.add_argument(
'--use_threads',
required=False,
action='store_true',
dest='use_threads',
help='Use multithreading. Default "Use multiprocessing".')
p.set_defaults(use_threads=False)
return vars(p.parse_args())
def filter_sequence(sample, marker2seq, marker_strip_length, N_in_marker):
'''
Filter markers with percentage of N-bases greater than a threshold.
:param marker2seq: a dictionary containing sequences of a sample.
marker2seq[marker]['seq'] should return the sequence of the marker.
:returns: a dictionary containing filtered sequences of samples.
'''
remove_markers = [marker for marker in marker2seq if
float(marker2seq[marker]['seq'].count('N')) /
len(marker2seq[marker]['seq']) > N_in_marker]
for marker in remove_markers:
del marker2seq[marker]
log_line = 'sample %s, number of markers after N_in_marker: %d\n'\
%(sample, len(marker2seq))
remove_markers = []
for marker in marker2seq:
if marker_strip_length > 0:
marker2seq[marker]['seq'] = \
marker2seq[marker]['seq'][marker_strip_length:-marker_strip_length]
marker2seq[marker]['freq'] = \
marker2seq[marker]['freq'][marker_strip_length:-marker_strip_length]
#marker2seq[marker]['seq'] = marker2seq[marker]['seq'].strip('N')
if len(marker2seq[marker]['seq']) == 0:
remove_markers.append(marker)
for marker in remove_markers:
del marker2seq[marker]
logger.debug(log_line + \
'sample %s, number of markers after marker_strip_length: %d'\
%(sample, len(marker2seq)))
return marker2seq
def get_db_clades(db):
# find singleton clades
sing_clades = []
clade2subclades = defaultdict(set)
for tax in db['taxonomy']:
tax_clades = tax.split('|')
for i, clade in enumerate(tax_clades):
if 't__' not in clade and 's__' not in clade:
if i < len(tax_clades)-1:
if 't__' in tax_clades[-1]:
clade2subclades[clade].add('|'.join(tax_clades[i+1:-1]))
else:
clade2subclades[clade].add('|'.join(tax_clades[i+1:]))
sing_clades = [clade for clade in clade2subclades if
len(clade2subclades[clade]) == 1]
# extract species
clade2num_markers = defaultdict(int)
level = 's__'
for marker in db['markers']:
clade = db['markers'][marker]['taxon'].split('|')[-1]
if level in clade or clade in sing_clades:
clade2num_markers[clade] = clade2num_markers[clade] + 1
clade2num_markers = dict(clade2num_markers)
return sing_clades, clade2num_markers, clade2subclades
def align(marker_fn, alignment_program):
oosp = ooSubprocess.ooSubprocess()
if alignment_program == 'muscle':
ifile = open(marker_fn, 'r')
alignment_file = oosp.ex(
'muscle',
args=['-quiet', '-in', '-', '-out', '-'],
in_pipe=ifile,
get_out_pipe=True,
verbose=False)
ifile.close()
elif alignment_program == 'mafft':
alignment_file = oosp.ex(
'mafft',
args=['--auto', marker_fn],
get_out_pipe=True,
verbose=False)
else:
raise Exception('Unknown alignment_program %s!'%alignment_program)
return alignment_file
def clean_alignment(
samples,
sample2seq,
sample2freq,
gap_in_trailing_col,
gap_trailing_col_limit,
gap_in_internal_col,
N_count,
N_col):
length = len(sample2seq[sample2seq.keys()[0]])
logger.debug('marker length: %d', length)
aligned_samples = sample2seq.keys()
for sample in samples:
if sample not in aligned_samples:
sample2seq[sample] = ['-' for i in range(length)]
sample2freq[sample] = [(0.0, 0.0, 0.0) for i in range(length)]
df_seq = pandas.DataFrame.from_dict(sample2seq, orient='index')
df_freq = pandas.DataFrame.from_dict(sample2freq, orient='index')
# remove trailing gap columns
del_cols = []
for i in range(len(df_seq.columns)):
if float(list(df_seq[df_seq.columns[i]]).count('-')) / len(samples) <= gap_in_trailing_col:
break
else:
del_cols.append(df_seq.columns[i])
for i in reversed(range(len(df_seq.columns))):
if float(list(df_seq[df_seq.columns[i]]).count('-')) / len(samples) <= gap_in_trailing_col:
break
else:
del_cols.append(df_seq.columns[i])
if len(del_cols) < gap_trailing_col_limit:
df_seq.drop(del_cols, axis=1, inplace=True)
df_freq.drop(del_cols, axis=1, inplace=True)
logger.debug('length after gap_in_trailing_col: %d', len(df_seq.columns))
else:
logger.debug('do not use gap_in_trailing_col as the number of del_cols is %d'%len(del_cols))
# remove internal gap columns
del_cols = []
for i in range(len(df_seq.columns)):
if float(list(df_seq[df_seq.columns[i]]).count('-')) / len(samples) > gap_in_internal_col:
del_cols.append(df_seq.columns[i])
df_seq.drop(del_cols, axis=1, inplace=True)
df_freq.drop(del_cols, axis=1, inplace=True)
logger.debug('length after gap_in_internal_col: %d', len(df_seq.columns))
# remove N columns
if len(df_seq.columns) > 0:
del_cols = []
remove_N_col = False
for i in range(len(df_seq.columns)):
if list(df_seq[df_seq.columns[i]]).count('N') > N_count:
del_cols.append(df_seq.columns[i])
if float(len(del_cols)) / len(df_seq.columns) < N_col:
remove_N_col = True
df_seq.drop(del_cols, axis=1, inplace=True)
df_freq.drop(del_cols, axis=1, inplace=True)
logger.debug('length after N_col: %d', len(df_seq.columns))
if N_count > 0 or not remove_N_col:
logger.debug('replace Ns by gaps for all samples')
for sample in samples:
seq = ''.join(df_seq.loc[sample])
logger.debug('sample %s, number of Ns: %d'\
%(sample, seq.count('N')))
sample2seq[sample] = list(seq.replace('N', '-'))
else:
for sample in samples:
sample2seq[sample] = df_seq.loc[sample].tolist()
for sample in samples:
sample2freq[sample] = df_freq.loc[sample].tolist()
else:
sample2seq = {}
sample2freq = {}
return sample2seq, sample2freq
def add_ref_genomes(genome2marker, marker_records, ifn_ref_genomes, tmp_dir):
ifn_ref_genomes = sorted(list(set(ifn_ref_genomes)))
logger.debug('add %d reference genomes'%len(ifn_ref_genomes))
logger.debug('Number of samples: %d'%len(genome2marker))
# marker list
if len(genome2marker) == 0:
unique_markers = set(marker_records.keys())
else:
unique_markers = set([])
for sample in genome2marker:
for marker in genome2marker[sample]:
if marker not in unique_markers:
unique_markers.add(marker)
logger.debug('Number of unique markers: %d'%len(unique_markers))
# add ifn_ref_genomes
oosp = ooSubprocess.ooSubprocess(tmp_dir=tmp_dir)
logger.debug('load genome contigs')
p1 = SpooledTemporaryFile(dir=tmp_dir)
contigs = defaultdict(dict)
for ifn_genome in ifn_ref_genomes:
genome = ooSubprocess.splitext(ifn_genome)[0]
if ifn_genome[-4:] == '.bz2':
ifile_genome = bz2.BZ2File(ifn_genome, 'r')
elif ifn_genome[-3:] == '.gz':
ifile_genome = gzip.GzipFile(ifn_genome, 'r')
elif ifn_genome[-4:] == '.fna':
ifile_genome = open(ifn_genome, 'r')
else:
logger.error('Unknown file type of %s. '%ifn_genome +\
'It should be .fna.bz2, .fna.gz, or .fna!')
exit(1)
# extract genome contigs
for rec in SeqIO.parse(ifile_genome, 'fasta'):
#rec.name = genome + '___' + rec.name
if rec.name in contigs:
logger.error(
'Error: Contig %s in genome%s'\
%(rec.name.split('___')[-1], genome)\
+ ' are not unique!')
exit(1)
contigs[rec.name]['seq'] = str(rec.seq)
contigs[rec.name]['genome'] = genome
SeqIO.write(rec, p1, 'fasta')
ifile_genome.close()
p1.seek(0)
# build blastdb
logger.debug('build blastdb')
blastdb_prefix = oosp.ftmp('genome_blastn_db_%s'%(random.random()))
if len(glob.glob('%s*'%blastdb_prefix)):
logger.error('blastdb exists! Please remove it or rerun!')
exit(1)
oosp.ex('makeblastdb',
args=[
'-dbtype', 'nucl',
'-title', 'genome_db',
'-out', blastdb_prefix],
in_pipe=p1,
verbose=True)
# blast markers against contigs
logger.debug('blast markers against contigs')
p1 = SpooledTemporaryFile(dir=tmp_dir)
for marker in unique_markers:
SeqIO.write(marker_records[marker], p1, 'fasta')
p1.seek(0)
blastn_args = [
'-db', blastdb_prefix,
'-outfmt', '6',
'-evalue', '1e-10',
'-max_target_seqs', '1000000000']
if args['nprocs_main'] > 1:
blastn_args += ['-num_threads', str(args['nprocs_main'])]
output = oosp.ex(
'blastn',
args=blastn_args,
in_pipe=p1,
get_out_pipe=True,
verbose=True)
#output = output.split('\n')
for line in output:
if line.strip() == '':
break
line = line.strip().split()
query = line[0]
target = line[1]
pstart = int(line[8])-1
pend = int(line[9])-1
genome = contigs[target]['genome']
if query not in genome2marker[genome]:
genome2marker[genome][query] = {}
if pstart < pend:
genome2marker[genome][query]['seq'] = contigs[target]['seq'][pstart:pend+1]
else:
genome2marker[genome][query]['seq'] = \
str(Seq.Seq(
contigs[target]['seq'][pend:pstart+1],
IUPAC.unambiguous_dna).reverse_complement())
genome2marker[genome][query]['freq'] = [(0.0, 0.0, 0.0) for i in \
range(len(genome2marker[genome][query]['seq']))]
genome2marker[genome][query]['seq'] = genome2marker[genome][query]['seq'].upper()
# remove database
for fn in glob.glob('%s*'%blastdb_prefix):
os.remove(fn)
logger.debug('Number of samples and genomes: %d'%len(genome2marker))
return genome2marker
@trace_unhandled_exceptions
def align_clean(args):
marker = args['marker']
sample2marker = shared_variables.sample2marker #args['sample2marker']
clade = args['clade']
gap_in_trailing_col = args['gap_in_trailing_col']
gap_trailing_col_limit = args['gap_trailing_col_limit']
gap_in_internal_col = args['gap_in_internal_col']
N_col = args['N_col']
N_count = args['N_count']
sample_in_marker = args['sample_in_marker']
tmp_dir = args['tmp_dir']
alignment_program = args['alignment_program']
alignment_fn = args['alignment_fn']
logger.debug('align and clean for marker: %s'%marker)
marker_file = NamedTemporaryFile(dir=tmp_dir, delete=False)
marker_fn = marker_file.name
sample_count = 0
for sample in iter(sample2marker.keys()):
if marker in iter(sample2marker[sample].keys()):
sample_count += 1
SeqIO.write(
SeqRecord.SeqRecord(
id=sample,
description='',
seq=Seq.Seq(sample2marker[sample][marker]['seq'])),
marker_file,
'fasta')
marker_file.close()
ratio = float(sample_count) / len(sample2marker)
if ratio < sample_in_marker:
os.remove(marker_fn)
logger.debug('skip this marker because percentage of samples '\
'it present is %f < sample_in_marker'%ratio)
return {}, {}
alignment_file = align(marker_fn, alignment_program)
os.remove(marker_fn)
sample2seq = {}
sample2freq = {}
for rec in SeqIO.parse(alignment_file, 'fasta'):
sample = rec.name
sample2seq[sample] = list(str(rec.seq))
sample2freq[sample] = list(sample2marker[sample][marker]['freq'])
for i, c in enumerate(sample2seq[sample]):
if c == '-':
sample2freq[sample].insert(i, (0.0, 0.0, 0.0))
logger.debug('alignment length of sample %s is %d, %d'%(
sample,
len(sample2seq[sample]),
len(sample2freq[sample])))
if alignment_fn:
shutil.copyfile(alignment_file.name, alignment_fn)
alignment_file.close()
logger.debug('alignment for marker %s is done'%marker)
if len(sample2seq) == 0:
logger.error('Fatal error in alignment step!')
exit(1)
sample2seq, sample2freq = clean_alignment(
sample2marker.keys(),
sample2seq,
sample2freq,
gap_in_trailing_col,
gap_trailing_col_limit,
gap_in_internal_col,
N_count,
N_col)
logger.debug('cleaning for marker %s is done'%marker)
return sample2seq, sample2freq
def build_tree(
clade,
sample2marker,
sample2order,
clade2num_markers,
sample_in_clade,
sample_in_marker,
gap_in_trailing_col,
gap_trailing_col_limit,
gap_in_internal_col,
N_count,
N_col,
gap_in_sample,
second_gap_in_sample,
long_gap_length,
long_gap_percentage,
p_value,
output_dir,
nprocs_align_clean,
alignment_program,
nprocs_raxml,
keep_alignment_files,
bootstrap_raxml,
save_sample2fullfreq,
use_threads):
# build the tree for each clade
if len(sample2marker) < sample_in_clade:
logger.debug(
'skip clade %s because number of present samples '
'is %d'%(clade, len(sample2marker)))
return
ofn_cladeinfo = os.path.join(output_dir, '%s.info'%clade)
ofile_cladeinfo = open(ofn_cladeinfo, 'w')
logger.debug('clade: %s', clade)
ofile_cladeinfo.write('clade: %s\n'%clade)
logger.debug('number of samples: %d', len(sample2marker))
ofile_cladeinfo.write('number of samples: %d\n'\
%len(sample2marker))
if clade in clade2num_markers:
logger.debug('number of markers of the clade in db: %d'\
%clade2num_markers[clade])
ofile_cladeinfo.write('number of markers of the clade in db: %d\n'\
%clade2num_markers[clade])
# align sequences in each marker
markers = set([])
for sample in sample2marker:
if sample2order[sample] == 'first':
for marker in sample2marker[sample]:
if marker not in markers:
markers.add(marker)
markers = sorted(list(markers))
logger.debug('number of used markers: %d'%len(markers))
ofile_cladeinfo.write('number of used markers: %d\n'%len(markers))
if clade in clade2num_markers:
logger.debug('fraction of used markers: %f'\
%(float(len(markers)) / clade2num_markers[clade]))
ofile_cladeinfo.write('fraction of used markers: %f\n'\
%(float(len(markers)) / clade2num_markers[clade]))
logger.debug('align and clean')
args_list = []
# parallelize
for i in range(len(markers)):
args_list.append({})
args_list[i]['marker'] = markers[i]
args_list[i]['clade'] = clade
args_list[i]['gap_in_trailing_col'] = gap_in_trailing_col
args_list[i]['gap_trailing_col_limit'] = gap_trailing_col_limit
args_list[i]['gap_in_internal_col'] = gap_in_internal_col
args_list[i]['N_count'] = N_count
args_list[i]['N_col'] = N_col
args_list[i]['sample_in_marker'] = sample_in_marker
args_list[i]['tmp_dir'] = output_dir
args_list[i]['alignment_program'] = alignment_program
if keep_alignment_files:
args_list[i]['alignment_fn'] = os.path.join(output_dir, markers[i] + '.marker_aligned')
else:
args_list[i]['alignment_fn'] = None
logger.debug('start to align_clean for all markers')
results = ooSubprocess.parallelize(
align_clean,
args_list,
nprocs_align_clean,
use_threads=use_threads)
sample2seqs, sample2freqs = zip(*results)
sample2fullseq = defaultdict(list)
sample2fullfreq = defaultdict(list)
empty_markers = []
pos = 0
marker_pos = []
for i in range(len(sample2seqs)):
#logger.debug('marker_name: %s, seq: %s'%(markers[i], sample2seqs[i]))
if len(sample2seqs[i]):
for sample in sample2seqs[i]:
sample2fullseq[sample] += sample2seqs[i][sample]
sample2fullfreq[sample] += sample2freqs[i][sample]
marker_pos.append([markers[i], pos])
pos += len(sample2seqs[i][sample])
else:
empty_markers.append(markers[i])
logger.debug(
'number of markers after deleting empty markers: %d',
len(markers) - len(empty_markers))
ofile_cladeinfo.write('number of markers after deleting '\
'empty markers: %d\n'%
(len(markers) - len(empty_markers)))
if clade in clade2num_markers:
logger.debug('fraction of used markers after deleting empty markers: '\
'%f'%(float(len(markers) - len(empty_markers)) / clade2num_markers[clade]))
ofile_cladeinfo.write('fraction of used markers after deleting empty '\
'markers: %f\n'\
%(float(len(markers) - len(empty_markers)) / clade2num_markers[clade]))
if len(sample2fullseq) == 0:
logger.debug('all markers were removed, skip this clade!')
ofile_cladeinfo.write('all markers were removed, skip this clade!\n')
return
# remove long gaps
logger.debug('full sequence length before long_gap_length: %d'\
%(len(sample2fullseq[sample2fullseq.keys()[0]])))
ofile_cladeinfo.write(
'full sequence length before long_gap_length: %d\n'\
%(len(sample2fullseq[sample2fullseq.keys()[0]])))
df_seq = pandas.DataFrame.from_dict(sample2fullseq, orient='index')
df_freq = pandas.DataFrame.from_dict(sample2fullfreq, orient='index')
del_cols = []
del_pos = []
for sample in sample2fullseq:
row = df_seq.loc[sample]
gap_in_cols = []
gap_in_pos = []
for i in range(len(row)):
if row[df_seq.columns[i]] == '-':
gap_in_cols.append(df_seq.columns[i])
gap_in_pos.append(i)
else:
if len(gap_in_cols) > long_gap_length:
del_cols += gap_in_cols
del_pos += gap_in_pos
gap_in_cols = []
gap_in_pos = []
if len(gap_in_cols) > long_gap_length:
del_cols += gap_in_cols
del_pos += gap_in_pos
del_cols = list(set(del_cols))
del_pos = sorted(list(set(del_pos)))
del_ratio = float(len(del_cols)) / len(sample2fullseq[sample])
if del_ratio < long_gap_percentage:
df_seq.drop(del_cols, axis=1, inplace=True)
df_freq.drop(del_cols, axis=1, inplace=True)
for sample in sample2fullseq:
sample2fullseq[sample] = df_seq.loc[sample].tolist()
sample2fullfreq[sample] = df_freq.loc[sample].tolist()
logger.debug('full sequence length after long_gap_length: %d'\
%(len(sample2fullseq[sample2fullseq.keys()[0]])))
ofile_cladeinfo.write(
'full sequence length after long_gap_length: %d\n'\
%(len(sample2fullseq[sample2fullseq.keys()[0]])))
for i in range(len(marker_pos)):
num_del = 0
for p in del_pos:
if marker_pos[i][1] > p:
num_del += 1
marker_pos[i][1] -= num_del
else:
logger.debug('do not apply long_gap_length because '\
'long_gap_percentage is not satisfied. '\
'del_ratio: %f'%del_ratio)
ofile_cladeinfo.write('do not apply long_gap_length because '\
'long_gap_percentage is not satisfied. '\
'del_ratio: %f\n'%del_ratio)
ofn_clademarker = os.path.join(output_dir, '%s.marker_pos'%clade)
with open(ofn_clademarker, 'w') as ofile_clademarker:
for m, p in marker_pos:
ofile_clademarker.write('%s\t%d\n'%(m, p))
# remove samples with too many gaps
logger.debug(
'number of samples before gap_in_sample: %d'\
%len(sample2fullseq))
ofile_cladeinfo.write(
'number of samples before gap_in_sample: %d\n'\
%len(sample2fullseq))
for sample in sample2marker:
ratio = float(sample2fullseq[sample].count('-')) / len(sample2fullseq[sample])
gap_ratio = gap_in_sample if (sample2order[sample] == 'first') else second_gap_in_sample
if ratio > gap_ratio:
del sample2fullseq[sample]
del sample2fullfreq[sample]
if sample2order[sample] == 'first':
logger.debug('remove sample %s by gap_in_sample %f'%(sample, ratio))
else:
logger.debug('remove sample %s by second_gap_in_sample %f'%(sample, ratio))
logger.debug(
'number of samples after gap_in_sample: %d'\
%len(sample2fullseq))
ofile_cladeinfo.write(
'number of samples after gap_in_sample: %d\n'\
%len(sample2fullseq))
# log gaps
sequential_gaps = []
all_gaps = []
for sample in sample2fullseq:
agap = 0
sgap = 0
row2 = sample2fullseq[sample]
for i in range(len(row2)):
if row2[i] == '-':
sgap += 1
agap += 1
elif sgap > 0:
sequential_gaps.append(sgap)
sgap = 0
all_gaps.append(agap)
ofile_cladeinfo.write('all_gaps:\n' + statistics(all_gaps)[1])
if sequential_gaps == []:
sequential_gaps = [0]
ofile_cladeinfo.write('sequential_gaps:\n' + \
statistics(sequential_gaps)[1])
ofile_cladeinfo.close()
# compute ppercentage of polymorphic sites
if save_sample2fullfreq:
with open(os.path.join(output_dir, 'sample2fullfreq.msgpack'), 'wb') as ofile:
msgpack.dump(sample2fullfreq, ofile)
ofn_pol = os.path.join(output_dir, '%s.polymorphic'%clade)
logger.debug('polymorphic file: %s'%ofn_pol)
with open(ofn_pol, 'w') as ofile:
ofile.write('#sample\tpercentage_of_polymorphic_sites\tavg_freq\tmedian_freq\tstd_freq\tmin_freq\tmax_freq\tq90_freq\tq10_freq\tavg_coverage\tmedian_coverage\tstd_coverage\tmin_coverage\tmax_coverage\tq90_coverage\tq10_coverage\n')
for sample in sample2fullfreq:
freqs = [x[0] for x in sample2fullfreq[sample] if x[0] > 0 and x[0] < 1 and x[2] < p_value]
coverages = [x[1] for x in sample2fullfreq[sample] if x[0] > 0 and x[0] < 1 and x[2] < p_value]
ofile.write('%s\t%f'%(sample, float(len(freqs)) * 100 / len(sample2fullfreq[sample])))
for vals in [freqs, coverages]:
if len(vals):
ofile.write('\t%f\t%f\t%f\t%f\t%f\t%f\t%f'%(\
numpy.average(vals),
numpy.percentile(vals,50),
numpy.std(vals),
numpy.min(vals),
numpy.max(vals),
numpy.percentile(vals,90),
numpy.percentile(vals,10),
))
else:
ofile.write('\t0\t0\t0\t0\t0\t0\t0')
ofile.write('\n')
# save merged alignment
ofn_align = os.path.join(output_dir, '%s.fasta'%clade)
logger.debug('alignment file: %s'%ofn_align)
with open(ofn_align, 'w') as ofile:
for sample in sample2fullseq:
SeqIO.write(
SeqRecord.SeqRecord(
id=sample,
description='',
seq=Seq.Seq(''.join(sample2fullseq[sample]))),
ofile,
'fasta')
# produce tree
oosp = ooSubprocess.ooSubprocess()
#ofn_tree = os.path.join(output_dir, '%s.tree'%clade)
#oosp.ex('FastTree', args=['-quiet', '-nt', ofn_align], out_fn=ofn_tree)
ofn_tree = clade + '.tree'
logger.debug('tree file: %s'%ofn_tree)
try:
for fn in glob.glob('%s/RAxML_*%s'
%(os.path.abspath(output_dir), ofn_tree)):
os.remove(fn)
raxml_args = [
'-s', os.path.abspath(ofn_align),
'-w', os.path.abspath(output_dir),
'-n', ofn_tree,
'-p', '1234'
]
if bootstrap_raxml:
raxml_args += ['-f', 'a',
'-m', 'GTRGAMMA',
'-x', '1234',
'-N', str(bootstrap_raxml)]
else:
raxml_args += ['-m', 'GTRCAT']
if nprocs_raxml > 1:
raxml_args += ['-T', str(nprocs_raxml)]
raxml_prog = 'raxmlHPC-PTHREADS-SSE3'
else:
raxml_prog = 'raxmlHPC'
oosp.ex(
raxml_prog,
args=raxml_args
)
except:
logger.info('Cannot build the tree! The number of samples is too few '\
'or there is some error with raxmlHMP')
pass
@trace_unhandled_exceptions
def load_sample(args):
ifn_sample = args['ifn_sample']
logger.debug('load %s'%ifn_sample)
output_dir = args['output_dir']
ifn_markers = args['ifn_markers']
clades = args['clades']
kept_clade = args['kept_clade']
db = shared_variables.db
sing_clades = shared_variables.sing_clades
clade2num_markers = shared_variables.clade2num_markers
marker_in_clade = args['marker_in_clade']
kept_markers = args['kept_markers']
sample = ooSubprocess.splitext(ifn_sample)[0]
with open(ifn_sample, 'rb') as ifile:
marker2seq = msgpack.load(ifile, use_list=False)
if kept_clade:
if kept_clade == 'singleton':
nmarkers = len(marker2seq)
else:
# remove redundant clades and markers
nmarkers = 0
for marker in marker2seq.keys():
clade = db['markers'][marker]['taxon'].split('|')[-1]
if kept_markers:
if marker in kept_markers and clade == kept_clade:
nmarkers += 1
else:
del marker2seq[marker]
elif clade == kept_clade:
nmarkers += 1
else:
del marker2seq[marker]
total_num_markers = clade2num_markers[kept_clade] if not kept_markers else len(kept_markers)
if float(nmarkers) / total_num_markers < marker_in_clade:
marker2seq = {}
# reformat 'pileup'
for m in marker2seq:
freq = marker2seq[m]['freq']
marker2seq[m]['freq'] = [(0.0, 0.0, 0.0) for i in \
range(len(marker2seq[m]['seq']))]
for p in freq:
marker2seq[m]['freq'][p] = freq[p]
marker2seq[m]['seq'] = marker2seq[m]['seq'].replace('-', 'N') # make sure we have no gaps in the sequence
return marker2seq
else:
# remove redundant clades and markers
clade2n_markers = defaultdict(int)
remove_clade = []
for marker in marker2seq:
clade = db['markers'][marker]['taxon'].split('|')[-1]
if 's__' in clade or clade in sing_clades:
clade2n_markers[clade] = clade2n_markers[clade] + 1
else:
remove_clade.append(clade)
remove_clade += [clade for clade in clade2n_markers if
float(clade2n_markers[clade]) \
/ float(clade2num_markers[clade]) < marker_in_clade]
remove_marker = [marker for marker in marker2seq if
db['markers'][marker]['taxon'].split('|')[-1] in
remove_clade]
for marker in remove_marker:
del marker2seq[marker]
sample_clades = set([])
for marker in marker2seq:
clade = db['markers'][marker]['taxon'].split('|')[-1]
sample_clades.add(clade)
return sample_clades
def load_all_samples(args, sample2order, kept_clade, kept_markers):
ifn_samples = args['ifn_samples'] + args['ifn_second_samples']
if args['ifn_representative_sample']:
ifn_samples.append(args['ifn_representative_sample'])
ifn_samples = sorted(list(set(ifn_samples)))
if not ifn_samples:
return None
else:
args_list = []
for ifn_sample in ifn_samples:
func_args = {}
func_args['ifn_sample'] = ifn_sample
func_args['kept_clade'] = kept_clade
func_args['kept_markers'] = kept_markers
for k in [
'output_dir',
'ifn_markers', 'nprocs_load_samples',
'clades',
'mpa_pkl',
]:
func_args[k] = args[k]
sample = ooSubprocess.splitext(ifn_sample)[0]
if sample2order[sample] == 'first':
func_args['marker_in_clade'] = args['marker_in_clade']
else:
func_args['marker_in_clade'] = args['second_marker_in_clade']
args_list.append(func_args)
results = ooSubprocess.parallelize(
load_sample,
args_list,
args['nprocs_load_samples'],
use_threads=args['use_threads'])
if kept_clade:
sample2marker = {}
for i in range(len(ifn_samples)):
sample = ooSubprocess.splitext(ifn_samples[i])[0]
if len(results[i]): # skip samples with no markers
sample2marker[sample] = results[i]
return sample2marker
else:
all_clades = set([])
for r in results:
for c in r:
all_clades.add(c)
all_clades = sorted(list(all_clades))
return all_clades
def strainer(args):
# auto-set some params
if args['relaxed_parameters']:
args['sample_in_marker'] = 0.5
args['N_in_marker'] = 0.5
args['gap_in_sample'] = 0.5
elif args['relaxed_parameters2']:
args['sample_in_marker'] = 0.2
args['N_in_marker'] = 0.8
args['gap_in_sample'] = 0.8
elif args['relaxed_parameters3']:
args['gap_in_trailing_col'] = 0.9
args['gap_in_internal_col'] = 0.9
args['gap_in_sample'] = 0.9
args['second_gap_in_sample'] = 0.5
args['sample_in_marker'] = 0.1
args['marker_in_clade'] = 0.1
args['second_marker_in_clade'] = 0.1
if args['keep_full_alignment_files']:
args['keep_alignment_files'] = True
args['marker_strip_length'] = 0
if os.path.isfile(args['clades'][0]):
with open(args['clades'][0], 'r') as ifile:
args['clades'] = [line.strip() for line in ifile]
# check conditions
ooSubprocess.mkdir(args['output_dir'])
with open(os.path.join(args['output_dir'], 'arguments.txt'), 'w') as ofile:
#for para in args:
# ofile.write('%s\n'%para)
# ofile.write('%s\n'%args[para])
ofile.write('%s\n'%' '.join(sys.argv))
ofile.write('%s'%args)
if args['ifn_markers'] == None and args['ifn_ref_genomes'] != None:
logger.error('ifn_ref_genomes is set but ifn_markers is not set!')
exit(1)
if args['ifn_markers'] != None and args['ifn_ref_genomes'] != None:
if len(args['clades']) != 1 or args['clades'] == ['all']:
logger.error('Only one clade can be specified when adding '\
'reference genomes')
exit(1)
if args['ifn_markers'] == None and args['clades'] == ['singleton']:
logger.error('clades is set to singleton but ifn_markers is not set!')
exit(1)
if args['ifn_samples'] == []:
args['clades'] = ['singleton']
if args['nprocs_load_samples'] == None:
args['nprocs_load_samples'] = args['nprocs_main']
if args['nprocs_align_clean'] == None:
args['nprocs_align_clean'] = args['nprocs_main']
if args['nprocs_raxml'] == None:
args['nprocs_raxml'] = args['nprocs_main']
if args['clades'] == ['singleton']:
shared_variables.db = None
shared_variables.sing_clades = []
nmarkers = 0
for rec in SeqIO.parse(args['ifn_markers'], 'fasta'):
nmarkers += 1
clade2num_markers = {'singleton': nmarkers}
shared_variables.clade2num_markers = clade2num_markers
else:
# load mpa_pkl
logger.info('Load mpa_pkl')
db = pickle.load(bz2.BZ2File(args['mpa_pkl']))
shared_variables.db = db
# reduce and convert to shared memory
#logger.debug('converting db')
db['taxonomy'] = db['taxonomy'].keys()
for m in db['markers']:
del db['markers'][m]['clade']
del db['markers'][m]['ext']
del db['markers'][m]['len']
del db['markers'][m]['score']
gc.collect()
#logger.debug('converted db')
# get clades from db
logger.info('Get clades from db')
sing_clades, clade2num_markers, clade2subclades = get_db_clades(db)
shared_variables.sing_clades = sing_clades
shared_variables.clade2num_markers = clade2num_markers
# set order
sample2order = {}
if args['ifn_representative_sample']:
sample = ooSubprocess.splitext(args['ifn_representative_sample'])[0]
sample2order[sample] = 'first'
for ifn in args['ifn_samples']:
sample = ooSubprocess.splitext(ifn)[0]
sample2order[sample] = 'first'
for ifn in args['ifn_second_samples']:
sample = ooSubprocess.splitext(ifn)[0]
if sample not in sample2order:
sample2order[sample] = 'second'
kept_markers = set([])
if args['marker_list_fn']:
with open(args['marker_list_fn'], 'r') as ifile:
for line in ifile:
kept_markers.add(line.strip())
if not kept_markers:
raise Exception('Number of markers in the marker_list_fn is 0!'%args['marker_list_fn'])
elif args['ifn_representative_sample']:
with open(args['ifn_representative_sample'], 'rb') as ifile:
repr_marker2seq = msgpack.load(ifile, use_list=False)
if args['clades'] != ['all'] and args['clades'] != ['singleton']:
for marker in repr_marker2seq:
clade = db['markers'][marker]['taxon'].split('|')[-1]
if clade in args['clades']:
kept_markers.add(marker)
else:
kept_markers = set(repr_marker2seq.keys())
logger.debug('Number of markers in the representative '\
'sample: %d'%len(kept_markers))
if not kept_markers:
raise Exception('Number of markers in the representative sample is 0!')
# get clades from samples
if args['clades'] == ['all']:
logger.info('Get clades from samples')
args['clades'] = load_all_samples(args,
sample2order,
kept_clade=None,
kept_markers=kept_markers)
if args['print_clades_only']:
for c in args['clades']:
if c.startswith('s__'):
print c
else:
print c, '(%s)'%(','.join(list(clade2subclades[c])))
return
# add reference genomes
ref2marker = defaultdict(dict)
if args['ifn_markers'] != None and args['ifn_ref_genomes'] != None:
logger.info('Add reference genomes')
marker_records = {}
for rec in SeqIO.parse(open(args['ifn_markers'], 'r'), 'fasta'):
if rec.id in kept_markers or (not kept_markers):
marker_records[rec.id] = rec
add_ref_genomes(
ref2marker,
marker_records,
args['ifn_ref_genomes'],
args['output_dir'])
# remove bad reference genomes
if not kept_markers:
nmarkers = shared_variables.clade2num_markers[args['clades'][0]]
else:
nmarkers = len(kept_markers)
remove_ref = []
mic = args['second_marker_in_clade'] if args['add_reference_genomes_as_second_samples'] else args['marker_in_clade']
for ref in ref2marker:
if float(len(ref2marker[ref])) / nmarkers < mic:
remove_ref.append(ref)
for ref in remove_ref:
del ref2marker[ref]
ref2marker = dict(ref2marker)
for ref in ref2marker:
if args['add_reference_genomes_as_second_samples']:
sample2order[ref] = 'second'
else:
sample2order[ref] = 'first'
# build tree for each clade
for clade in args['clades']:
logger.info('Build the tree for %s'%clade)
# load samples and reference genomes
sample2marker = load_all_samples(args,
sample2order,
kept_clade=clade,
kept_markers=kept_markers)
for r in ref2marker:
sample2marker[r] = ref2marker[r]
logger.debug('number of samples and reference genomes: %d'%len(sample2marker))
for sample in sample2marker:
logger.debug('number of markers in sample %s: %d'%(
sample,
len(sample2marker[sample])))
# Filter sequences
logger.debug('Filter consensus marker sequences')
for sample in sample2marker:
sample2marker[sample] = filter_sequence(
sample,
sample2marker[sample],
args['marker_strip_length'],
args['N_in_marker'])
# remove samples with percentage of markers less than marker_in_clade
logger.debug('remove samples with percentage of markers '\
'less than marker_in_clade')
for sample in sample2marker.keys():
if len(sample2marker[sample]):
if clade == 'singleton':
c = 'singleton'
else:
marker = sample2marker[sample].keys()[0]
c = db['markers'][marker]['taxon'].split('|')[-1]
if len(sample2marker[sample]) / \
float(clade2num_markers[c]) < args['marker_in_clade']:
del sample2marker[sample]
else:
del sample2marker[sample]
# build trees
shared_variables.sample2marker = sample2marker
build_tree(
clade=clade,
sample2marker=sample2marker,
sample2order=sample2order,
clade2num_markers=clade2num_markers,
sample_in_clade=args['sample_in_clade'],
sample_in_marker=args['sample_in_marker'],
gap_in_trailing_col=args['gap_in_trailing_col'],
gap_trailing_col_limit=args['gap_trailing_col_limit'],
gap_in_internal_col=args['gap_in_internal_col'],
N_count=args['N_count'],
N_col=args['N_col'],
gap_in_sample=args['gap_in_sample'],
second_gap_in_sample=args['second_gap_in_sample'],
long_gap_length=args['long_gap_length'],
long_gap_percentage=args['long_gap_percentage'],
p_value=args['p_value'],
output_dir=args['output_dir'],
nprocs_align_clean=args['nprocs_align_clean'],
alignment_program=args['alignment_program'],
nprocs_raxml=args['nprocs_raxml'],
keep_alignment_files=args['keep_alignment_files'],
bootstrap_raxml=args['bootstrap_raxml'],
save_sample2fullfreq=args['save_sample2fullfreq'],
use_threads=args['use_threads'])
del shared_variables.sample2marker
del sample2marker
#gc.collect()
logger.info('Finished!')
def check_dependencies(args):
programs = ['muscle']
if args['ifn_markers'] != None or args['ifn_ref_genomes'] != None:
programs += ['blastn', 'makeblastdb']
if args['nprocs_main'] > 1:
programs += ['raxmlHPC-PTHREADS-SSE3']
else:
programs += ['raxmlHPC']
for prog in programs:
if not which.is_exe(prog):
logger.error('Cannot find %s in the executable path!'%prog)
exit(1)
if __name__ == "__main__":
args = read_params()
check_dependencies(args)
strainer(args)
|