File: Advanced_Sounding_With_Complex_Layout.py

package info (click to toggle)
metpy 1.7.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,584 kB
  • sloc: python: 41,853; makefile: 111; javascript: 57
file content (335 lines) | stat: -rw-r--r-- 15,252 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Copyright (c) 2015,2016,2017 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause


"""
==========================================
Advanced Sounding Plot with Complex Layout
==========================================

This example combines simple MetPy plotting functionality, `metpy.calc`
computation functionality, and a few basic Matplotlib tricks to create
an advanced sounding plot with a complex layout & high readability.
"""

# First let's start with some simple imports
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.plots import add_metpy_logo, Hodograph, SkewT
from metpy.units import units

###########################################
# Upper air data can easily be obtained using the siphon package,
# but for this example we will use some of MetPy's sample data.
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']
df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False),
                 skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)

# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'),
               how='all').reset_index(drop=True)
###########################################
# We will pull the data out of the example dataset into
# individual variables and assign units.
p = df['pressure'].values * units.hPa
z = df['height'].values * units.m
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wind_speed = df['speed'].values * units.knots
wind_dir = df['direction'].values * units.degrees
u, v = mpcalc.wind_components(wind_speed, wind_dir)
###########################################
# Now let's make a Skew-T Log-P diagram using some simply
# MetPy functionality
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(9, 9))
add_metpy_logo(fig, 90, 80, size='small')
skew = SkewT(fig, rotation=45, rect=(0.1, 0.1, 0.55, 0.85))

# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
skew.plot(p, T, 'r')
skew.plot(p, Td, 'g')
skew.plot_barbs(p, u, v)

# Change to adjust data limits and give it a semblance of what we want
skew.ax.set_adjustable('datalim')
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-20, 30)

# Add the relevant special lines
skew.plot_dry_adiabats()
skew.plot_moist_adiabats()
skew.plot_mixing_lines()

# Create a hodograph
ax = plt.axes((0.7, 0.75, 0.2, 0.2))
h = Hodograph(ax, component_range=60.)
h.add_grid(increment=20)
h.plot(u, v)
###########################################
# This layout isn't bad, especially for how little code it requires,
# but we could add a few simple tricks to greatly increase the
# readability and complexity of our Skew-T/Hodograph layout. Let's
# try another Skew-T with a few more advanced features:

# STEP 1: CREATE THE SKEW-T OBJECT AND MODIFY IT TO CREATE A
# NICE, CLEAN PLOT
# Create a new figure. The dimensions here give a good aspect ratio
fig = plt.figure(figsize=(18, 12))
skew = SkewT(fig, rotation=45, rect=(0.05, 0.05, 0.50, 0.90))

# add the Metpy logo
add_metpy_logo(fig, 105, 85, size='small')

# Change to adjust data limits and give it a semblance of what we want
skew.ax.set_adjustable('datalim')
skew.ax.set_ylim(1000, 100)
skew.ax.set_xlim(-20, 30)

# Set some better labels than the default to increase readability
skew.ax.set_xlabel(str.upper(f'Temperature ({T.units:~P})'), weight='bold')
skew.ax.set_ylabel(str.upper(f'Pressure ({p.units:~P})'), weight='bold')

# Set the facecolor of the skew-t object and the figure to white
fig.set_facecolor('#ffffff')
skew.ax.set_facecolor('#ffffff')

# Here we can use some basic math and Python functionality to make a cool
# shaded isotherm pattern.
x1 = np.linspace(-100, 40, 8)
x2 = np.linspace(-90, 50, 8)
y = [1100, 50]
for i in range(8):
    skew.shade_area(y=y, x1=x1[i], x2=x2[i], color='gray', alpha=0.02, zorder=1)

# STEP 2: PLOT DATA ON THE SKEW-T. TAKE A COUPLE EXTRA STEPS TO
# INCREASE READABILITY
# Plot the data using normal plotting functions, in this case using
# log scaling in Y, as dictated by the typical meteorological plot
# Set the linewidth to 4 for increased readability.
# We will also add the 'label' keyword argument for our legend.
skew.plot(p, T, 'r', lw=4, label='TEMPERATURE')
skew.plot(p, Td, 'g', lw=4, label='DEWPOINT')

# Again we can use some simple Python math functionality to 'resample'
# the wind barbs for a cleaner output with increased readability.
# Something like this would work.
interval = np.logspace(2, 3, 40) * units.hPa
idx = mpcalc.resample_nn_1d(p, interval)
skew.plot_barbs(pressure=p[idx], u=u[idx], v=v[idx])

# Add the relevant special lines native to the Skew-T Log-P diagram &
# provide basic adjustments to linewidth and alpha to increase readability
# first, we add a matplotlib axvline to highlight the 0-degree isotherm
skew.ax.axvline(0 * units.degC, linestyle='--', color='blue', alpha=0.3)
skew.plot_dry_adiabats(lw=1, alpha=0.3)
skew.plot_moist_adiabats(lw=1, alpha=0.3)
skew.plot_mixing_lines(lw=1, alpha=0.3)

# Calculate LCL height and plot as a black dot. Because `p`'s first value is
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted,
# i.e. start from a low value, 250 mb, to a high value, 1000 mb, the `-1` index
# should be selected.
lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0])
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black')
# Calculate full parcel profile and add to plot as black line
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')
skew.plot(p, prof, 'k', linewidth=2, label='SB PARCEL PATH')

# Shade areas of CAPE and CIN
skew.shade_cin(p, T, prof, Td, alpha=0.2, label='SBCIN')
skew.shade_cape(p, T, prof, alpha=0.2, label='SBCAPE')

# STEP 3: CREATE THE HODOGRAPH INSET. TAKE A FEW EXTRA STEPS TO
# INCREASE READABILITY
# Create a hodograph object: first we need to add an axis
# then we can create the Metpy Hodograph
hodo_ax = plt.axes((0.48, 0.45, 0.5, 0.5))
h = Hodograph(hodo_ax, component_range=80.)

# Add two separate grid increments for a cooler look. This also
# helps to increase readability
h.add_grid(increment=20, ls='-', lw=1.5, alpha=0.5)
h.add_grid(increment=10, ls='--', lw=1, alpha=0.2)

# The next few steps makes for a clean hodograph inset, removing the
# tick marks, tick labels, and axis labels
h.ax.set_box_aspect(1)
h.ax.set_yticklabels([])
h.ax.set_xticklabels([])
h.ax.set_xticks([])
h.ax.set_yticks([])
h.ax.set_xlabel(' ')
h.ax.set_ylabel(' ')

# Here we can add a simple Python for loop that adds tick marks
# to the inside of the hodograph plot to increase readability!
plt.xticks(np.arange(0, 0, 1))
plt.yticks(np.arange(0, 0, 1))
for i in range(10, 120, 10):
    h.ax.annotate(str(i), (i, 0), xytext=(0, 2), textcoords='offset pixels',
                  clip_on=True, fontsize=10, weight='bold', alpha=0.3, zorder=0)
for i in range(10, 120, 10):
    h.ax.annotate(str(i), (0, i), xytext=(0, 2), textcoords='offset pixels',
                  clip_on=True, fontsize=10, weight='bold', alpha=0.3, zorder=0)

# plot the hodograph itself, using plot_colormapped, colored
# by height
h.plot_colormapped(u, v, c=z, linewidth=6, label='0-12km WIND')
# compute Bunkers storm motion so we can plot it on the hodograph!
RM, LM, MW = mpcalc.bunkers_storm_motion(p, u, v, z)
h.ax.text((RM[0].m + 0.5), (RM[1].m - 0.5), 'RM', weight='bold', ha='left',
          fontsize=13, alpha=0.6)
h.ax.text((LM[0].m + 0.5), (LM[1].m - 0.5), 'LM', weight='bold', ha='left',
          fontsize=13, alpha=0.6)
h.ax.text((MW[0].m + 0.5), (MW[1].m - 0.5), 'MW', weight='bold', ha='left',
          fontsize=13, alpha=0.6)
h.ax.arrow(0, 0, RM[0].m - 0.3, RM[1].m - 0.3, linewidth=2, color='black',
           alpha=0.2, label='Bunkers RM Vector',
           length_includes_head=True, head_width=2)

# STEP 4: ADD A FEW EXTRA ELEMENTS TO REALLY MAKE A NEAT PLOT
# First we want to actually add values of data to the plot for easy viewing
# To do this, let's first add a simple rectangle using Matplotlib's 'patches'
# functionality to add some simple layout for plotting calculated parameters
#                                  xloc   yloc   xsize  ysize
fig.patches.extend([plt.Rectangle((0.563, 0.05), 0.334, 0.37,
                                  edgecolor='black', facecolor='white',
                                  linewidth=1, alpha=1, transform=fig.transFigure,
                                  figure=fig)])

# Now let's take a moment to calculate some simple severe-weather parameters using
# metpy's calculations
# Here are some classic severe parameters!
kindex = mpcalc.k_index(p, T, Td)
total_totals = mpcalc.total_totals_index(p, T, Td)

# mixed layer parcel properties!
ml_t, ml_td = mpcalc.mixed_layer(p, T, Td, depth=50 * units.hPa)
ml_p, _, _ = mpcalc.mixed_parcel(p, T, Td, depth=50 * units.hPa)
mlcape, mlcin = mpcalc.mixed_layer_cape_cin(p, T, Td, depth=50 * units.hPa)

# most unstable parcel properties!
mu_p, mu_t, mu_td, _ = mpcalc.most_unstable_parcel(p, T, Td, depth=50 * units.hPa)
mucape, mucin = mpcalc.most_unstable_cape_cin(p, T, Td, depth=50 * units.hPa)

# Estimate height of LCL in meters from hydrostatic thickness (for sig_tor)
new_p = np.append(p[p > lcl_pressure], lcl_pressure)
new_t = np.append(T[p > lcl_pressure], lcl_temperature)
lcl_height = mpcalc.thickness_hydrostatic(new_p, new_t)

# Compute Surface-based CAPE
sbcape, sbcin = mpcalc.surface_based_cape_cin(p, T, Td)
# Compute SRH
(u_storm, v_storm), *_ = mpcalc.bunkers_storm_motion(p, u, v, z)
*_, total_helicity1 = mpcalc.storm_relative_helicity(z, u, v, depth=1 * units.km,
                                                     storm_u=u_storm, storm_v=v_storm)
*_, total_helicity3 = mpcalc.storm_relative_helicity(z, u, v, depth=3 * units.km,
                                                     storm_u=u_storm, storm_v=v_storm)
*_, total_helicity6 = mpcalc.storm_relative_helicity(z, u, v, depth=6 * units.km,
                                                     storm_u=u_storm, storm_v=v_storm)

# Copmute Bulk Shear components and then magnitude
ubshr1, vbshr1 = mpcalc.bulk_shear(p, u, v, height=z, depth=1 * units.km)
bshear1 = mpcalc.wind_speed(ubshr1, vbshr1)
ubshr3, vbshr3 = mpcalc.bulk_shear(p, u, v, height=z, depth=3 * units.km)
bshear3 = mpcalc.wind_speed(ubshr3, vbshr3)
ubshr6, vbshr6 = mpcalc.bulk_shear(p, u, v, height=z, depth=6 * units.km)
bshear6 = mpcalc.wind_speed(ubshr6, vbshr6)

# Use all computed pieces to calculate the Significant Tornado parameter
sig_tor = mpcalc.significant_tornado(sbcape, lcl_height,
                                     total_helicity3, bshear3).to_base_units()

# Perform the calculation of supercell composite if an effective layer exists
super_comp = mpcalc.supercell_composite(mucape, total_helicity3, bshear3)

# There is a lot we can do with this data operationally, so let's plot some of
# these values right on the plot, in the box we made
# First lets plot some thermodynamic parameters
plt.figtext(0.58, 0.37, 'SBCAPE: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.37, f'{sbcape:.0f~P}', weight='bold',
            fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.34, 'SBCIN: ', weight='bold',
            fontsize=15, color='black', ha='left')
plt.figtext(0.71, 0.34, f'{sbcin:.0f~P}', weight='bold',
            fontsize=15, color='lightblue', ha='right')
plt.figtext(0.58, 0.29, 'MLCAPE: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.29, f'{mlcape:.0f~P}', weight='bold',
            fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.26, 'MLCIN: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.26, f'{mlcin:.0f~P}', weight='bold',
            fontsize=15, color='lightblue', ha='right')
plt.figtext(0.58, 0.21, 'MUCAPE: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.21, f'{mucape:.0f~P}', weight='bold',
            fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.18, 'MUCIN: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.18, f'{mucin:.0f~P}', weight='bold',
            fontsize=15, color='lightblue', ha='right')
plt.figtext(0.58, 0.13, 'TT-INDEX: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.13, f'{total_totals:.0f~P}', weight='bold',
            fontsize=15, color='orangered', ha='right')
plt.figtext(0.58, 0.10, 'K-INDEX: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.71, 0.10, f'{kindex:.0f~P}', weight='bold',
            fontsize=15, color='orangered', ha='right')

# now some kinematic parameters
plt.figtext(0.73, 0.37, '0-1km SRH: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.37, f'{total_helicity1:.0f~P}',
            weight='bold', fontsize=15, color='navy', ha='right')
plt.figtext(0.73, 0.34, '0-1km SHEAR: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.34, f'{bshear1:.0f~P}', weight='bold',
            fontsize=15, color='blue', ha='right')
plt.figtext(0.73, 0.29, '0-3km SRH: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.29, f'{total_helicity3:.0f~P}',
            weight='bold', fontsize=15, color='navy', ha='right')
plt.figtext(0.73, 0.26, '0-3km SHEAR: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.26, f'{bshear3:.0f~P}', weight='bold',
            fontsize=15, color='blue', ha='right')
plt.figtext(0.73, 0.21, '0-6km SRH: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.21, f'{total_helicity6:.0f~P}',
            weight='bold', fontsize=15, color='navy', ha='right')
plt.figtext(0.73, 0.18, '0-6km SHEAR: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.18, f'{bshear6:.0f~P}', weight='bold',
            fontsize=15, color='blue', ha='right')
plt.figtext(0.73, 0.13, 'SIG TORNADO: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.13, f'{sig_tor[0]:.0f~P}', weight='bold', fontsize=15,
            color='orangered', ha='right')
plt.figtext(0.73, 0.10, 'SUPERCELL COMP: ', weight='bold', fontsize=15,
            color='black', ha='left')
plt.figtext(0.88, 0.10, f'{super_comp[0]:.0f~P}', weight='bold', fontsize=15,
            color='orangered', ha='right')

# Add legends to the skew and hodo
skewleg = skew.ax.legend(loc='upper left')
hodoleg = h.ax.legend(loc='upper left')

# add a quick plot title, this could be automated by
# declaring a station and datetime variable when using
# realtime observation data from Siphon.
plt.figtext(0.45, 0.97, 'OUN | MAY 4TH 1999 - 00Z VERTICAL PROFILE',
            weight='bold', fontsize=20, ha='center')

# Show the plot
plt.show()