1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
# Copyright (c) 2016 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
===================
Point Interpolation
===================
Compares different point interpolation approaches.
"""
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from matplotlib.colors import BoundaryNorm
import matplotlib.pyplot as plt
import numpy as np
from metpy.cbook import get_test_data
from metpy.interpolate import (interpolate_to_grid, remove_nan_observations,
remove_repeat_coordinates)
from metpy.plots import add_metpy_logo
###########################################
def basic_map(proj, title):
"""Make our basic default map for plotting"""
fig = plt.figure(figsize=(15, 10))
add_metpy_logo(fig, 0, 80, size='large')
view = fig.add_axes([0, 0, 1, 1], projection=proj)
view.set_title(title)
view.set_extent([-120, -70, 20, 50])
view.add_feature(cfeature.STATES.with_scale('50m'))
view.add_feature(cfeature.OCEAN)
view.add_feature(cfeature.COASTLINE)
view.add_feature(cfeature.BORDERS, linestyle=':')
return fig, view
def station_test_data(variable_names, proj_from=None, proj_to=None):
with get_test_data('station_data.txt') as f:
all_data = np.loadtxt(f, skiprows=1, delimiter=',',
usecols=(1, 2, 3, 4, 5, 6, 7, 17, 18, 19),
dtype=np.dtype([('stid', '3S'), ('lat', 'f'), ('lon', 'f'),
('slp', 'f'), ('air_temperature', 'f'),
('cloud_fraction', 'f'), ('dewpoint', 'f'),
('weather', '16S'),
('wind_dir', 'f'), ('wind_speed', 'f')]))
all_stids = [s.decode('ascii') for s in all_data['stid']]
data = np.concatenate([all_data[all_stids.index(site)].reshape(1, ) for site in all_stids])
value = data[variable_names]
lon = data['lon']
lat = data['lat']
if proj_from is not None and proj_to is not None:
proj_points = proj_to.transform_points(proj_from, lon, lat)
return proj_points[:, 0], proj_points[:, 1], value
return lon, lat, value
from_proj = ccrs.Geodetic()
to_proj = ccrs.AlbersEqualArea(central_longitude=-97.0000, central_latitude=38.0000)
levels = list(range(-20, 20, 1))
cmap = plt.get_cmap('magma')
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
x, y, temp = station_test_data('air_temperature', from_proj, to_proj)
x, y, temp = remove_nan_observations(x, y, temp)
x, y, temp = remove_repeat_coordinates(x, y, temp)
###########################################
# Scipy.interpolate linear
# ------------------------
gx, gy, img = interpolate_to_grid(x, y, temp, interp_type='linear', hres=75000)
img = np.ma.masked_where(np.isnan(img), img)
fig, view = basic_map(to_proj, 'Linear')
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
fig.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
###########################################
# Natural neighbor interpolation (MetPy implementation)
# -----------------------------------------------------
# `Reference <https://cwp.mines.edu/wp-content/uploads/sites/112/2018/09/cwp-657.pdf>`_
gx, gy, img = interpolate_to_grid(x, y, temp, interp_type='natural_neighbor', hres=75000)
img = np.ma.masked_where(np.isnan(img), img)
fig, view = basic_map(to_proj, 'Natural Neighbor')
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
fig.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
###########################################
# Cressman interpolation
# ----------------------
# search_radius = 100 km
#
# grid resolution = 75 km
#
# min_neighbors = 1
gx, gy, img = interpolate_to_grid(x, y, temp, interp_type='cressman', minimum_neighbors=1,
hres=75000, search_radius=100000)
img = np.ma.masked_where(np.isnan(img), img)
fig, view = basic_map(to_proj, 'Cressman')
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
fig.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
###########################################
# Barnes Interpolation
# --------------------
# search_radius = 100km
#
# min_neighbors = 3
gx, gy, img1 = interpolate_to_grid(x, y, temp, interp_type='barnes', hres=75000,
search_radius=100000)
img1 = np.ma.masked_where(np.isnan(img1), img1)
fig, view = basic_map(to_proj, 'Barnes')
mmb = view.pcolormesh(gx, gy, img1, cmap=cmap, norm=norm)
fig.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
###########################################
# Radial basis function interpolation
# ------------------------------------
# linear
gx, gy, img = interpolate_to_grid(x, y, temp, interp_type='rbf', hres=75000, rbf_func='linear',
rbf_smooth=0)
img = np.ma.masked_where(np.isnan(img), img)
fig, view = basic_map(to_proj, 'Radial Basis Function')
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
fig.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
plt.show()
|