1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
# Copyright (c) 2022 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
=============================
Sounding Calculation Examples
=============================
Use functions from `metpy.calc` to perform a number of calculations using sounding data.
The code below uses example data to perform many sounding calculations for a severe weather
event on May 22, 2011 from the Norman, OK sounding.
"""
import numpy as np
import pandas as pd
import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.units import units
###########################################
# Effective Shear Algorithm for use in Supercell Composite Calculation
def effective_layer(p, t, td, h, height_layer=False):
"""A function that determines the effective inflow layer for a convective sounding.
Uses the default values of Thompason et al. (2004) for CAPE (100 J/kg) and CIN (-250 J/kg).
Input:
- p: sounding pressure with units
- T: sounding temperature with units
- Td: sounding dewpoint temperature with units
- h: sounding heights with units
Returns:
- pbot/hbot, ptop/htop: pressure/height of the bottom level,
pressure/height of the top level
"""
from metpy.calc import cape_cin, parcel_profile
from metpy.units import units
pbot = None
for i in range(p.shape[0]):
prof = parcel_profile(p[i:], t[i], td[i])
sbcape, sbcin = cape_cin(p[i:], t[i:], td[i:], prof)
if sbcape >= 100 * units('J/kg') and sbcin > -250 * units('J/kg'):
pbot = p[i]
hbot = h[i]
bot_idx = i
break
if not pbot:
return None, None
for i in range(bot_idx + 1, p.shape[0]):
prof = parcel_profile(p[i:], t[i], td[i])
sbcape, sbcin = cape_cin(p[i:], t[i:], td[i:], prof)
if sbcape < 100 * units('J/kg') or sbcin < -250 * units('J/kg'):
ptop = p[i]
htop = h[i]
break
if height_layer:
return hbot, htop
else:
return pbot, ptop
###########################################
# Upper air data can be obtained using the siphon package, but for this example we will use
# some of MetPy's sample data.
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']
df = pd.read_fwf(get_test_data('20110522_OUN_12Z.txt', as_file_obj=False),
skiprows=7, usecols=[0, 1, 2, 3, 6, 7], names=col_names)
# Drop any rows with all NaN values for T, Td, winds
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'
), how='all').reset_index(drop=True)
###########################################
# Isolate needed variables from our data file and attach units
p = df['pressure'].values * units.hPa
T = df['temperature'].values * units.degC
Td = df['dewpoint'].values * units.degC
wdir = df['direction'].values * units.degree
sped = df['speed'].values * units.knot
height = df['height'].values * units.meter
###########################################
# Compute needed variables from our data file and attach units
relhum = mpcalc.relative_humidity_from_dewpoint(T, Td)
mixrat = mpcalc.mixing_ratio_from_relative_humidity(p, T, relhum)
###########################################
# Compute the wind components
u, v = mpcalc.wind_components(sped, wdir)
###########################################
# Compute common sounding index parameters
ctotals = mpcalc.cross_totals(p, T, Td)
kindex = mpcalc.k_index(p, T, Td)
gdi = mpcalc.galvez_davison_index(p, T, mixrat, p[0])
showalter = mpcalc.showalter_index(p, T, Td)
total_totals = mpcalc.total_totals_index(p, T, Td)
vert_totals = mpcalc.vertical_totals(p, T)
###########################################
# Compture the parcel profile for a surface-based parcel
prof = mpcalc.parcel_profile(p, T[0], Td[0])
###########################################
# Compute the corresponding LI, CAPE, CIN values for a surface parcel
lift_index = mpcalc.lifted_index(p, T, prof)
cape, cin = mpcalc.cape_cin(p, T, Td, prof)
###########################################
# Determine the LCL, LFC, and EL for our surface parcel
lclp, lclt = mpcalc.lcl(p[0], T[0], Td[0])
lfcp, _ = mpcalc.lfc(p, T, Td)
el_pressure, _ = mpcalc.el(p, T, Td, prof)
###########################################
# Compute the characteristics of a mean layer parcel (50-hPa depth)
ml_t, ml_td = mpcalc.mixed_layer(p, T, Td, depth=50 * units.hPa)
ml_p, _, _ = mpcalc.mixed_parcel(p, T, Td, depth=50 * units.hPa)
mlcape, mlcin = mpcalc.mixed_layer_cape_cin(p, T, prof, depth=50 * units.hPa)
###########################################
# Compute the characteristics of the most unstable parcel (50-hPa depth)
mu_p, mu_t, mu_td, _ = mpcalc.most_unstable_parcel(p, T, Td, depth=50 * units.hPa)
mucape, mucin = mpcalc.most_unstable_cape_cin(p, T, Td, depth=50 * units.hPa)
###########################################
# Compute the Bunkers Storm Motion vector and use to calculate the critical angle
(u_storm, v_storm), *_ = mpcalc.bunkers_storm_motion(p, u, v, height)
critical_angle = mpcalc.critical_angle(p, u, v, height, u_storm, v_storm)
###########################################
# Work on the calculations needed to compute the significant tornado parameter
# Estimate height of LCL in meters from hydrostatic thickness
new_p = np.append(p[p > lclp], lclp)
new_t = np.append(T[p > lclp], lclt)
lcl_height = mpcalc.thickness_hydrostatic(new_p, new_t)
# Compute Surface-based CAPE
sbcape, _ = mpcalc.surface_based_cape_cin(p, T, Td)
# Compute SRH, given a motion vector toward the NE at 9.9 m/s
*_, total_helicity = mpcalc.storm_relative_helicity(height, u, v, depth=1 * units.km,
storm_u=u_storm, storm_v=v_storm)
# Copmute Bulk Shear components and then magnitude
ubshr, vbshr = mpcalc.bulk_shear(p, u, v, height=height, depth=6 * units.km)
bshear = mpcalc.wind_speed(ubshr, vbshr)
# Use all computed pieces to calculate the Significant Tornado parameter
sig_tor = mpcalc.significant_tornado(sbcape, lcl_height,
total_helicity, bshear).to_base_units()
###########################################
# Compute the supercell composite parameter, if possible
# Determine the top and bottom of the effective layer using our own function
hbot, htop = effective_layer(p, T, Td, height, height_layer=True)
# Perform the calculation of supercell composite if an effective layer exists
if hbot:
esrh = mpcalc.storm_relative_helicity(height, u, v, depth=htop - hbot, bottom=hbot)
eubshr, evbshr = mpcalc.bulk_shear(p, u, v, height=height, depth=htop - hbot, bottom=hbot)
ebshear = mpcalc.wind_speed(eubshr, evbshr)
super_comp = mpcalc.supercell_composite(mucape, esrh[0], ebshear)
else:
super_comp = np.nan
###########################################
# Print Important Sounding Parameters
print('Important Sounding Parameters for KOUN on 22 Mary 2011 12 UTC')
print()
print(f' CAPE: {cape:.2f}')
print(f' CIN: {cin:.2f}')
print(f'LCL Pressure: {lclp:.2f}')
print(f'LFC Pressure: {lfcp:.2f}')
print(f' EL Pressure: {el_pressure:.2f}')
print()
print(f' Lifted Index: {lift_index:.2f}')
print(f' K-Index: {kindex:.2f}')
print(f'Showalter Index: {showalter:.2f}')
print(f' Cross Totals: {ctotals:.2f}')
print(f' Total Totals: {total_totals:.2f}')
print(f'Vertical Totals: {vert_totals:.2f}')
print()
print('Mixed Layer - Lowest 50-hPa')
print(f' ML Temp: {ml_t:.2f}')
print(f' ML Dewp: {ml_td:.2f}')
print(f' ML CAPE: {mlcape:.2f}')
print(f' ML CIN: {mlcin:.2f}')
print()
print('Most Unstable - Lowest 50-hPa')
print(f' MU Temp: {mu_t:.2f}')
print(f' MU Dewp: {mu_td:.2f}')
print(f' MU Pressure: {mu_p:.2f}')
print(f' MU CAPE: {mucape:.2f}')
print(f' MU CIN: {mucin:.2f}')
print()
print('Bunkers Storm Motion Vector')
print(f' u_storm: {u_storm:.2f}')
print(f' v_storm: {v_storm:.2f}')
print(f'Critical Angle: {critical_angle:.2f}')
print()
print(f'Storm Relative Helicity: {total_helicity:.2f}')
print(f'Significant Tornado Parameter: {sig_tor:.2f}')
print(f'Supercell Composite Parameter: {super_comp:.2f}')
|