File: Sounding_Calculations.py

package info (click to toggle)
metpy 1.7.1%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 18,584 kB
  • sloc: python: 41,853; makefile: 111; javascript: 57
file content (216 lines) | stat: -rw-r--r-- 8,264 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) 2022 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
=============================
Sounding Calculation Examples
=============================

Use functions from `metpy.calc` to perform a number of calculations using sounding data.

The code below uses example data to perform many sounding calculations for a severe weather
event on May 22, 2011 from the Norman, OK sounding.
"""
import numpy as np
import pandas as pd

import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.units import units

###########################################
# Effective Shear Algorithm for use in Supercell Composite Calculation


def effective_layer(p, t, td, h, height_layer=False):
    """A function that determines the effective inflow layer for a convective sounding.

    Uses the default values of Thompason et al. (2004) for CAPE (100 J/kg) and CIN (-250 J/kg).

    Input:
      - p: sounding pressure with units
      - T: sounding temperature with units
      - Td: sounding dewpoint temperature with units
      - h: sounding heights with units

    Returns:
      - pbot/hbot, ptop/htop: pressure/height of the bottom level,
                              pressure/height of the top level
    """
    from metpy.calc import cape_cin, parcel_profile
    from metpy.units import units

    pbot = None

    for i in range(p.shape[0]):
        prof = parcel_profile(p[i:], t[i], td[i])
        sbcape, sbcin = cape_cin(p[i:], t[i:], td[i:], prof)
        if sbcape >= 100 * units('J/kg') and sbcin > -250 * units('J/kg'):
            pbot = p[i]
            hbot = h[i]
            bot_idx = i
            break
    if not pbot:
        return None, None

    for i in range(bot_idx + 1, p.shape[0]):
        prof = parcel_profile(p[i:], t[i], td[i])
        sbcape, sbcin = cape_cin(p[i:], t[i:], td[i:], prof)
        if sbcape < 100 * units('J/kg') or sbcin < -250 * units('J/kg'):
            ptop = p[i]
            htop = h[i]
            break

    if height_layer:
        return hbot, htop
    else:
        return pbot, ptop


###########################################
# Upper air data can be obtained using the siphon package, but for this example we will use
# some of MetPy's sample data.
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']

df = pd.read_fwf(get_test_data('20110522_OUN_12Z.txt', as_file_obj=False),
                 skiprows=7, usecols=[0, 1, 2, 3, 6, 7], names=col_names)

# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'
                       ), how='all').reset_index(drop=True)

###########################################
# Isolate needed variables from our data file and attach units
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wdir = df['direction'].values * units.degree
sped = df['speed'].values * units.knot
height = df['height'].values * units.meter

###########################################
# Compute needed variables from our data file and attach units
relhum = mpcalc.relative_humidity_from_dewpoint(T, Td)
mixrat = mpcalc.mixing_ratio_from_relative_humidity(p, T, relhum)

###########################################
# Compute the wind components
u, v = mpcalc.wind_components(sped, wdir)

###########################################
# Compute common sounding index parameters
ctotals = mpcalc.cross_totals(p, T, Td)
kindex = mpcalc.k_index(p, T, Td)
gdi = mpcalc.galvez_davison_index(p, T, mixrat, p[0])
showalter = mpcalc.showalter_index(p, T, Td)
total_totals = mpcalc.total_totals_index(p, T, Td)
vert_totals = mpcalc.vertical_totals(p, T)

###########################################
# Compture the parcel profile for a surface-based parcel
prof = mpcalc.parcel_profile(p, T[0], Td[0])

###########################################
# Compute the corresponding LI, CAPE, CIN values for a surface parcel
lift_index = mpcalc.lifted_index(p, T, prof)
cape, cin = mpcalc.cape_cin(p, T, Td, prof)

###########################################
# Determine the LCL, LFC, and EL for our surface parcel
lclp, lclt = mpcalc.lcl(p[0], T[0], Td[0])
lfcp, _ = mpcalc.lfc(p, T, Td)
el_pressure, _ = mpcalc.el(p, T, Td, prof)

###########################################
# Compute the characteristics of a mean layer parcel (50-hPa depth)
ml_t, ml_td = mpcalc.mixed_layer(p, T, Td, depth=50 * units.hPa)
ml_p, _, _ = mpcalc.mixed_parcel(p, T, Td, depth=50 * units.hPa)
mlcape, mlcin = mpcalc.mixed_layer_cape_cin(p, T, prof, depth=50 * units.hPa)

###########################################
# Compute the characteristics of the most unstable parcel (50-hPa depth)
mu_p, mu_t, mu_td, _ = mpcalc.most_unstable_parcel(p, T, Td, depth=50 * units.hPa)
mucape, mucin = mpcalc.most_unstable_cape_cin(p, T, Td, depth=50 * units.hPa)

###########################################
# Compute the Bunkers Storm Motion vector and use to calculate the critical angle
(u_storm, v_storm), *_ = mpcalc.bunkers_storm_motion(p, u, v, height)
critical_angle = mpcalc.critical_angle(p, u, v, height, u_storm, v_storm)

###########################################
# Work on the calculations needed to compute the significant tornado parameter

# Estimate height of LCL in meters from hydrostatic thickness
new_p = np.append(p[p > lclp], lclp)
new_t = np.append(T[p > lclp], lclt)
lcl_height = mpcalc.thickness_hydrostatic(new_p, new_t)

# Compute Surface-based CAPE
sbcape, _ = mpcalc.surface_based_cape_cin(p, T, Td)

# Compute SRH, given a motion vector toward the NE at 9.9 m/s
*_, total_helicity = mpcalc.storm_relative_helicity(height, u, v, depth=1 * units.km,
                                                    storm_u=u_storm, storm_v=v_storm)

# Copmute Bulk Shear components and then magnitude
ubshr, vbshr = mpcalc.bulk_shear(p, u, v, height=height, depth=6 * units.km)
bshear = mpcalc.wind_speed(ubshr, vbshr)

# Use all computed pieces to calculate the Significant Tornado parameter
sig_tor = mpcalc.significant_tornado(sbcape, lcl_height,
                                     total_helicity, bshear).to_base_units()

###########################################
# Compute the supercell composite parameter, if possible

# Determine the top and bottom of the effective layer using our own function
hbot, htop = effective_layer(p, T, Td, height, height_layer=True)

# Perform the calculation of supercell composite if an effective layer exists
if hbot:
    esrh = mpcalc.storm_relative_helicity(height, u, v, depth=htop - hbot, bottom=hbot)
    eubshr, evbshr = mpcalc.bulk_shear(p, u, v, height=height, depth=htop - hbot, bottom=hbot)
    ebshear = mpcalc.wind_speed(eubshr, evbshr)

    super_comp = mpcalc.supercell_composite(mucape, esrh[0], ebshear)
else:
    super_comp = np.nan

###########################################
# Print Important Sounding Parameters
print('Important Sounding Parameters for KOUN on 22 Mary 2011 12 UTC')
print()
print(f'        CAPE: {cape:.2f}')
print(f'         CIN: {cin:.2f}')
print(f'LCL Pressure: {lclp:.2f}')
print(f'LFC Pressure: {lfcp:.2f}')
print(f' EL Pressure: {el_pressure:.2f}')
print()
print(f'   Lifted Index: {lift_index:.2f}')
print(f'        K-Index: {kindex:.2f}')
print(f'Showalter Index: {showalter:.2f}')
print(f'   Cross Totals: {ctotals:.2f}')
print(f'   Total Totals: {total_totals:.2f}')
print(f'Vertical Totals: {vert_totals:.2f}')
print()
print('Mixed Layer - Lowest 50-hPa')
print(f'     ML Temp: {ml_t:.2f}')
print(f'     ML Dewp: {ml_td:.2f}')
print(f'     ML CAPE: {mlcape:.2f}')
print(f'      ML CIN: {mlcin:.2f}')
print()
print('Most Unstable - Lowest 50-hPa')
print(f'     MU Temp: {mu_t:.2f}')
print(f'     MU Dewp: {mu_td:.2f}')
print(f' MU Pressure: {mu_p:.2f}')
print(f'     MU CAPE: {mucape:.2f}')
print(f'      MU CIN: {mucin:.2f}')
print()
print('Bunkers Storm Motion Vector')
print(f'  u_storm: {u_storm:.2f}')
print(f'  v_storm: {v_storm:.2f}')
print(f'Critical Angle: {critical_angle:.2f}')
print()
print(f'Storm Relative Helicity: {total_helicity:.2f}')
print(f'Significant Tornado Parameter: {sig_tor:.2f}')
print(f'Supercell Composite Parameter: {super_comp:.2f}')