1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
# Copyright (c) 2015,2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
========================
GINI Water Vapor Imagery
========================
Use MetPy's support for GINI files to read in a water vapor satellite image and plot the
data using CartoPy.
"""
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import xarray as xr
from metpy.cbook import get_test_data
from metpy.plots import add_metpy_logo, add_timestamp, colortables
###########################################
# Use Xarray together with MetPy's GINI backend to directly open the file from the test data
ds = xr.open_dataset(get_test_data('WEST-CONUS_4km_WV_20151208_2200.gini', as_file_obj=False))
print(ds)
###########################################
# Pull out the data and (x, y) coordinates. We use `metpy.parse_cf` to handle parsing some
# netCDF Climate and Forecasting (CF) metadata to simplify working with projections.
x = ds.variables['x'][:]
y = ds.variables['y'][:]
dat = ds.metpy.parse_cf('WV')
###########################################
# Plot the image. We use MetPy's xarray/cartopy integration to automatically handle parsing
# the projection information.
fig = plt.figure(figsize=(10, 12))
add_metpy_logo(fig, 125, 145)
ax = fig.add_subplot(1, 1, 1, projection=dat.metpy.cartopy_crs)
wv_norm, wv_cmap = colortables.get_with_range('WVCIMSS', 100, 260)
wv_cmap.set_under('k')
im = ax.imshow(dat[:], cmap=wv_cmap, norm=wv_norm,
extent=(x.min(), x.max(), y.min(), y.max()), origin='upper')
ax.add_feature(cfeature.COASTLINE.with_scale('50m'))
add_timestamp(ax, ds.time.dt, y=0.02, high_contrast=True)
plt.show()
|