File: PredictionTarget.java

package info (click to toggle)
metastudent 2.0.1-10
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 95,644 kB
  • sloc: java: 3,287; perl: 2,089; python: 1,421; ruby: 242; sh: 39; makefile: 19
file content (378 lines) | stat: -rwxr-xr-x 12,356 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
package pp2.prediction.knn;

import java.io.BufferedWriter;
import java.io.IOException;
import java.util.Collections;
import java.util.HashSet;
import java.util.Vector;

import pp2.go.DAG;
import pp2.go.Relations;
import pp2.tools.Tools;

/**
 * represents one function prediction target which is given in the BLAST results file
 * @author Thomas Hopf
 *
 */
public class PredictionTarget {

	public static final int NUM_ONTOLOGIES = 3;
	public static final int BIOLOGICAL_PROCESS = 0;
	public static final int MOLECULAR_FUNCTION = 1;
	public static final int CELLULAR_COMPONENT = 2;
	
	public static final double MAX_EVALUE = 1000;
	
	private static String newline = System.getProperty("line.separator");
	private static String tab = "\t";
	
	private String targetID;
	private Vector<BlastHit> blastHits = new Vector<BlastHit>();
	
	/*
	 *  getters and setters
	 */
	public void setTargetID(String targetID) {
		this.targetID = targetID;
	}
	
	public String getTargetID()
	{
		return targetID;
	}
	
	public void addBlastHit(String hitLine, boolean deleteDuplicates)
	{			
		if(deleteDuplicates)
		{
			String newID = hitLine.split("\t")[0];
			for(int i=0; i<blastHits.size(); i++)
			{
				if(blastHits.get(i).getHitID().equals(newID))
					blastHits.remove(i);
			}
		}
		
		blastHits.add(new BlastHit(hitLine));
	}
	
	public Vector<BlastHit> getBlastHits()
	{
		return blastHits;
	}
	
	/*
	 * methods
	 */
	
	private int ontologyToIndex(String ontology)
	{
		if(ontology.equals("molecular_function"))
			return MOLECULAR_FUNCTION;
		else {
			if(ontology.equals("biological_process"))
				return PredictionTarget.BIOLOGICAL_PROCESS;
			else
				return PredictionTarget.CELLULAR_COMPONENT;
		}
	}
	
//	private double limitRange(double value)
//	{
//		return Math.max(1E-308, Math.min(value, 1));
//	}
	
	private double getExponent(double eValue)
	{
		if(eValue <= 0)
			return MAX_EVALUE;
		else
			return -Math.log(eValue);
	}
	
	private String indexToOntology(int index)
	{
		switch(index)
		{
			case BIOLOGICAL_PROCESS: return "B";
			case MOLECULAR_FUNCTION: return "M";
			case CELLULAR_COMPONENT: return "C";
			default: return "-";
		}
	}
	
	public void predict(Relations relations, boolean useEValueThreshold, double eValueTreshold, int k, BufferedWriter naiveWriter, BufferedWriter leafWriter, double[] distribution) throws Exception
	{
//		System.out.println("predicting " + targetID);

//		System.out.print(".");
		// if we don't have any BLAST hits for the current target, predicting anything is pointless...
		if(blastHits.size() == 0)
			return;
		
		// sort result list in ascending order by e-Value
		Collections.sort(blastHits);
		
		// create a vector containing only the relevant Blast hits, i.e. those with an e-Value
		// below the threshold or the first k nearest neighbors
		Vector<BlastHit> blastHitsTmp = new Vector<BlastHit>(blastHits.size());
		
		int j=0;

		while(j < blastHits.size() && blastHits.get(j).getEValue() <= eValueTreshold && j < k)
		{
			blastHitsTmp.add(blastHits.get(j));
			j++;
		}

		
		// calculate the global quality score of this hit (i.e. the quantile of mean(E-Values) + 2*stddev(E-values)
		double quantile = 1;
		
		if(distribution != null)
		{
			// first, calculate mean
			double mean = 0;
			
			for(BlastHit b: blastHitsTmp)
				mean += getExponent(b.getEValue());
			
			mean /= blastHitsTmp.size();	
			//System.out.println("mean " + mean);
			
			// second, calculate standard deviation
			double stdDev = 0;
			
			for(BlastHit b: blastHitsTmp)
				stdDev += (getExponent(b.getEValue()) - mean) * (getExponent(b.getEValue()) - mean);
			
			// unbiased estimator: normalize by N-1
			stdDev = Math.sqrt(stdDev / (blastHitsTmp.size() - 1));
			//System.out.println("sd " + stdDev);
			
			// calculate quality score as mean+2*stddev
			double qualityScore = mean + 2*stdDev;
			//System.out.println("score " + qualityScore);
			
			// find which quantile the quality score corresponds to. This is the global quality score of the target
			int i = 0;
			while(i<100 && qualityScore >= distribution[i])
				i++;
			
			quantile = (i + 1)/(double)100;
			//System.out.println("quantile :" + quantile);
		}
		
		
//		System.out.println("before: " + blastHits.size() + " => after: " + blastHitsTmp.size());
		
//		for(BlastHit b: blastHits)
//		{
//			System.out.println(b.getHitID() + ": " + b.getEValue());
//		}
		
		/*
		 * step 1: get a list of all unique GO terms of hits for this prediction and construct the DAG
		 *
		 * TODO: this is a bit redundant since DAG.java also converts the String[] parameter to a HashSet 
		 */
		HashSet<String> allGoTerms = new HashSet<String>();
		int totalNumGoTerms = 0;
		
		for(BlastHit b : blastHitsTmp)
			for(String s : b.getGoTerms())
			{
				allGoTerms.add("GO:" + s);
				totalNumGoTerms++;
			}	
		
		DAG dag = new DAG(relations, (String [])allGoTerms.toArray(new String[0]));
		HashSet<BlastHit> normalizationHits = new HashSet<BlastHit>();
		
		// check whether there are any valid nodes or if we lost everything due to filtering cellular component annotations.
		// if we did, it makes no sense to make a prediction
		if(dag.getLeaves().length <= 0) 
		{
			System.out.println("no DAG nodes for " + targetID + " after CC filtering, skip");
			return;
		}
		
		/*
		 * step 2: add annotations to the DAG by iterating over all evidence (= BLAST hits)
		 */
		
		// once again, iterate over all BLAST hits
		for(BlastHit b : blastHitsTmp)
		{			
			// iterate over all GO terms of the current hit
			for(String s: b.getGoTerms())
			{
				//b.activateOntologySupport(relations.getType("GO:"+s));
				
				// attach to corresponding nodes in the DAG
				DAGNode n = null;
				if((n = dag.getDAGNode("GO:" + s)) != null)
				{
					n.addHit(b);
					// update which GO ontologies are supported by the hit, do only those that weren't filtered before
					
					String r = relations.getType("GO:"+s);
					if(r == null)	// TODO: remove me
						System.err.println("error! invalid: GO:"+s + " for target " + this.targetID);
					
					b.activateOntologySupport(r);
					
					// also add evidence to all "ancestors" in the DAG
					for(String ancestor: dag.getAncestors("GO:"+s))
						dag.getDAGNode(ancestor).addHit(b); // here no additional "GO:" is necessary because the getAncestors() method already returns correct IDs				
				}
			}
			
		}
		
		/*
		 * step 3: calculate normalization values
		 */
		double[] eValueSum = new double[NUM_ONTOLOGIES];
		double[] eValueSumSquared = new double[NUM_ONTOLOGIES];
		
		double[] eValueSumLog = new double[NUM_ONTOLOGIES];
		double[] eValueSumLogSquared = new double[NUM_ONTOLOGIES];
		
		double[] bitScoreSum = new double[NUM_ONTOLOGIES];
		double[] bitScoreSumSquared = new double[NUM_ONTOLOGIES];
		
		int[] unweightedSum = new int[NUM_ONTOLOGIES];
		
		for(BlastHit b: blastHitsTmp)
		{
			//double exponent = -Math.log(limitRange(b.getEValue()));
			double exponent = getExponent(b.getEValue());
			//System.out.println(exponent); 
			double exponentLog = Math.log(exponent);
			
			for(int i=0; i<NUM_ONTOLOGIES; i++)
			{
				if(b.supports(i))
				{
					unweightedSum[i]++;
					
					eValueSum[i] += exponent;
					eValueSumSquared[i] += exponent*exponent;			
					
					eValueSumLog[i] += exponentLog;
					eValueSumLogSquared[i] += exponentLog*exponentLog;
					
					bitScoreSum[i] += b.getBitScore();
					bitScoreSumSquared[i] += b.getBitScore();
				}
			}
		}
		
		/*
		 * step 4: score all nodes in the DAG
		 */
		naiveWriter.write(">" + targetID + newline);
		for(String s: dag.getDAGNodes().keySet())
		{
			DAGNode d = dag.getDAGNodes().get(s);
			double eValueNom = 0, eValueLogNom = 0, bitScoreNom = 0;
			int unweightedNom = 0;
			
			for(BlastHit b: d.getSupportingHits())
			{
				unweightedNom++;
				
				//double exponent = -Math.log(limitRange(b.getEValue()));
				double exponent = getExponent(b.getEValue());
				
				eValueNom += exponent;
				eValueLogNom += Math.log(exponent);
				bitScoreNom += b.getBitScore();				
			}
			
			int index = ontologyToIndex(relations.getType(s));
		//	System.out.println(index + " -> " + eValueSum[index]);
		//	System.out.print(index);
			
			d.setUnweightedSCore((double)unweightedNom / (unweightedSum[index] > 0 ? unweightedSum[index] : 1));
			
			d.seteValueScore(eValueNom / (eValueSum[index] > 1 ? eValueSum[index] : 1));
		//	d.seteValueSquaredScore(eValueNom / (eValueSumSquared[index] > 1 ? eValueSumSquared[index] : 1));
			
			d.seteValueLogScore(eValueLogNom / (eValueSumLog[index] > 1 ? eValueSumLog[index] : 1));
		//	d.seteValueLogSquaredScore(eValueLogNom / (eValueSumLogSquared[index] > 1 ? eValueSumLogSquared[index] : 1));
			
			d.setBitScoreScore(bitScoreNom / (bitScoreSum[index] > 1 ? bitScoreSum[index] : 1));
		//	d.setBitScoreSquaredScore(bitScoreNom / (bitScoreSumSquared[index] > 1 ? bitScoreSumSquared[index] : 1));
			
			
			naiveWriter.write(s + tab + indexToOntology(index) + tab + Tools.round(d.getUnweightedScore()) + tab + Tools.round(d.geteValueScore()) + tab + Tools.round(d.geteValueLogScore()));	
			if(distribution != null)
				naiveWriter.write(tab + Tools.round(d.getUnweightedScore() * quantile) + tab + Tools.round(d.geteValueScore() * quantile) + tab + Tools.round(d.geteValueLogScore() * quantile));
		
			naiveWriter.write(newline);

			//			System.out.println(s + ": " + d.geteValueScore() + "\t" + "\t" + d.getUnweightedScore() + "\t" + relations.getType(s) + "\t" + eValueSum[index]);
			// ontologies
		}
		naiveWriter.write("//" + newline); // + Character.LINE_SEPARATOR);
		
		// TODO : 1 - score?
		// TODO: unweighted kNN
		// TODO: bitscore macht keinen sinn da direkt abhängig von E-value...http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
		
		/*
		 * step 5: score leaves and output
		 */
//		System.out.println("biological_process: " + unweightedSum[BIOLOGICAL_PROCESS] + ", " + eValueSum[BIOLOGICAL_PROCESS]);
//		System.out.println("molecular_function: " + unweightedSum[MOLECULAR_FUNCTION] + ", " + eValueSum[MOLECULAR_FUNCTION]);
//		System.out.println("cellular_component: " + unweightedSum[CELLULAR_COMPONENT] + ", " + eValueSum[CELLULAR_COMPONENT]);
		
		leafWriter.write(">" + targetID + newline);
		for(String l: dag.getLeaves())
		{
			DAGNode currentNode = dag.getDAGNodes().get(l);
			
			double leafScoreEValue = currentNode.geteValueScore();
			double leafScoreEValueLog = currentNode.geteValueLogScore();
			double leafScoreUnweighted = currentNode.getUnweightedScore();
			
			for(String m: dag.getAncestors(l))
			{
				leafScoreEValue += dag.getDAGNodes().get(m).geteValueScore();
				leafScoreEValueLog += dag.getDAGNodes().get(m).geteValueLogScore();
				leafScoreUnweighted += dag.getDAGNodes().get(m).getUnweightedScore();
			}
			
			int N = dag.getAncestors(l).length + 1;
			currentNode.setLeafScoreEValue(leafScoreEValue / N);
			currentNode.setLeafScoreEValueLog(leafScoreEValueLog / N);
			currentNode.setLeafScoreUnweighted(leafScoreUnweighted / N);
		
//			System.out.println("->" + l + " " + dag.getDAGNodes().get(l).getSupportingHits().size() + " " + dag.getDAGNodes().get(l).geteValueScore() + " "  + dag.getDAGNodes().get(l).getLeafScoreEValue() + " " + relations.getType(l));
			leafWriter.write(l + tab + indexToOntology(ontologyToIndex(relations.getType(l))) + tab + Tools.round(currentNode.getLeafScoreUnweighted()) + tab + Tools.round(currentNode.getLeafScoreEValue()) + tab + Tools.round(currentNode.getLeafScoreEValueLog()));
			if(distribution != null)
				leafWriter.write(tab + Tools.round(currentNode.getLeafScoreUnweighted() * quantile) + tab + Tools.round(currentNode.getLeafScoreEValue() * quantile) + tab + Tools.round(currentNode.getLeafScoreEValueLog() * quantile));
		
			leafWriter.write(newline);
		}
		leafWriter.write("//" + newline);
//			if(relations.getType(l).equals("biological_process"))
//				; //continue;
//			
//			System.out.println("->" + l + " " + dag.getDAGNodes().get(l).getSupportingHits().size() + " " + dag.getDAGNodes().get(l).geteValueScore() + " " + relations.getType(l));
//			System.out.print("\t");
//			for(String m: dag.getAncestors(l))
//			{
//				//System.out.print(" | " + m + "="+dag.getDAGNodes().get(m).geteValueScore());
//				System.out.print(" | " + m + "="+dag.getDAGNodes().get(m).getSupportingHits().size());
//			}
//			System.out.println();
//		}
		
	}
	
	
}