1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
#!/usr/bin/env python
# Author: Duy Tin Truong (duytin.truong@unitn.it)
# at CIBIO, University of Trento, Italy
import sys
import os
ABS_PATH = os.path.abspath(sys.argv[0])
MAIN_DIR = os.path.dirname(ABS_PATH)
os.environ['PATH'] += ':%s'%MAIN_DIR
os.environ['PATH'] += ':%s'%os.path.join(MAIN_DIR, 'strainphlan_src')
sys.path.append(MAIN_DIR)
sys.path.append(os.path.join(MAIN_DIR, 'strainphlan_src'))
import argparse as ap
import glob
import ooSubprocess
from ooSubprocess import print_stderr, trace_unhandled_exceptions
import ConfigParser
from Bio import SeqIO, Seq, SeqRecord
import cStringIO
import msgpack
import random
import subprocess
import bz2
import gzip
import logging
import logging.config
import tarfile
import threading
import multiprocessing
import pysam
from collections import defaultdict
from scipy import stats
import numpy
logging.basicConfig(level=logging.DEBUG, stream=sys.stderr,
disable_existing_loggers=False,
format='%(asctime)s | %(levelname)s | %(name)s | %(funcName)s | %(lineno)d | %(message)s')
logger = logging.getLogger(__name__)
def read_params():
p = ap.ArgumentParser()
p.add_argument('--ifn_samples', nargs='+', required=True, default=None, type=str)
p.add_argument('--ifn_markers', required=False, default=None, type=str)
p.add_argument('--output_dir', required=True, default=None, type=str)
p.add_argument('--nprocs', required=False, default=1, type=int)
p.add_argument('--min_read_len', required=False, default=90, type=int)
p.add_argument('--min_align_score', required=False, default=None, type=int)
p.add_argument('--min_base_quality', required=False, default=30, type=float)
p.add_argument('--error_rate', required=False, default=0.01, type=float)
p.add_argument('--marker2file_ext', required=False, default='.markers', type=str)
p.add_argument('--sam2file_ext', required=False, default='.sam.bz2', type=str)
p.add_argument(
'--verbose',
required=False,
dest='quiet',
action='store_false',
help='Show all information. Default "not set".')
p.set_defaults(quiet=True)
'''
p.add_argument(
'--use_processes',
required=False,
default=False,
action='store_false',
dest='use_threads',
help='Use multiprocessing. Default "Use multithreading".')
p.set_defaults(use_threads=True)
'''
p.add_argument(
'--input_type',
required=True,
default=None,
type=str,
choices=['fastq', 'sam'],
help='The input type:'\
' fastq, sam. Sam '\
' files can be obtained from the previous run of'\
' this script or strainphlan.py).')
return vars(p.parse_args())
def build_bowtie2db(ifn_markers, tmp_dir, error_pipe=None):
# build bowtie2-index
if not os.path.isfile(ifn_markers):
error = 'ifn_markers %s does not exist!'%ifn_markers
logger.error(error)
raise Exception(error)
if not os.path.isdir(tmp_dir):
ooSubprocess.mkdir(tmp_dir)
bt2_base = ooSubprocess.splitext(ifn_markers)[0]
index_fns = glob.glob('%s/%s.*'%(tmp_dir, bt2_base))
index_path = os.path.join(tmp_dir, bt2_base)
oosp = ooSubprocess.ooSubprocess(tmp_dir)
if index_fns == []:
oosp.ex(
'bowtie2-build',
['--quiet', ifn_markers, index_path],
stderr=error_pipe)
else:
logger.warning('bowtie2-indexes of %s are ready, skip rebuilding!'
%(bt2_base))
return index_path
def sample2markers(
ifn_sample,
min_read_len,
min_align_score,
min_base_quality,
error_rate,
ifn_markers,
index_path,
nprocs=1,
sam2file=None,
marker2file=None,
tmp_dir='tmp',
quiet=False):
'''
Compute the consensus markers in a sample file ifn_sample.
:param ifn_sample: the sample file in fastq format.
:param marker2file: the file name to store the consensus markers.
:param sam2file: the file name to store the sam content.
:returns: if marker2file==None, return the dictionary of the consensus
markers. Otherwise, save the result in fasta format to the file declared by
marker2file
'''
if quiet:
error_pipe = open(os.devnull, 'w')
else:
error_pipe = None
oosp = ooSubprocess.ooSubprocess(tmp_dir)
# sample to sam
sample_pipe = oosp.chain(
'dump_file.py',
args=['--input_file', ifn_sample],
stderr=error_pipe
)
filter_length_pipe = oosp.chain(
'fastx_len_filter.py',
args=['--min_len', str(min_read_len)],
in_pipe=sample_pipe,
stderr=error_pipe
)
bowtie2_pipe = oosp.chain(
'bowtie2',
args=[
'-U', '-',
'-x', index_path,
'--very-sensitive',
'--no-unal',
'-p', str(nprocs)],
in_pipe=filter_length_pipe,
stderr=error_pipe)
if sam2file == None:
sam_pipe = bowtie2_pipe
else:
oosp.chain(
'compress_file.py',
args=['--output_file', sam2file],
in_pipe=bowtie2_pipe,
stderr=error_pipe,
stop=True)
sam_pipe = oosp.chain(
'dump_file.py',
args=['--input_file', sam2file],
stderr=error_pipe)
ofn_bam_sorted_prefix = os.path.join(
tmp_dir,
os.path.basename(ifn_sample) + '.bam.sorted')
return sam2markers(
sam_file=sam_pipe,
ofn_bam_sorted_prefix=ofn_bam_sorted_prefix,
marker2file=marker2file,
oosp=oosp,
tmp_dir=tmp_dir,
quiet=quiet)
def save2file(tmp_file, ofn):
logger.debug('save %s'%ofn)
with open(ofn, 'w') as ofile:
for line in tmp_file:
ofile.write(line)
tmp_file.seek(0)
def sam2markers(
sam_file,
ofn_bam_sorted_prefix,
min_align_score=None,
min_base_quality=30,
error_rate=0.01,
marker2file=None,
oosp=None,
tmp_dir='tmp',
quiet=False):
'''
Compute the consensus markers in a sample from a sam content.
:param sam_file: a file name, a file object or subprocess.Popen object
containing the content of a sam file.
:param marker2file: the file name to store the consensus genomes.
:param ofn_bam_sorted_prefix: the bam sorted file prefix
:param oosp: an instance of ooSubprocess for running a pipe
:returns: if marker2file==None, return the dictionary of the consensus
genomes. Otherwise, save the result in fasta format to the file declared by
marker2file
'''
if quiet:
error_pipe = open(os.devnull, 'w')
else:
error_pipe = None
# sam content to file object
if oosp is None:
oosp = ooSubprocess.ooSubprocess()
if type(sam_file) == str:
p1 = oosp.chain(
'dump_file.py',
args=['--input_file', sam_file],
stderr=error_pipe)
else:
p1 = sam_file
# filter sam
if min_align_score == None:
p1_filtered = p1
else:
p1_filtered = oosp.chain('sam_filter.py',
args=['--min_align_score',
str(min_align_score)],
in_pipe=p1,
stderr=error_pipe)
# sam to bam
p2 = oosp.chain(
'samtools',
args=['view', '-bS', '-'],
in_pipe=p1_filtered,
stderr=error_pipe)
# sort bam
tmp_fns = glob.glob('%s*'%ofn_bam_sorted_prefix)
for tmp_fn in tmp_fns:
os.remove(tmp_fn)
p3 = oosp.chain(
'samtools',
args=['sort', '-o', '-', ofn_bam_sorted_prefix],
in_pipe=p2,
stderr=error_pipe)
# extract polimorphic information
marker2seq = defaultdict(dict)
pysam.index(p3.name)
samfile = pysam.AlignmentFile(p3.name)
for pileupcolumn in samfile.pileup():
rname = samfile.getrname(pileupcolumn.reference_id)
pileup = defaultdict(int)
for pileupread in pileupcolumn.pileups:
if not pileupread.is_del and not pileupread.is_refskip: # query position is None if is_del or is_refskip is set.
b = pileupread.alignment.query_sequence[pileupread.query_position]
q = pileupread.alignment.query_qualities[pileupread.query_position]
if q >= min_base_quality:
pileup[b] += 1
if len(pileup):
f = float(max(pileup.values())) / sum(pileup.values())
p = stats.binom.cdf(max(pileup.values()), sum(pileup.values()), 1.0 - error_rate)
freq = (f, sum(pileup.values()), p)
else:
freq = (0.0, 0.0, 0.0)
if 'freq' not in marker2seq[rname]:
marker2seq[rname]['freq'] = {}
marker2seq[rname]['freq'][pileupcolumn.pos] = freq
samfile.close()
os.remove(p3.name + '.bai')
# bam to mpileup
p3.seek(0)
p4 = oosp.chain(
'samtools',
args=['mpileup', '-u', '-'],
in_pipe=p3,
stderr=error_pipe)
# mpileup to vcf
p5 = oosp.chain(
'bcftools',
args=['view', '-c', '-g', '-p', '1.1', '-'],
in_pipe=p4,
stderr=error_pipe)
#stderr=open(os.devnull, 'w'))
# fix AF1=0
p6 = oosp.chain(
'fix_AF1.py',
args=['--input_file', '-'],
in_pipe=p5,
stderr=error_pipe)
# vcf to fastq
p7 = oosp.chain(
'vcfutils.pl',
args=['vcf2fq'],
in_pipe=p6,
get_out_pipe=True,
stderr=error_pipe,
stop=True)
try:
for rec in SeqIO.parse(p7, 'fastq'):
marker2seq[rec.name]['seq'] = str(rec.seq).upper()
marker2seq = dict(marker2seq)
except Exception as e:
logger.error("sam2markers failed on file " + sam_file)
raise
if type(p1) == file:
p1.close()
if marker2file:
with open(marker2file, 'wb') as ofile:
msgpack.dump(marker2seq, ofile)
return marker2seq
@trace_unhandled_exceptions
def run_sample(args_list):
ifn_sample = args_list[0]
args = args_list[1]
base_name = ooSubprocess.splitext(ifn_sample)[0]
output_prefix = os.path.join(args['output_dir'], base_name)
if args['sam2file_ext'] != None:
sam2file = output_prefix + args['sam2file_ext']
else:
sam2file = None
marker2file = output_prefix + args['marker2file_ext']
if args['input_type'] == 'fastq':
sample2markers(
ifn_sample=ifn_sample,
min_read_len=args['min_read_len'],
min_align_score=args['min_align_score'],
min_base_quality=args['min_base_quality'],
error_rate=args['error_rate'],
ifn_markers=args['ifn_markers'],
index_path=args['index_path'],
nprocs=args['nprocs'],
sam2file=sam2file,
marker2file=marker2file,
tmp_dir=args['output_dir'],
quiet=args['quiet'])
else:
ofn_bam_sorted_prefix = os.path.join(
args['output_dir'],
os.path.basename(ifn_sample) + '.bam.sorted')
sam2markers(
sam_file=ifn_sample,
ofn_bam_sorted_prefix=ofn_bam_sorted_prefix,
min_align_score=args['min_align_score'],
min_base_quality=args['min_base_quality'],
error_rate=args['error_rate'],
marker2file=marker2file,
quiet=args['quiet'])
return 0
def compute_polymorphic_sites(sample2pileup, ifn_alignment):
return
def main(args):
ooSubprocess.mkdir(args['output_dir'])
manager = multiprocessing.Manager()
if args['input_type'] == 'fastq':
index_path = build_bowtie2db(args['ifn_markers'], args['output_dir'])
args['index_path'] = index_path
args_list = []
for ifn_sample in args['ifn_samples']:
args_list.append([ifn_sample, args])
#ooSubprocess.parallelize(run_sample, args_list, args['nprocs'])
pool = multiprocessing.Pool(args['nprocs'])
results = []
for a in args_list:
r = pool.apply_async(run_sample, [a])
results.append(r)
for r in results:
try:
r.get()
except Exception as e:
print e
if __name__ == "__main__":
args = read_params()
main(args)
|