1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
#!/usr/bin/env python
import sys
import numpy as np
import scipy.spatial.distance as spd
import scipy.cluster.hierarchy as sph
from scipy import stats
import matplotlib
#matplotlib.use('Agg')
import pylab
import pandas as pd
import matplotlib.pyplot as plt
class ReadCmd:
def __init__( self ):
import argparse as ap
import textwrap
p = ap.ArgumentParser( description= "TBA" )
arg = p.add_argument
arg( '-i', '--inp', '--in', metavar='INPUT_FILE', type=str, nargs='?', default=sys.stdin,
help= "The input matrix" )
arg( '-o', '--out', metavar='OUTPUT_FILE', type=str, nargs='?', default=None,
help= "The output image file [image on screen of not specified]" )
arg( '-m', '--metadata_file', type=str, default='None',
help= "The input metadata file [default None]" )
DataMatrix.input_parameters( p )
BarPlot.input_parameters( p )
self.args = p.parse_args()
def check_consistency( self ):
pass
def get_args( self ):
return self.args
class DataMatrix:
datatype = 'data_matrix'
@staticmethod
def input_parameters( parser ):
dm_param = parser.add_argument_group('Input data matrix parameters')
arg = dm_param.add_argument
arg( '--sep', type=str, default='\t' )
arg( '-f', '--feat', type=str, default=None, required = True,
help = "Name of the feature to plot"
"[or the ending string if --endswith is specified]")
arg( '--endswith', action='store_true',
help = "Match the ending part of the feature name" )
arg( '--fname_row', type=int, default=0,
help = "row number containing the names of the features "
"[default 0, specify -1 if no names are present in the matrix")
arg( '--sname_row', type=int, default=0,
help = "column number containing the names of the samples "
"[default 0, specify -1 if no names are present in the matrix")
arg( '--skip_rows', type=str, default=None,
help = "Row numbers to skip (0-indexed, comma separated) from the input file"
"[default None, meaning no rows skipped")
arg( '--def_na', type=float, default=None,
help = "Set the default value for missing values [default None which means no replacement]")
def __init__( self, input_file, args ):
self.args = args
toskip = [int(l) for l in self.args.skip_rows.split(",")] if self.args.skip_rows else None
self.table = pd.read_table(
input_file, sep = self.args.sep, skipinitialspace = True, skiprows = toskip,
header = self.args.fname_row if self.args.fname_row > -1 else None,
index_col = self.args.sname_row if self.args.sname_row > -1 else None
)
rows = []
if self.args.endswith:
for n in self.table.index:
if n.endswith( self.args.feat ):
rows.append( n )
elif self.args.feat in self.table.index:
rows.append( self.args.feat )
self.table = self.table.reindex( index=rows )
if not len(rows):
sys.stderr.write("Error, feat "+self.args.feat+" not found!")
sys.exit()
if len(rows) > 1:
sys.stderr.write("Error, multiple features matching "+self.args.feat+" !")
sys.exit()
if not self.args.def_na is None:
self.table = self.table.fillna( self.args.def_na )
def get_numpy_matrix( self ):
return self.table
def get_snames( self ):
return list(self.table.index)
def get_fnames( self ):
return list(self.table.columns)
def save_matrix( self, output_file ):
self.table.to_csv( output_file, sep = '\t' )
class MetadataMatrix:
datatype = 'metadata_matrix'
@staticmethod
def input_parameters( parser ):
dm_param = parser.add_argument_group('Input metadata file')
arg = dm_param.add_argument
arg( '--sep', type=str, default='\t' )
arg( '--fname_row', type=int, default=0,
help = "row number containing the names of the features "
"[default 0, specify -1 if no names are present in the matrix")
arg( '--def_na', type=float, default=None,
help = "Set the default value for missing values [default None which means no replacement]")
def __init__( self, input_file, args ):
self.args = args
self.table = pd.read_table(
input_file, sep = self.args.sep, skipinitialspace = True,
#header = self.args.fname_row if self.args.fname_row > -1 else None,
index_col = self.args.sname_row if self.args.sname_row > -1 else None
)
if not self.args.def_na is None:
self.table = self.table.fillna( self.args.def_na )
def get_snames( self ):
return list(self.table.index)
def get_fnames( self ):
return list(self.table.columns)
def get_table( self ):
return self.table
class BarPlot:
datatype = 'barplot'
@staticmethod
def input_parameters( parser ):
hm_param = parser.add_argument_group('Heatmap options')
arg = hm_param.add_argument
arg( '--dpi', type=int, default=72,
help = "Image resolution in dpi [default 72]")
arg( '-C', '--color_condition', type=str, default=None,
help = "The name of the metadata column used for coloring")
arg( '-H', '--hatch_condition', type=str, default=None,
help = "The name of the metadata column used for hatching")
arg( '-G', '--group_condition', type=str, default=None,
help = "The name of the metadata column used for grouping")
arg( '-t', '--title', type=str, default=None,
help = "The title of the plot [default no title]")
arg( '-l', '--log_scale', action='store_true',
help = "Log scale" )
def __init__( self, numpy_matrix, metadata_matrix, args = None ):
self.numpy_matrix = numpy_matrix
self.mmatrix = metadata_matrix
self.args = args
def draw( self ):
fig = plt.figure( figsize=(20,8) )
ax = fig.add_subplot(111)
width = 0.65
names = list(self.numpy_matrix.index)
n0 = names[0]
tp = self.numpy_matrix.to_dict()
keys = sorted(tp)
if self.args.color_condition not in self.mmatrix:
self.args.color_condition = None
cond_values = [None] if self.args.color_condition is None else sorted(set(self.mmatrix[self.args.color_condition]) )
if self.args.hatch_condition not in self.mmatrix:
self.args.hatch_condition = None
hatch_values = [None] if self.args.hatch_condition is None else sorted(set(self.mmatrix[self.args.hatch_condition]) )
if self.args.group_condition:
group_values = list(sorted(set(self.mmatrix[self.args.group_condition])))
keys = sorted( keys, key=lambda x:group_values.index(self.mmatrix[self.args.group_condition][x]) )
else:
keys, group_values = sorted( keys ), []
ind = np.arange( len(tp) )
pos = ind-width/2
hatches = ['//','\\\\','++','--','xx']
cols = ['r','g','c','b']
minv,maxv = 0.0, max([v[n0] for v in tp.values()])
bar_sets = []
for i,c in (enumerate(cond_values) if len(cond_values) > 0 else None):
for j,h in enumerate(hatch_values):
values = [(tp[k][n0] if (c is None or self.mmatrix[self.args.color_condition][k] == c)
and (h is None or self.mmatrix[self.args.hatch_condition][k] == h) else 0.0) for k in keys]
b = ax.bar(pos, values, width, hatch=hatches[j%len(hatches)] if len(hatch_values) > 1 else "", color=cols[i%len(cols)])
cond = self.args.color_condition + " "+str(c).strip()+", " if c else ""
hatch = self.args.hatch_condition + " "+str(h).strip()+", " if h else ""
bar_sets.append( (b,cond+hatch) )
v0 = ind[0]-0.5
vm1 = v0
ax.plot([v0,v0],[minv,maxv],"--",linewidth=2,color='k')
for g in group_values:
vm1 = v0
v0 += list(self.mmatrix[self.args.group_condition]).count(g)
ax.plot([v0,v0],[minv,maxv],"--",linewidth=2,color='k')
ax.text( (vm1+v0)*0.5, maxv * 0.9, str(g), horizontalalignment='center', verticalalignment='center' )
#ax.text( (vm1+v0)*0.5, maxv * 0.9, str(round(g,1)), horizontalalignment='center', verticalalignment='center' )
if self.args.color_condition or self.args.hatch_condition:
leg = ax.legend( zip(*bar_sets)[0], zip(*bar_sets)[1], bbox_to_anchor=(1.02, 0,0.3,1), loc=1,
ncol=1, mode="expand", borderaxespad=0., frameon = False)
ax.set_xlim(-width,ind[-1]+width)
ax.set_ylim(0,maxv)
ax.set_xticks( ind )
ax.set_xticklabels( keys, rotation = 90 )
ax.set_title( self.args.title or "" )
if not self.args.out:
plt.show()
else:
fig.savefig( self.args.out, bbox_inches='tight', dpi = self.args.dpi,
bbox_extra_artists=((fig.get_axes()[0].get_legend(),) if self.args.color_condition or self.args.hatch_condition else None) ) #dpi = self.args.dpi )
if __name__ == '__main__':
read = ReadCmd( )
read.check_consistency()
args = read.get_args()
dm = DataMatrix( args.inp, args )
mdm = MetadataMatrix( args.metadata_file, args )
bp = BarPlot( dm.get_numpy_matrix(), mdm.get_table(),args )
bp.draw()
|