1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
# Copyright (c) 2015,2018,2019 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
===================
NEXRAD Level 2 File
===================
Use MetPy to read information from a NEXRAD Level 2 (volume) file and plot
"""
import cartopy.crs as ccrs
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
from metpy.calc import azimuth_range_to_lat_lon
from metpy.cbook import get_test_data
from metpy.io import Level2File
from metpy.plots import add_metpy_logo, add_timestamp, USCOUNTIES
from metpy.units import units
###########################################
# Open the file
name = get_test_data('KTLX20130520_201643_V06.gz', as_file_obj=False)
f = Level2File(name)
print(f.sweeps[0][0])
###########################################
# Pull data out of the file
sweep = 0
# First item in ray is header, which has azimuth angle
az = np.array([ray[0].az_angle for ray in f.sweeps[sweep]])
###########################################
# We need to take the single azimuth (nominally a mid-point) we get in the data and
# convert it to be the azimuth of the boundary between rays of data, taking care to handle
# where the azimuth crosses from 0 to 360.
diff = np.diff(az)
crossed = diff < -180
diff[crossed] += 360.
avg_spacing = diff.mean()
# Convert mid-point to edge
az = (az[:-1] + az[1:]) / 2
az[crossed] += 180.
# Concatenate with overall start and end of data we calculate using the average spacing
az = np.concatenate(([az[0] - avg_spacing], az, [az[-1] + avg_spacing]))
az = units.Quantity(az, 'degrees')
###########################################
# Calculate ranges for the gates from the metadata
# 5th item is a dict mapping a var name (byte string) to a tuple
# of (header, data array)
ref_hdr = f.sweeps[sweep][0][4][b'REF'][0]
ref_range = (np.arange(ref_hdr.num_gates + 1) - 0.5) * ref_hdr.gate_width + ref_hdr.first_gate
ref_range = units.Quantity(ref_range, 'kilometers')
ref = np.array([ray[4][b'REF'][1] for ray in f.sweeps[sweep]])
rho_hdr = f.sweeps[sweep][0][4][b'RHO'][0]
rho_range = (np.arange(rho_hdr.num_gates + 1) - 0.5) * rho_hdr.gate_width + rho_hdr.first_gate
rho_range = units.Quantity(rho_range, 'kilometers')
rho = np.array([ray[4][b'RHO'][1] for ray in f.sweeps[sweep]])
# Extract central longitude and latitude from file
cent_lon = f.sweeps[0][0][1].lon
cent_lat = f.sweeps[0][0][1].lat
###########################################
spec = gridspec.GridSpec(1, 2)
fig = plt.figure(figsize=(15, 8))
add_metpy_logo(fig, 190, 85, size='large')
for var_data, var_range, ax_rect in zip((ref, rho), (ref_range, rho_range), spec,
strict=False):
# Turn into an array, then mask
data = np.ma.array(var_data)
data[np.isnan(data)] = np.ma.masked
# Convert az,range to x,y
xlocs, ylocs = azimuth_range_to_lat_lon(az, var_range, cent_lon, cent_lat)
# Plot the data
crs = ccrs.LambertConformal(central_longitude=cent_lon, central_latitude=cent_lat)
ax = fig.add_subplot(ax_rect, projection=crs)
ax.add_feature(USCOUNTIES, linewidth=0.5)
ax.pcolormesh(xlocs, ylocs, data, cmap='viridis', transform=ccrs.PlateCarree())
ax.set_extent([cent_lon - 0.5, cent_lon + 0.5, cent_lat - 0.5, cent_lat + 0.5])
ax.set_aspect('equal', 'datalim')
add_timestamp(ax, f.dt, y=0.02, high_contrast=True)
plt.show()
|