1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
# Copyright (c) 2015,2016,2017 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
==========================================
Advanced Sounding Plot with Complex Layout
==========================================
This example combines simple MetPy plotting functionality, `metpy.calc`
computation functionality, and a few basic Matplotlib tricks to create
an advanced sounding plot with a complex layout & high readability.
"""
# First let's start with some simple imports
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.plots import add_metpy_logo, Hodograph, SkewT
from metpy.units import units
###########################################
# Upper air data can easily be obtained using the siphon package,
# but for this example we will use some of MetPy's sample data.
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']
df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False),
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'),
how='all').reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into
# individual variables and assign units.
p = df['pressure'].values * units.hPa
z = df['height'].values * units.m
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
###########################################
# Now let's make a Skew-T Log-P diagram using some simply
# MetPy functionality
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 90, 80, size='small')
skew = SkewT(fig, rotation=45, rect=(0.1, 0.1, 0.55, 0.85))
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)
# Change to adjust data limits and give it a semblance of what we want
skew.ax.set_adjustable('datalim')
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-20, 30)
# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()
# Create a hodograph
ax = plt.axes((0.7, 0.75, 0.2, 0.2))
h = Hodograph(ax, component_range=60.)
h.add_grid(increment=20)
h.plot(u, v)
###########################################
# This layout isn't bad, especially for how little code it requires,
# but we could add a few simple tricks to greatly increase the
# readability and complexity of our Skew-T/Hodograph layout. Let's
# try another Skew-T with a few more advanced features:
# STEP 1: CREATE THE SKEW-T OBJECT AND MODIFY IT TO CREATE A
# NICE, CLEAN PLOT
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(18, 12))
skew = SkewT(fig, rotation=45, rect=(0.05, 0.05, 0.50, 0.90))
# add the Metpy logo
add_metpy_logo(fig, 105, 85, size='small')
# Change to adjust data limits and give it a semblance of what we want
skew.ax.set_adjustable('datalim')
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-20, 30)
# Set some better labels than the default to increase readability
skew.ax.set_xlabel(str.upper(f'Temperature ({T.units:~P})'), weight='bold')
skew.ax.set_ylabel(str.upper(f'Pressure ({p.units:~P})'), weight='bold')
# Set the facecolor of the skew-t object and the figure to white
fig.set_facecolor('#ffffff')
skew.ax.set_facecolor('#ffffff')
# Here we can use some basic math and Python functionality to make a cool
# shaded isotherm pattern.
x1 = np.linspace(-100, 40, 8)
x2 = np.linspace(-90, 50, 8)
y = [1100, 50]
for i in range(8):
skew.shade_area(y=y, x1=x1[i], x2=x2[i], color='gray', alpha=0.02, zorder=1)
# STEP 2: PLOT DATA ON THE SKEW-T. TAKE A COUPLE EXTRA STEPS TO
# INCREASE READABILITY
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
# Set the linewidth to 4 for increased readability.
# We will also add the 'label' keyword argument for our legend.
skew.plot(p, T, 'r', lw=4, label='TEMPERATURE')
skew.plot(p, Td, 'g', lw=4, label='DEWPOINT')
# Again we can use some simple Python math functionality to 'resample'
# the wind barbs for a cleaner output with increased readability.
# Something like this would work.
interval = np.logspace(2, 3, 40) * units.hPa
idx = mpcalc.resample_nn_1d(p, interval)
skew.plot_barbs(pressure=p[idx], u=u[idx], v=v[idx])
# Add the relevant special lines native to the Skew-T Log-P diagram &
# provide basic adjustments to linewidth and alpha to increase readability
# first, we add a matplotlib axvline to highlight the 0-degree isotherm
skew.ax.axvline(0 * units.degC, linestyle='--', color='blue', alpha=0.3)
skew.plot_dry_adiabats(lw=1, alpha=0.3)
skew.plot_moist_adiabats(lw=1, alpha=0.3)
skew.plot_mixing_lines(lw=1, alpha=0.3)
# Calculate LCL height and plot as a black dot. Because `p`'s first value is
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
# i.e. start from a low value, 250 mb, to a high value, 1000 mb, the `-1` index
# should be selected.
lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')
# Calculate full parcel profile and add to plot as black line
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
skew.plot(p, prof, 'k', linewidth=2, label='SB PARCEL PATH')
# Shade areas of CAPE and CIN
skew.shade_cin(p, T, prof, Td, alpha=0.2, label='SBCIN')
skew.shade_cape(p, T, prof, alpha=0.2, label='SBCAPE')
# STEP 3: CREATE THE HODOGRAPH INSET. TAKE A FEW EXTRA STEPS TO
# INCREASE READABILITY
# Create a hodograph object: first we need to add an axis
# then we can create the Metpy Hodograph
hodo_ax = plt.axes((0.48, 0.45, 0.5, 0.5))
h = Hodograph(hodo_ax, component_range=80.)
# Add two separate grid increments for a cooler look. This also
# helps to increase readability
h.add_grid(increment=20, ls='-', lw=1.5, alpha=0.5)
h.add_grid(increment=10, ls='--', lw=1, alpha=0.2)
# The next few steps makes for a clean hodograph inset, removing the
# tick marks, tick labels, and axis labels
h.ax.set_box_aspect(1)
h.ax.set_yticklabels([])
h.ax.set_xticklabels([])
h.ax.set_xticks([])
h.ax.set_yticks([])
h.ax.set_xlabel(' ')
h.ax.set_ylabel(' ')
# Here we can add a simple Python for loop that adds tick marks
# to the inside of the hodograph plot to increase readability!
plt.xticks(np.arange(0, 0, 1))
plt.yticks(np.arange(0, 0, 1))
for i in range(10, 120, 10):
h.ax.annotate(str(i), (i, 0), xytext=(0, 2), textcoords='offset pixels',
clip_on=True, fontsize=10, weight='bold', alpha=0.3, zorder=0)
for i in range(10, 120, 10):
h.ax.annotate(str(i), (0, i), xytext=(0, 2), textcoords='offset pixels',
clip_on=True, fontsize=10, weight='bold', alpha=0.3, zorder=0)
# plot the hodograph itself, using plot_colormapped, colored
# by height
h.plot_colormapped(u, v, c=z, linewidth=6, label='0-12km WIND')
# compute Bunkers storm motion so we can plot it on the hodograph!
RM, LM, MW = mpcalc.bunkers_storm_motion(p, u, v, z)
h.ax.text((RM[0].m + 0.5), (RM[1].m - 0.5), 'RM', weight='bold', ha='left',
fontsize=13, alpha=0.6)
h.ax.text((LM[0].m + 0.5), (LM[1].m - 0.5), 'LM', weight='bold', ha='left',
fontsize=13, alpha=0.6)
h.ax.text((MW[0].m + 0.5), (MW[1].m - 0.5), 'MW', weight='bold', ha='left',
fontsize=13, alpha=0.6)
h.ax.arrow(0, 0, RM[0].m - 0.3, RM[1].m - 0.3, linewidth=2, color='black',
alpha=0.2, label='Bunkers RM Vector',
length_includes_head=True, head_width=2)
# STEP 4: ADD A FEW EXTRA ELEMENTS TO REALLY MAKE A NEAT PLOT
# First we want to actually add values of data to the plot for easy viewing
# To do this, let's first add a simple rectangle using Matplotlib's 'patches'
# functionality to add some simple layout for plotting calculated parameters
# xloc yloc xsize ysize
fig.patches.extend([plt.Rectangle((0.563, 0.05), 0.334, 0.37,
edgecolor='black', facecolor='white',
linewidth=1, alpha=1, transform=fig.transFigure,
figure=fig)])
# Now let's take a moment to calculate some simple severe-weather parameters using
# metpy's calculations
# Here are some classic severe parameters!
kindex = mpcalc.k_index(p, T, Td)
total_totals = mpcalc.total_totals_index(p, T, Td)
# mixed layer parcel properties!
ml_t, ml_td = mpcalc.mixed_layer(p, T, Td, depth=50 * units.hPa)
ml_p, _, _ = mpcalc.mixed_parcel(p, T, Td, depth=50 * units.hPa)
mlcape, mlcin = mpcalc.mixed_layer_cape_cin(p, T, Td, depth=50 * units.hPa)
# most unstable parcel properties!
mu_p, mu_t, mu_td, _ = mpcalc.most_unstable_parcel(p, T, Td, depth=50 * units.hPa)
mucape, mucin = mpcalc.most_unstable_cape_cin(p, T, Td, depth=50 * units.hPa)
# Estimate height of LCL in meters from hydrostatic thickness (for sig_tor)
new_p = np.append(p[p > lcl_pressure], lcl_pressure)
new_t = np.append(T[p > lcl_pressure], lcl_temperature)
lcl_height = mpcalc.thickness_hydrostatic(new_p, new_t)
# Compute Surface-based CAPE
sbcape, sbcin = mpcalc.surface_based_cape_cin(p, T, Td)
# Compute SRH
(u_storm, v_storm), *_ = mpcalc.bunkers_storm_motion(p, u, v, z)
*_, total_helicity1 = mpcalc.storm_relative_helicity(z, u, v, depth=1 * units.km,
storm_u=u_storm, storm_v=v_storm)
*_, total_helicity3 = mpcalc.storm_relative_helicity(z, u, v, depth=3 * units.km,
storm_u=u_storm, storm_v=v_storm)
*_, total_helicity6 = mpcalc.storm_relative_helicity(z, u, v, depth=6 * units.km,
storm_u=u_storm, storm_v=v_storm)
# Copmute Bulk Shear components and then magnitude
ubshr1, vbshr1 = mpcalc.bulk_shear(p, u, v, height=z, depth=1 * units.km)
bshear1 = mpcalc.wind_speed(ubshr1, vbshr1)
ubshr3, vbshr3 = mpcalc.bulk_shear(p, u, v, height=z, depth=3 * units.km)
bshear3 = mpcalc.wind_speed(ubshr3, vbshr3)
ubshr6, vbshr6 = mpcalc.bulk_shear(p, u, v, height=z, depth=6 * units.km)
bshear6 = mpcalc.wind_speed(ubshr6, vbshr6)
# Use all computed pieces to calculate the Significant Tornado parameter
sig_tor = mpcalc.significant_tornado(sbcape, lcl_height,
total_helicity3, bshear3).to_base_units()
# Perform the calculation of supercell composite if an effective layer exists
super_comp = mpcalc.supercell_composite(mucape, total_helicity3, bshear3)
# There is a lot we can do with this data operationally, so let's plot some of
# these values right on the plot, in the box we made
# First lets plot some thermodynamic parameters
plt.figtext(0.58, 0.37, 'SBCAPE: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.37, f'{sbcape:.0f~P}', weight='bold',
fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.34, 'SBCIN: ', weight='bold',
fontsize=15, color='black', ha='left')
plt.figtext(0.71, 0.34, f'{sbcin:.0f~P}', weight='bold',
fontsize=15, color='lightblue', ha='right')
plt.figtext(0.58, 0.29, 'MLCAPE: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.29, f'{mlcape:.0f~P}', weight='bold',
fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.26, 'MLCIN: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.26, f'{mlcin:.0f~P}', weight='bold',
fontsize=15, color='lightblue', ha='right')
plt.figtext(0.58, 0.21, 'MUCAPE: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.21, f'{mucape:.0f~P}', weight='bold',
fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.18, 'MUCIN: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.18, f'{mucin:.0f~P}', weight='bold',
fontsize=15, color='lightblue', ha='right')
plt.figtext(0.58, 0.13, 'TT-INDEX: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.13, f'{total_totals:.0f~P}', weight='bold',
fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.10, 'K-INDEX: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.71, 0.10, f'{kindex:.0f~P}', weight='bold',
fontsize=15, color='orangered', ha='right')
# now some kinematic parameters
plt.figtext(0.73, 0.37, '0-1km SRH: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.37, f'{total_helicity1:.0f~P}',
weight='bold', fontsize=15, color='navy', ha='right')
plt.figtext(0.73, 0.34, '0-1km SHEAR: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.34, f'{bshear1:.0f~P}', weight='bold',
fontsize=15, color='blue', ha='right')
plt.figtext(0.73, 0.29, '0-3km SRH: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.29, f'{total_helicity3:.0f~P}',
weight='bold', fontsize=15, color='navy', ha='right')
plt.figtext(0.73, 0.26, '0-3km SHEAR: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.26, f'{bshear3:.0f~P}', weight='bold',
fontsize=15, color='blue', ha='right')
plt.figtext(0.73, 0.21, '0-6km SRH: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.21, f'{total_helicity6:.0f~P}',
weight='bold', fontsize=15, color='navy', ha='right')
plt.figtext(0.73, 0.18, '0-6km SHEAR: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.18, f'{bshear6:.0f~P}', weight='bold',
fontsize=15, color='blue', ha='right')
plt.figtext(0.73, 0.13, 'SIG TORNADO: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.13, f'{sig_tor[0]:.0f~P}', weight='bold', fontsize=15,
color='orangered', ha='right')
plt.figtext(0.73, 0.10, 'SUPERCELL COMP: ', weight='bold', fontsize=15,
color='black', ha='left')
plt.figtext(0.88, 0.10, f'{super_comp[0]:.0f~P}', weight='bold', fontsize=15,
color='orangered', ha='right')
# Add legends to the skew and hodo
skewleg = skew.ax.legend(loc='upper left')
hodoleg = h.ax.legend(loc='upper left')
# add a quick plot title, this could be automated by
# declaring a station and datetime variable when using
# realtime observation data from Siphon.
plt.figtext(0.45, 0.97, 'OUN | MAY 4TH 1999 - 00Z VERTICAL PROFILE',
weight='bold', fontsize=20, ha='center')
# Show the plot
plt.show()
|