1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
/*
* Copyright 1997, Regents of the University of Minnesota
*
* smbfactor.c
*
* This file performs the symbolic factorization of a matrix
*
* Started 8/1/97
* George
*
* $Id: smbfactor.c,v 1.1 1998/11/27 17:59:40 karypis Exp $
*
*/
#include <metis.h>
/*************************************************************************
* This function sets up data structures for fill-in computations
**************************************************************************/
void ComputeFillIn(GraphType *graph, idxtype *iperm)
{
long i, j, k, nvtxs, maxlnz, maxsub;
idxtype *xadj, *adjncy;
idxtype *perm, *xlnz, *xnzsub, *nzsub;
double opc;
/*
printf("\nSymbolic factorization... --------------------------------------------\n");
*/
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
maxsub = 4*xadj[nvtxs];
/* Relabel the vertices so that it starts from 1 */
k = xadj[nvtxs];
for (i=0; i<k; i++)
adjncy[i]++;
for (i=0; i<nvtxs+1; i++)
xadj[i]++;
/* Allocate the required memory */
perm = idxmalloc(nvtxs+1, "ComputeFillIn: perm");
xlnz = idxmalloc(nvtxs+1, "ComputeFillIn: xlnz");
xnzsub = idxmalloc(nvtxs+1, "ComputeFillIn: xnzsub");
nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub");
/* Construct perm from iperm and change the numbering of iperm */
for (i=0; i<nvtxs; i++)
{
perm[iperm[i]] = i;
}
for (i=0; i<nvtxs; i++) {
iperm[i]++;
perm[i]++;
}
/*
* Call sparspak routine.
*/
if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) {
free(nzsub);
maxsub = 4*maxsub;
nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub");
if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub))
errexit("MAXSUB is too small!");
}
GKfree(&perm, &xlnz, &xnzsub, &nzsub, LTERM);
/* Relabel the vertices so that it starts from 0 */
for (i=0; i<nvtxs; i++)
iperm[i]--;
for (i=0; i<nvtxs+1; i++)
xadj[i]--;
k = xadj[nvtxs];
for (i=0; i<k; i++)
adjncy[i]--;
}
/*************************************************************************
* This function sets up data structures for fill-in computations
**************************************************************************/
idxtype ComputeFillIn2(GraphType *graph, idxtype *iperm)
{
long i, j, k, nvtxs, maxlnz, maxsub;
idxtype *xadj, *adjncy;
idxtype *perm, *xlnz, *xnzsub, *nzsub;
double opc;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
maxsub = 4*xadj[nvtxs];
/* Relabel the vertices so that it starts from 1 */
k = xadj[nvtxs];
for (i=0; i<k; i++)
adjncy[i]++;
for (i=0; i<nvtxs+1; i++)
xadj[i]++;
/* Allocate the required memory */
perm = idxmalloc(nvtxs+1, "ComputeFillIn: perm");
xlnz = idxmalloc(nvtxs+1, "ComputeFillIn: xlnz");
xnzsub = idxmalloc(nvtxs+1, "ComputeFillIn: xnzsub");
nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub");
/* Construct perm from iperm and change the numbering of iperm */
for (i=0; i<nvtxs; i++)
perm[iperm[i]] = i;
for (i=0; i<nvtxs; i++) {
iperm[i]++;
perm[i]++;
}
/*
* Call sparspak routine.
*/
if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) {
free(nzsub);
maxsub = 4*maxsub;
nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub");
if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub))
errexit("MAXSUB is too small!");
}
opc = 0;
for (i=0; i<nvtxs; i++)
xlnz[i]--;
for (i=0; i<nvtxs; i++)
opc += (xlnz[i+1]-xlnz[i])*(xlnz[i+1]-xlnz[i]) - (xlnz[i+1]-xlnz[i]);
GKfree(&perm, &xlnz, &xnzsub, &nzsub, LTERM);
/* Relabel the vertices so that it starts from 0 */
for (i=0; i<nvtxs; i++)
iperm[i]--;
for (i=0; i<nvtxs+1; i++)
xadj[i]--;
k = xadj[nvtxs];
for (i=0; i<k; i++)
adjncy[i]--;
return maxlnz;
}
/*****************************************************************
********** SMBFCT ..... SYMBOLIC FACTORIZATION *********
******************************************************************
* PURPOSE - THIS ROUTINE PERFORMS SYMBOLIC FACTORIZATION
* ON A PERMUTED LINEAR SYSTEM AND IT ALSO SETS UP THE
* COMPRESSED DATA STRUCTURE FOR THE SYSTEM.
*
* INPUT PARAMETERS -
* NEQNS - NUMBER OF EQUATIONS.
* (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE.
* (PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE.
*
* UPDATED PARAMETERS -
* MAXSUB - SIZE OF THE SUBSCRIPT ARRAY NZSUB. ON RETURN,
* IT CONTAINS THE NUMBER OF SUBSCRIPTS USED
*
* OUTPUT PARAMETERS -
* XLNZ - INDEX INTO THE NONZERO STORAGE VECTOR LNZ.
* (XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT VECTORS.
* MAXLNZ - THE NUMBER OF NONZEROS FOUND.
*
*******************************************************************/
long smbfct(long neqns, idxtype *xadj, idxtype *adjncy, idxtype *perm, idxtype *invp, idxtype *xlnz,
long *maxlnz, idxtype *xnzsub, idxtype *nzsub, long *maxsub)
{
/* Local variables */
long node, rchm, mrgk, lmax, i, j, k, m, nabor, nzbeg, nzend;
long kxsub, jstop, jstrt, mrkflg, inz, knz, flag,lgind;
idxtype *mrglnk, *marker, *rchlnk;
/* jyb */
long snode, lnode, xnzi, xnzip1,nbi, nbip1;
long aux, minsn, maxsn;
double opc;
long taille1, k1, taille2, k2, taille3, k3,nd;
idxtype *parent, *nliens, *supnd, *tbnode, *parsnode;
FILE *fpout;
/* extern void ecri11_; */
/* jyb fin */
rchlnk = idxmalloc(neqns+1, "smbfct: rchlnk");
marker = idxsmalloc(neqns+1, 0, "smbfct: marker");
mrglnk = idxsmalloc(neqns+1, 0, "smbfct: mgrlnk");
/* Parameter adjustments */
--marker;
--mrglnk;
--rchlnk;
--nzsub;
--xnzsub;
--xlnz;
--invp;
--perm;
--adjncy;
--xadj;
/* Function Body */
flag = 0;
nzbeg = 1;
nzend = 0;
xlnz[1] = 1;
/* FOR EACH COLUMN KNZ COUNTS THE NUMBER OF NONZEROS IN COLUMN K ACCUMULATED IN RCHLNK. */
for (k = 1; k <= neqns; ++k) {
knz = 0;
mrgk = mrglnk[k];
mrkflg = 0;
marker[k] = k;
if (mrgk != 0)
marker[k] = marker[mrgk];
xnzsub[k] = nzend;
node = perm[k];
if (xadj[node] >= xadj[node+1]) {
xlnz[k+1] = xlnz[k];
continue;
}
/* USE RCHLNK TO LINK THROUGH THE STRUCTURE OF A(*,K) BELOW DIAGONAL */
rchlnk[k] = neqns+1;
for (j=xadj[node]; j<xadj[node+1]; j++) {
nabor = invp[adjncy[j]];
if (nabor <= k)
continue;
rchm = k;
do {
m = rchm;
rchm = rchlnk[m];
} while (rchm <= nabor);
knz++;
rchlnk[m] = nabor;
rchlnk[nabor] = rchm;
if (marker[nabor] != marker[k])
mrkflg = 1;
}
/* TEST FOR MASS SYMBOLIC ELIMINATION */
lmax = 0;
if (mrkflg != 0 || mrgk == 0 || mrglnk[mrgk] != 0)
goto L350;
xnzsub[k] = xnzsub[mrgk] + 1;
knz = xlnz[mrgk + 1] - (xlnz[mrgk] + 1);
goto L1400;
/* LINK THROUGH EACH COLUMN I THAT AFFECTS L(*,K) */
L350:
i = k;
while ((i = mrglnk[i]) != 0) {
inz = xlnz[i+1] - (xlnz[i]+1);
jstrt = xnzsub[i] + 1;
jstop = xnzsub[i] + inz;
if (inz > lmax) {
lmax = inz;
xnzsub[k] = jstrt;
}
/* MERGE STRUCTURE OF L(*,I) IN NZSUB INTO RCHLNK. */
rchm = k;
for (j = jstrt; j <= jstop; ++j) {
nabor = nzsub[j];
do {
m = rchm;
rchm = rchlnk[m];
} while (rchm < nabor);
if (rchm != nabor) {
knz++;
rchlnk[m] = nabor;
rchlnk[nabor] = rchm;
rchm = nabor;
}
}
}
/* CHECK IF SUBSCRIPTS DUPLICATE THOSE OF ANOTHER COLUMN */
if (knz == lmax)
goto L1400;
/* OR IF TAIL OF K-1ST COLUMN MATCHES HEAD OF KTH */
if (nzbeg > nzend)
goto L1200;
i = rchlnk[k];
for (jstrt = nzbeg; jstrt <= nzend; ++jstrt) {
if (nzsub[jstrt] < i)
continue;
if (nzsub[jstrt] == i)
goto L1000;
else
goto L1200;
}
goto L1200;
L1000:
xnzsub[k] = jstrt;
for (j = jstrt; j <= nzend; ++j) {
if (nzsub[j] != i)
goto L1200;
i = rchlnk[i];
if (i > neqns)
goto L1400;
}
nzend = jstrt - 1;
/* COPY THE STRUCTURE OF L(*,K) FROM RCHLNK TO THE DATA STRUCTURE (XNZSUB, NZSUB) */
L1200:
nzbeg = nzend + 1;
nzend += knz;
if (nzend > *maxsub) {
flag = 1; /* Out of memory */
break;
}
i = k;
for (j=nzbeg; j<=nzend; ++j) {
i = rchlnk[i];
nzsub[j] = i;
marker[i] = k;
}
xnzsub[k] = nzbeg;
marker[k] = k;
/*
* UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND
* IS REQUIRED TO DETERMINE COLUMN L(*,J), WHERE
* L(J,K) IS THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL.
*/
L1400:
if (knz > 1) {
kxsub = xnzsub[k];
i = nzsub[kxsub];
mrglnk[k] = mrglnk[i];
mrglnk[i] = k;
}
xlnz[k + 1] = xlnz[k] + knz;
}
if (flag == 0) {
*maxlnz = xlnz[neqns] - 1;
*maxsub = xnzsub[neqns];
xnzsub[neqns + 1] = xnzsub[neqns];
}
parent = idxsmalloc(neqns, 0, "smbfct: parent");
parent--;
/* Calculate the elimination tree */
for (i=1; i<=neqns; i++) {
if (xlnz[i] < xlnz[i+1])
parent[i] = nzsub[xnzsub[i]];
else
parent[i] = -1; /* Indicates no parent */
}
supnd = idxsmalloc(neqns+1, 0, "smbfct: supnd");
supnd--;
/* super-noeuds */
nbip1 = xlnz[2] -xlnz[1] ;
xnzip1 = xnzsub[1];
i=1 ;
snode = 1 ; supnd[snode] = 1 ;
lgind = nbip1;
marker[i]= snode;
nbi = nbip1;
xnzi = xnzip1;
marker[i]= snode;
i = i+ 1;
/* C.Rose ligne suivante : correction de bug 13/03/02 neqns+1 remplace neqns
dans l'instruction suivante
Il y avait un pb pour ssll102a avec le dernier SN qui ne comprend qu'un noeud*/
while ( i < neqns+1)
{
nbip1 = xlnz[i+1] -xlnz[i] ;
xnzip1 = xnzsub[i];
if ( nbip1 != (nbi-1))
{
snode ++;supnd[snode] = i;
lgind += nbip1;
}
else if ( xnzip1 != (xnzi+1))
{
snode ++;supnd[snode] = i;
lgind += nbip1;
}
else
{/* verification que dans le sn courant (snode) le noeud i est bien voisin du nd i-1
sinon on crée un nouveau SN
correction des fiches 12345 et 12503 */
if( i != nzsub[xnzsub[i-1]] )
{ snode ++;supnd[snode] = i;
lgind += nbip1;
}
}
nbi = nbip1;
xnzi = xnzip1;
marker[i]= snode;
i = i+ 1;
}
supnd[snode+1] = neqns +1;
lnode =neqns;
marker[neqns] = snode ;
/* C.Rose ajout de la ligne precedante : correction de bug 11/03/02 */
/* printf(" nbsn : %d \n",snode);
for(i=1;i<=neqns;i++) printf(" smarker %8ld %8ld\n ",i,marker[i]);
for(i=1;i<=snode+1;i++) printf(" snode %8ld %8ld\n ",i,supnd[i]);
*/
/* fin de cr*/
minsn = neqns;
maxsn = 0;
k1 = 0;
k2 = 0;
k3 = 0;
taille1 = 50;
taille2 = 20;
taille3 = 05;
for (i = 1; i<=snode; i++)
{
aux = supnd[i+1]-supnd[i];
if(aux < minsn) minsn = aux;
if(aux > maxsn) maxsn = aux;
if(aux < taille1) k1++;
if(aux < taille2) k2++;
if(aux < taille3) k3++;
}
printf("\n ");
printf(" taille du plus petit super-noeud %8ld\n ",minsn);
printf(" taille du plus grand super-noeud %8ld\n ",maxsn);
printf(" taille moyenne d un super-noeud %8ld\n ",lnode/snode);
printf(" nb de super-noeuds de taille < %4ld : %8ld\n ",taille1,k1);
printf(" nb de super-noeuds de taille < %4ld : %8ld\n ",taille2,k2);
printf(" nb de super-noeuds de taille < %4ld : %8ld\n ",taille3,k3);
/* for (i=1; i<=snode+1; i++) {printf(" i pt. %4ld%4d\n ",i,supnd[i]);} */
/* parent des super-noeuds */
/* principe : on a stocke dans marker pour chaque noeud son super-noeud */
/* maintenant pour chaque super-noeud on prend son dernier noeud, */
/* on cherche le parent de ce noeud, puis le supernoeud auquel */
/* appartient ce parent et on l'affecte comme parent au supernoeud */
/* quand il n'y a pas de parent on met 0 (convention C. Rose) */
parsnode = idxsmalloc(snode+1, 0, "smbfct: parsnode");
parsnode--;
tbnode = idxsmalloc(neqns, 0, "smbfct: tbnode");
tbnode--;
/*sauvegarde de parent nodal */
for(i = 1; i<=neqns; i++) {
tbnode[i] = parent[i];
/* printf(" i %4ld parent %8ld \n", i, tbnode[i]);*/
}
for(i = 1; i<=snode; i++)
{
nd = supnd[i+1] - 1;
if(tbnode[nd] != -1)
{
parsnode[i] = marker[tbnode[nd]];
}
else
{
parsnode[i] = 0;
}
/* printf(" noeud %4ld parent %8ld \n ",i, parsnode[i]); */
}
opc = 0;
for (i=1; i<=neqns; i++)
xlnz[i]--;
for (i=1; i<=neqns; i++) {
opc += (xlnz[i+1]-xlnz[i])*(xlnz[i+1]-xlnz[i]) - (xlnz[i+1]-xlnz[i]);
}
printf(" Nonzeros: %ld, \tOperation Count: %6.4le \n", *maxlnz, opc);
/* ecriture sur le fichier 85 */
ecri11_(invp,perm,supnd,parsnode,&neqns,&snode,&opc,maxlnz,&lgind);
marker++;
mrglnk++;
rchlnk++;
nzsub++;
xnzsub++;
xlnz++;
invp++;
perm++;
adjncy++;
xadj++;
GKfree(&rchlnk, &mrglnk, &marker, LTERM);
return flag;
}
|