1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
# Copyright (c) 2022 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
======================
Mean Pressure Weighted
======================
Use `metpy.calc.mean_pressure_weighted` as well as pint's unit support to perform calculations.
The code below uses example data from our test suite to calculate the pressure-weighted mean
temperature over a depth of 500 hPa.
"""
import pandas as pd
from metpy.calc import mean_pressure_weighted
from metpy.cbook import get_test_data
from metpy.units import units
###########################################
# Upper air data can be obtained using the siphon package, but for this example we will use
# some of MetPy's sample data.
# Set column names
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']
# Read in test data using col_names
df = pd.read_fwf(get_test_data('jan20_sounding.txt', as_file_obj=False),
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
###########################################
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'),
how='all').reset_index(drop=True)
###########################################
# Isolate pressure, temperature, and height and add units
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
h = df['height'].values * units.meters
###########################################
# Calculate the mean pressure weighted temperature over a depth of 500 hPa
print(mean_pressure_weighted(p, T, height=h, depth=500 * units.hPa))
|