1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
# Copyright (c) 2016 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
=============================
Natural Neighbor Verification
=============================
Walks through the steps of Natural Neighbor interpolation to validate that the algorithmic
approach taken in MetPy is correct.
"""
###########################################
# Find natural neighbors visual test
#
# A triangle is a natural neighbor for a point if the
# `circumscribed circle <https://en.wikipedia.org/wiki/Circumscribed_circle>`_ of the
# triangle contains that point. It is important that we correctly grab the correct triangles
# for each point before proceeding with the interpolation.
#
# Algorithmically:
#
# 1. We place all of the grid points in a KDTree. These provide worst-case O(n) time
# complexity for spatial searches.
#
# 2. We generate a `Delaunay Triangulation <https://docs.scipy.org/doc/scipy/
# tutorial/spatial.html#delaunay-triangulations>`_
# using the locations of the provided observations.
#
# 3. For each triangle, we calculate its circumcenter and circumradius. Using
# KDTree, we then assign each grid a triangle that has a circumcenter within a
# circumradius of the grid's location.
#
# 4. The resulting dictionary uses the grid index as a key and a set of natural
# neighbor triangles in the form of triangle codes from the Delaunay triangulation.
# This dictionary is then iterated through to calculate interpolation values.
#
# 5. We then traverse the ordered natural neighbor edge vertices for a particular
# grid cell in groups of 3 (n - 1, n, n + 1), and perform calculations to generate
# proportional polygon areas.
#
# Circumcenter of (n - 1), n, grid_location
# Circumcenter of (n + 1), n, grid_location
#
# Determine what existing circumcenters (ie, Delaunay circumcenters) are associated
# with vertex n, and add those as polygon vertices. Calculate the area of this polygon.
#
# 6. Increment the current edges to be checked, i.e.:
# n - 1 = n, n = n + 1, n + 1 = n + 2
#
# 7. Repeat steps 5 & 6 until all the edge combinations of 3 have been visited.
#
# 8. Repeat steps 4 through 7 for each grid cell.
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import ConvexHull, Delaunay, delaunay_plot_2d, Voronoi, voronoi_plot_2d
from scipy.spatial.distance import euclidean
from metpy.interpolate import geometry
from metpy.interpolate.points import natural_neighbor_point
###########################################
# For a test case, we generate 10 random points and observations, where the
# observation values are just the x coordinate value times the y coordinate
# value divided by 1000.
#
# We then create two test points (grid 0 & grid 1) at which we want to
# estimate a value using natural neighbor interpolation.
#
# The locations of these observations are then used to generate a Delaunay triangulation.
# Some randomly selected points
pts = np.array([[8, 24], [67, 87], [79, 48], [10, 94], [52, 98],
[53, 66], [98, 14], [34, 24], [15, 60], [58, 16]])
xp = pts[:, 0]
yp = pts[:, 1]
zp = (pts[:, 0] * pts[:, 0]) / 1000
tri = Delaunay(pts)
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
ax.ishold = lambda: True # Work-around for Matplotlib 3.0.0 incompatibility
delaunay_plot_2d(tri, ax=ax)
for i, zval in enumerate(zp):
ax.annotate(f'{zval} F', xy=(pts[i, 0] + 2, pts[i, 1]))
sim_gridx = [30., 60.]
sim_gridy = [30., 60.]
ax.plot(sim_gridx, sim_gridy, '+', markersize=10)
ax.set_aspect('equal', 'datalim')
ax.set_title('Triangulation of observations and test grid cell '
'natural neighbor interpolation values')
members, circumcenters = geometry.find_natural_neighbors(tri, list(zip(sim_gridx, sim_gridy,
strict=False)))
val = natural_neighbor_point(xp, yp, zp, (sim_gridx[0], sim_gridy[0]), tri, members[0],
circumcenters)
ax.annotate(f'grid 0: {val:.3f}', xy=(sim_gridx[0] + 2, sim_gridy[0]))
val = natural_neighbor_point(xp, yp, zp, (sim_gridx[1], sim_gridy[1]), tri, members[1],
circumcenters)
ax.annotate(f'grid 1: {val:.3f}', xy=(sim_gridx[1] + 2, sim_gridy[1]))
###########################################
# Using the circumcenter and circumcircle radius information from
# `metpy.interpolate.find_natural_neighbors`, we can visually
# examine the results to see if they are correct.
def draw_circle(ax, x, y, r, m, label):
th = np.linspace(0, 2 * np.pi, 100)
nx = x + r * np.cos(th)
ny = y + r * np.sin(th)
ax.plot(nx, ny, m, label=label)
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
ax.ishold = lambda: True # Work-around for Matplotlib 3.0.0 incompatibility
delaunay_plot_2d(tri, ax=ax)
ax.plot(sim_gridx, sim_gridy, 'ks', markersize=10)
for i, (x_t, y_t) in enumerate(circumcenters):
r = geometry.circumcircle_radius(*tri.points[tri.simplices[i]])
if i in members[1] and i in members[0]:
draw_circle(ax, x_t, y_t, r, 'm-', str(i) + ': grid 1 & 2')
ax.annotate(str(i), xy=(x_t, y_t), fontsize=15)
elif i in members[0]:
draw_circle(ax, x_t, y_t, r, 'r-', str(i) + ': grid 0')
ax.annotate(str(i), xy=(x_t, y_t), fontsize=15)
elif i in members[1]:
draw_circle(ax, x_t, y_t, r, 'b-', str(i) + ': grid 1')
ax.annotate(str(i), xy=(x_t, y_t), fontsize=15)
else:
draw_circle(ax, x_t, y_t, r, 'k:', str(i) + ': no match')
ax.annotate(str(i), xy=(x_t, y_t), fontsize=9)
ax.set_aspect('equal', 'datalim')
ax.legend()
###########################################
# What?....the circle from triangle 8 looks pretty darn close. Why isn't
# grid 0 included in that circle?
x_t, y_t = circumcenters[8]
r = geometry.circumcircle_radius(*tri.points[tri.simplices[8]])
print('Distance between grid0 and Triangle 8 circumcenter:',
euclidean([x_t, y_t], [sim_gridx[0], sim_gridy[0]]))
print('Triangle 8 circumradius:', r)
###########################################
# Lets do a manual check of the above interpolation value for grid 0 (southernmost grid)
# Grab the circumcenters and radii for natural neighbors
cc = np.array([circumcenters[m] for m in members[0]])
r = np.array([geometry.circumcircle_radius(*tri.points[tri.simplices[m]]) for m in members[0]])
print('circumcenters:\n', cc)
print('radii\n', r)
###########################################
# Draw the natural neighbor triangles and their circumcenters. Also plot a `Voronoi diagram
# <https://docs.scipy.org/doc/scipy/tutorial/spatial.html#voronoi-diagrams>`_
# which serves as a complementary (but not necessary)
# spatial data structure that we use here simply to show areal ratios.
# Notice that the two natural neighbor triangle circumcenters are also vertices
# in the Voronoi plot (green dots), and the observations are in the polygons (blue dots).
vort = Voronoi(list(zip(xp, yp, strict=False)))
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
ax.ishold = lambda: True # Work-around for Matplotlib 3.0.0 incompatibility
voronoi_plot_2d(vort, ax=ax)
nn_ind = np.array([0, 5, 7, 8])
z_0 = zp[nn_ind]
x_0 = xp[nn_ind]
y_0 = yp[nn_ind]
for x, y, z in zip(x_0, y_0, z_0, strict=False):
ax.annotate(f'{x}, {y}: {z:.3f} F', xy=(x, y))
ax.plot(sim_gridx[0], sim_gridy[0], 'k+', markersize=10)
ax.annotate(f'{sim_gridx[0]}, {sim_gridy[0]}', xy=(sim_gridx[0] + 2, sim_gridy[0]))
ax.plot(cc[:, 0], cc[:, 1], 'ks', markersize=15, fillstyle='none',
label='natural neighbor\ncircumcenters')
for center in cc:
ax.annotate(f'{center[0]:.3f}, {center[1]:.3f}', xy=(center[0] + 1, center[1] + 1))
tris = tri.points[tri.simplices[members[0]]]
for triangle in tris:
x = [triangle[0, 0], triangle[1, 0], triangle[2, 0], triangle[0, 0]]
y = [triangle[0, 1], triangle[1, 1], triangle[2, 1], triangle[0, 1]]
ax.plot(x, y, ':', linewidth=2)
ax.legend()
ax.set_aspect('equal', 'datalim')
def draw_polygon_with_info(ax, polygon, off_x=0, off_y=0):
"""Draw one of the natural neighbor polygons with some information."""
pts = np.array(polygon)[ConvexHull(polygon).vertices]
for i, pt in enumerate(pts):
ax.plot([pt[0], pts[(i + 1) % len(pts)][0]],
[pt[1], pts[(i + 1) % len(pts)][1]], 'k-')
avex, avey = np.mean(pts, axis=0)
ax.annotate(f'area: {geometry.area(pts):.3f}', xy=(avex + off_x, avey + off_y),
fontsize=12)
cc1 = geometry.circumcenter((53, 66), (15, 60), (30, 30))
cc2 = geometry.circumcenter((34, 24), (53, 66), (30, 30))
draw_polygon_with_info(ax, [cc[0], cc1, cc2])
cc1 = geometry.circumcenter((53, 66), (15, 60), (30, 30))
cc2 = geometry.circumcenter((15, 60), (8, 24), (30, 30))
draw_polygon_with_info(ax, [cc[0], cc[1], cc1, cc2], off_x=-9, off_y=3)
cc1 = geometry.circumcenter((8, 24), (34, 24), (30, 30))
cc2 = geometry.circumcenter((15, 60), (8, 24), (30, 30))
draw_polygon_with_info(ax, [cc[1], cc1, cc2], off_x=-15)
cc1 = geometry.circumcenter((8, 24), (34, 24), (30, 30))
cc2 = geometry.circumcenter((34, 24), (53, 66), (30, 30))
draw_polygon_with_info(ax, [cc[0], cc[1], cc1, cc2])
###########################################
# Put all of the generated polygon areas and their affiliated values in arrays.
# Calculate the total area of all of the generated polygons.
areas = np.array([60.434, 448.296, 25.916, 70.647])
values = np.array([0.064, 1.156, 2.809, 0.225])
total_area = np.sum(areas)
print(total_area)
###########################################
# For each polygon area, calculate its percent of total area.
proportions = areas / total_area
print(proportions)
###########################################
# Multiply the percent of total area by the respective values.
contributions = proportions * values
print(contributions)
###########################################
# The sum of this array is the interpolation value!
interpolation_value = np.sum(contributions)
function_output = natural_neighbor_point(xp, yp, zp, (sim_gridx[0], sim_gridy[0]), tri,
members[0], circumcenters)
print(interpolation_value, function_output)
###########################################
# The values are slightly different due to truncating the area values in
# the above visual example to the 3rd decimal place.
plt.show()
|