1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
# Copyright (c) 2017,2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
===================
Isentropic Analysis
===================
The MetPy function `mpcalc.isentropic_interpolation` allows for isentropic analysis from model
analysis data in isobaric coordinates.
"""
########################################
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.plots import add_metpy_logo, add_timestamp
from metpy.units import units
#######################################
# **Getting the data**
#
# In this example, [NARR reanalysis data](
# https://www.ncei.noaa.gov/products/weather-climate-models/north-american-regional)
# for 18 UTC 04 April 1987 from the National Centers for Environmental Information will be
# used.
data = xr.open_dataset(get_test_data('narr_example.nc', False))
##########################
print(list(data.variables))
#############################
# We will reduce the dimensionality of the data as it is pulled in to remove an empty time
# dimension, as well as add longitude and latitude as coordinates (instead of data variables).
data = data.squeeze().set_coords(['lon', 'lat'])
#############################
# To properly interpolate to isentropic coordinates, the function must know the desired output
# isentropic levels. An array with these levels will be created below.
isentlevs = [296.] * units.kelvin
####################################
# **Conversion to Isentropic Coordinates**
#
# Once three dimensional data in isobaric coordinates has been pulled and the desired
# isentropic levels created, the conversion to isentropic coordinates can begin. Data will be
# passed to the function as below. The function requires that isentropic levels, as well as a
# DataArray of temperature on isobaric coordinates be input. Any additional inputs (in this
# case specific humidity, geopotential height, and u and v wind components) will be
# logarithmicaly interpolated to isentropic space.
isent_data = mpcalc.isentropic_interpolation_as_dataset(
isentlevs,
data['Temperature'],
data['u_wind'],
data['v_wind'],
data['Specific_humidity'],
data['Geopotential_height']
)
#####################################
# The output is an xarray Dataset:
isent_data
########################################
# Note that the units on our wind variables are not ideal for plotting. Instead, let us
# convert them to more appropriate values.
isent_data['u_wind'] = isent_data['u_wind'].metpy.convert_units('kt')
isent_data['v_wind'] = isent_data['v_wind'].metpy.convert_units('kt')
#################################
# **Converting to Relative Humidity**
#
# The NARR only gives specific humidity on isobaric vertical levels, so relative humidity will
# have to be calculated after the interpolation to isentropic space.
isent_data['Relative_humidity'] = mpcalc.relative_humidity_from_specific_humidity(
isent_data['pressure'],
isent_data['temperature'],
isent_data['Specific_humidity']
).metpy.convert_units('percent')
#######################################
# **Plotting the Isentropic Analysis**
# Set up our projection and coordinates
crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0)
lon = isent_data['pressure'].metpy.longitude
lat = isent_data['pressure'].metpy.latitude
# Coordinates to limit map area
bounds = [(-122., -75., 25., 50.)]
# Choose a level to plot, in this case 296 K (our sole level in this example)
level = 0
fig = plt.figure(figsize=(17., 12.))
add_metpy_logo(fig, 120, 245, size='large')
ax = fig.add_subplot(1, 1, 1, projection=crs)
ax.set_extent(*bounds, crs=ccrs.PlateCarree())
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75)
ax.add_feature(cfeature.STATES, linewidth=0.5)
# Plot the surface
clevisent = np.arange(0, 1000, 25)
cs = ax.contour(lon, lat, isent_data['pressure'].isel(isentropic_level=level),
clevisent, colors='k', linewidths=1.0, linestyles='solid',
transform=ccrs.PlateCarree())
cs.clabel(fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True,
use_clabeltext=True)
# Plot RH
cf = ax.contourf(lon, lat, isent_data['Relative_humidity'].isel(isentropic_level=level),
range(10, 106, 5), cmap=plt.cm.gist_earth_r, transform=ccrs.PlateCarree())
cb = fig.colorbar(cf, orientation='horizontal', aspect=65, shrink=0.5, pad=0.05,
extendrect='True')
cb.set_label('Relative Humidity', size='x-large')
# Plot wind barbs
ax.barbs(lon.values, lat.values, isent_data['u_wind'].isel(isentropic_level=level).values,
isent_data['v_wind'].isel(isentropic_level=level).values, length=6,
regrid_shape=20, transform=ccrs.PlateCarree())
# Make some titles
ax.set_title(f'{isentlevs[level]:~.0f} Isentropic Pressure (hPa), Wind (kt), '
'Relative Humidity (percent)', loc='left')
add_timestamp(ax, isent_data['time'].values.astype('datetime64[ms]').astype('O'),
y=0.02, high_contrast=True)
fig.tight_layout()
######################################
# **Montgomery Streamfunction**
#
# The Montgomery Streamfunction, :math:`{\psi} = gdz + CpT`, is often desired because its
# gradient is proportional to the geostrophic wind in isentropic space. This can be easily
# calculated with `mpcalc.montgomery_streamfunction`.
# Calculate Montgomery Streamfunction and scale by 10^-2 for plotting
msf = mpcalc.montgomery_streamfunction(
isent_data['Geopotential_height'],
isent_data['temperature']
).data.to_base_units() * 1e-2
# Choose a level to plot, in this case 296 K
level = 0
fig = plt.figure(figsize=(17., 12.))
add_metpy_logo(fig, 120, 250, size='large')
ax = plt.subplot(111, projection=crs)
ax.set_extent(*bounds, crs=ccrs.PlateCarree())
ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75)
ax.add_feature(cfeature.STATES.with_scale('50m'), linewidth=0.5)
# Plot the surface
clevmsf = np.arange(0, 4000, 5)
cs = ax.contour(lon, lat, msf[level, :, :], clevmsf,
colors='k', linewidths=1.0, linestyles='solid', transform=ccrs.PlateCarree())
cs.clabel(fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True,
use_clabeltext=True)
# Plot RH
cf = ax.contourf(lon, lat, isent_data['Relative_humidity'].isel(isentropic_level=level),
range(10, 106, 5), cmap=plt.cm.gist_earth_r, transform=ccrs.PlateCarree())
cb = fig.colorbar(cf, orientation='horizontal', aspect=65, shrink=0.5, pad=0.05,
extendrect='True')
cb.set_label('Relative Humidity', size='x-large')
# Plot wind barbs
ax.barbs(lon.values, lat.values, isent_data['u_wind'].isel(isentropic_level=level).values,
isent_data['v_wind'].isel(isentropic_level=level).values, length=6,
regrid_shape=20, transform=ccrs.PlateCarree())
# Make some titles
ax.set_title(f'{isentlevs[level]:~.0f} Montgomery Streamfunction '
r'($10^{-2} m^2 s^{-2}$), Wind (kt), Relative Humidity (percent)', loc='left')
add_timestamp(ax, isent_data['time'].values.astype('datetime64[ms]').astype('O'),
y=0.02, pretext='Valid: ', high_contrast=True)
fig.tight_layout()
plt.show()
|