1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
# Copyright (c) 2018 MetPy Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
"""
=================================
MetPy Declarative Syntax Tutorial
=================================
The declarative syntax that is a part of the MetPy packaged is designed to aid in simple
data exploration and analysis needs by simplifying the plotting context from typical verbose
Python code. The complexity of data wrangling and plotting are hidden behind the simplified
syntax to allow a lower barrier to investigating your data.
"""
#########################################################################
# Imports
# -------
#
# You'll note that the number of imports is smaller due to using the declarative syntax.
# There is no need to import Matplotlib or Cartopy to your code as all of that is done
# behind the scenes.
from datetime import datetime, timedelta
import xarray as xr
import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.io import metar
from metpy.plots.declarative import (BarbPlot, ContourPlot, FilledContourPlot, MapPanel,
PanelContainer, PlotObs)
from metpy.units import units
#########################################################################
# Getting Data
# ------------
#
# Depending on what kind of data you are wanting to plot you'll use either Xarray (for gridded
# data), Pandas (for CSV data), or the MetPy METAR parser (for METAR data).
#
# We'll start this tutorial by reading in a gridded dataset using Xarray.
# Open the netCDF file as a xarray Dataset and parse the full dataset
data = xr.open_dataset(get_test_data('GFS_test.nc', False)).metpy.parse_cf()
# View a summary of the Dataset
print(data)
#########################################################################
# Set Datetime
# ------------
#
# Set the date/time of that you desire to plot
plot_time = datetime(2010, 10, 26, 12)
#########################################################################
# Subsetting Data
# ---------------
#
# MetPy provides wrappers for the usual xarray indexing and selection routines that can handle
# quantities with units. For DataArrays, MetPy also allows using the coordinate axis types
# mentioned above as aliases for the coordinates. And so, if we wanted data to be just over
# the U.S. for plotting purposes
ds = data.metpy.sel(lat=slice(70, 10), lon=slice(360 - 150, 360 - 55))
#########################################################################
# For full details on xarray indexing/selection, see
# `xarray's documentation <https://docs.xarray.dev/en/stable/indexing.html>`_.
#########################################################################
# Calculations
# ------------
#
# In MetPy 1.0 and later, calculation functions accept Xarray DataArray's as input and the
# output a DataArray that can be easily added to an existing Dataset.
#
# As an example, we calculate wind speed from the wind components and add it as a new variable
# to our Dataset.
ds['wind_speed'] = mpcalc.wind_speed(ds['u-component_of_wind_isobaric'],
ds['v-component_of_wind_isobaric'])
#########################################################################
# Plotting
# --------
#
# With that minimal preparation, we are now ready to use the simplified plotting syntax to be
# able to plot our data and analyze the meteorological situation.
#
# General Structure
#
# 1. Set contour attributes
#
# 2. Set map characteristics and collect contours
#
# 3. Collect panels and plot
#
# 4. Show (or save) the results
#
# Valid Plotting Types for Gridded Data:
#
# - ``ContourPlot()``
#
# - ``FilledContourPlot()``
#
# - ``ImagePlot()``
#
# - ``BarbPlot()``
#
# More complete descriptions of these and other plotting types, as well as the map panel and
# panel container classes are at the end of this tutorial.
#
# Let's plot a 300-hPa map with color-filled wind speed, which we calculated and added to
# our Dataset above, and geopotential heights over the CONUS.
#########################################################################
# We'll start by setting attributes for contours of Geopotential Heights at 300 hPa.
# We need to set at least the data, field, level, and time attributes. We'll set a few others
# to have greater control over hour the data is plotted.
# Set attributes for contours of Geopotential Heights at 300 hPa
cntr2 = ContourPlot()
cntr2.data = ds
cntr2.field = 'Geopotential_height_isobaric'
cntr2.level = 300 * units.hPa
cntr2.time = plot_time
cntr2.contours = list(range(0, 10000, 120))
cntr2.linecolor = 'black'
cntr2.linestyle = 'solid'
cntr2.clabels = True
#########################################################################
# Now we'll set the attributes for plotting color-filled contours of wind speed at 300 hPa.
# Again, the attributes that must be set include data, field, level, and time. We'll also set
# a colormap and colorbar to be purposeful for wind speed. Additionally, we'll set the
# attribute to change the units from m/s to knots, which is the common plotting units for
# wind speed.
# Set attributes for plotting color-filled contours of wind speed at 300 hPa
cfill = FilledContourPlot()
cfill.data = ds
cfill.field = 'wind_speed'
cfill.level = 300 * units.hPa
cfill.time = plot_time
cfill.contours = list(range(10, 201, 20))
cfill.colormap = 'BuPu'
cfill.colorbar = 'horizontal'
cfill.plot_units = 'knot'
#########################################################################
# Once we have our contours (and any colorfill plots) set up, we will want to define the map
# panel that we'll plot the data on. This is the place where we can set the view extent,
# projection of our plot, add map lines like coastlines and states, set a plot title.
# One of the key elements is to add the data to the map panel as a list with the plots
# attribute.
# Set the attributes for the map and add our data to the map
panel = MapPanel()
panel.area = [-125, -74, 20, 55]
panel.projection = 'lcc'
panel.layers = ['states', 'coastline', 'borders']
panel.title = f'{cfill.level.m}-hPa Heights and Wind Speed at {plot_time}'
panel.plots = [cfill, cntr2]
#########################################################################
# Finally we'll collect all the panels to plot on the figure, set the size of the figure,
# and ultimately show or save the figure.
# Set the attributes for the panel and put the panel in the figure
pc = PanelContainer()
pc.size = (15, 15)
pc.panels = [panel]
#########################################################################
# All of our setting now produce the following map!
# Show the image
pc.show()
#########################################################################
# That's it! What a nice looking map, with relatively simple set of code.
#########################################################################
# Adding Wind Barbs
# -----------------
#
# We can easily add wind barbs to the plot we generated above by adding another plot type
# and adding it to the panel. The plot type for wind barbs is ``BarbPlot()`` and has its own
# set of attributes to control plotting a vector quantity.
#########################################################################
# We start with setting the attributes that we had before for our 300 hPa plot including,
# Geopotential Height contours, and color-filled wind speed.
# Set attributes for contours of Geopotential Heights at 300 hPa
cntr2 = ContourPlot()
cntr2.data = ds
cntr2.field = 'Geopotential_height_isobaric'
cntr2.level = 300 * units.hPa
cntr2.time = plot_time
cntr2.contours = list(range(0, 10000, 120))
cntr2.linecolor = 'black'
cntr2.linestyle = 'solid'
cntr2.clabels = True
# Set attributes for plotting color-filled contours of wind speed at 300 hPa
cfill = FilledContourPlot()
cfill.data = ds
cfill.field = 'wind_speed'
cfill.level = 300 * units.hPa
cfill.time = plot_time
cfill.contours = list(range(10, 201, 20))
cfill.colormap = 'BuPu'
cfill.colorbar = 'horizontal'
cfill.plot_units = 'knot'
#########################################################################
# Now we'll set the attributes for plotting wind barbs, with the required attributes of data,
# time, field, and level. The skip attribute is particularly useful for thinning the number of
# wind barbs that are plotted on the map. Again we convert to units of knots.
# Set attributes for plotting wind barbs
barbs = BarbPlot()
barbs.data = ds
barbs.time = plot_time
barbs.field = ['u-component_of_wind_isobaric', 'v-component_of_wind_isobaric']
barbs.level = 300 * units.hPa
barbs.skip = (3, 3)
barbs.plot_units = 'knot'
#########################################################################
# Add all of our plot types to the panel, don't forget to add in the new wind barbs to our plot
# list!
# Set the attributes for the map and add our data to the map
panel = MapPanel()
panel.area = [-125, -74, 20, 55]
panel.projection = 'lcc'
panel.layers = ['states', 'coastline', 'borders']
panel.title = f'{cfill.level.m}-hPa Heights and Wind Speed at {plot_time}'
panel.plots = [cfill, cntr2, barbs]
# Set the attributes for the panel and put the panel in the figure
pc = PanelContainer()
pc.size = (15, 15)
pc.panels = [panel]
# Show the figure
pc.show()
#########################################################################
# Plot Surface Obs
# ----------------
#
# We can also plot surface (or upper-air) observations at point locations using the simplified
# syntax. Whether it is surface or upper-air data, the ``PlotObs()`` class is what you would
# want to use. Then you would add those observations to a map panel and then collect the panels
# to plot the figure; similar to what you would do for a gridded plot.
df = metar.parse_metar_file(get_test_data('metar_20190701_1200.txt', False), year=2019,
month=7)
# Let's take a look at the variables that we could plot coming from our METAR observations.
print(df.keys())
# Set the observation time
obs_time = datetime(2019, 7, 1, 12)
#########################################################################
# Setting of our attributes for plotting observations is pretty straightforward and just needs
# to be lists for the variables, and a comparable number of items for plot characteristics that
# are specific to the individual fields. For example, the locations around a station plot, the
# plot units, and any plotting formats would all need to have the same number of items as the
# fields attribute.
#
# Plotting wind bards is done through the vector_field attribute. You can reduce the number
# of points plotted (especially important for surface observations) with the ``reduce_points``
# attribute.
#
# For a very basic plot of one field, the minimum required attributes are the data, time,
# fields, and location attributes.
# Plot desired data
obs = PlotObs()
obs.data = df
obs.time = obs_time
obs.time_window = timedelta(minutes=15)
obs.level = None
obs.fields = ['cloud_coverage', 'air_temperature', 'dew_point_temperature',
'air_pressure_at_sea_level', 'current_wx1_symbol']
obs.plot_units = [None, 'degF', 'degF', None, None]
obs.locations = ['C', 'NW', 'SW', 'NE', 'W']
obs.formats = ['sky_cover', None, None, lambda v: format(v * 10, '.0f')[-3:],
'current_weather']
obs.reduce_points = 0.75
obs.vector_field = ['eastward_wind', 'northward_wind']
#########################################################################
# We use the same Classes for plotting our data on a map panel and collecting all the
# panels on the figure. In this case we'll focus in on the state of Indiana for plotting.
# Panel for plot with Map features
panel = MapPanel()
panel.layout = (1, 1, 1)
panel.projection = 'lcc'
panel.area = 'in'
panel.layers = ['states']
panel.title = f'Surface plot for {obs_time}'
panel.plots = [obs]
# Bringing it all together
pc = PanelContainer()
pc.size = (10, 10)
pc.panels = [panel]
pc.show()
#########################################################################
# Detailed Attribute Descriptions
# -------------------------------
#
# This final section contains verbose descriptions of the attributes that can be set by the
# plot types used in this tutorial.
#########################################################################
# ContourPlot()
# -------------
#
# This class is designed to plot contours of gridded data, most commonly model output from the
# GFS, NAM, RAP, or other gridded dataset (e.g., NARR).
#
# Attributes:
#
# ``data``
#
# This attribute must be set with the variable name that contains the xarray dataset.
# (Typically this is the variable ds)
#
# ``field``
#
# This attribute must be set with the name of the variable that you want to contour.
# For example, to plot the heights of pressure surfaces from the GFS you would use the name
# ``‘Geopotential_height_isobaric’``
#
# ``level``
#
# This attribute sets the level of the data you wish to plot. If it is a pressure level,
# then it must be set to a unit bearing value (e.g., 500*units.hPa). If the variable does
# not have any vertical levels (e.g., mean sea-level pressure), then the level attribute must
# be set to None.
#
# ``time``
#
# This attribute must be set with a datetime object, just as with the ``PlotObs()`` class.
# To get a forecast hour, you can use the timedelta function from datetime to add the number of
# hours into the future you wish to plot. For example, if you wanted the six hour forecast from
# the 00 UTC 2 February 2020 model run, then you would set the attribute with:
#
# ``datetime(2020, 2, 2, 0) + timedelta(hours=6)``
#
# ``contours``
#
# This attribute sets the contour values to be plotted with a list. This can be set manually
# with a list of integers in square brackets (e.g., ``[5400, 5460, 5520, 5580, 5640, 5700]``)
# or programmatically (e.g., ``list(range(0, 10000, 60))``). The second method is a way to
# easily set a contour interval (in this case 60).
#
# ``clabel``
#
# This attribute can be set to ``True`` if you desire to have your contours labeled.
#
# ``linestyle``
#
# This attribute can be set to make the contours ``‘solid’``, ``‘dashed’``, ``‘dotted’``,
# or ``‘dashdot’``. Other linestyles are can be used and are found at:
# https://matplotlib.org/3.1.0/gallery/lines_bars_and_markers/linestyles.html
#
# Default is ``‘solid’``.
#
# ``linewidth``
#
# This attribute alters the width of the contours (defaults to 1). Setting the value greater
# than 1 will yield a thicker contour line.
#
# ``linecolor``
#
# This attribute sets the color of the contour lines. Default is ``‘black’``. All colors from
# matplotlib are valid: https://matplotlib.org/3.1.0/_images/sphx_glr_named_colors_003.png
#
# ``plot_units``
#
# If you want to change the units for plotting purposes, add the string value of the units
# desired. For example, if you want to plot temperature in Celsius, then set this attribute
# to ``‘degC’``.
#
# ``scale``
#
# This attribute will scale the field by multiplying by the scale. For example, to
# scale vorticity to be whole values for contouring you could set the scale to 1e5, such that
# the data values will be multiplied by 10^5.
#########################################################################
# FilledContourPlot()
# -------------------
#
# Works very similarly to ``ContourPlot()``, except that contours are filled using a colormap
# between contour values. All attributes for ``ContourPlot()`` work for color-filled plots,
# except for linestyle, linecolor, and linewidth. Additionally, there are the following
# attributes that work for color-filling:
#
# Attributes:
#
# ``colormap``
#
# This attribute is used to set a valid colormap from either Matplotlib or MetPy:
# Matplotlib Colormaps: https://matplotlib.org/3.1.1/gallery/color/colormap_reference.html
# MetPy Colormaps: https://unidata.github.io/MetPy/v1.0/api/generated/metpy.plots.ctables.html
#
# ``colorbar``
#
# This attribute can be set to ``‘vertical’`` or ``‘horizontal’``, which is the location the
# colorbar will be plotted on the panel.
#
# ``image_range``
#
# A set of values indicating the minimum and maximum for the data being plotted. This
# attribute should be set as ``(min_value, max_value)``, where min_value and max_value are
# numeric values.
#########################################################################
# PanelContainer()
# ----------------
#
# Attributes:
#
# ``size``
#
# The size of the figure in inches (e.g., (10, 8))
#
# ``panels``
#
# A list collecting the panels to be plotted in the figure.
#
# ``show``
#
# Show the plot
#
# ``save``
#
# Save the figure using the Matplotlib arguments/keyword arguments
#########################################################################
# MapPanel()
# ----------
#
# Attributes:
#
# ``layout``
#
# The Matplotlib layout of the figure. For a single panel figure the setting should be
# ``(1, 1, 1)``
#
# ``projection``
#
# The projection can be set with the name of a default projection (``‘lcc’``, ``‘mer’``, or
# ``‘ps’``) or it can be set to a Cartopy projection.
#
# ``layers``
#
# This attribute will add map layers to identify boundaries or features to plot on the map.
# Valid layers are ``'borders'``, ``'coastline'``, ``'states'``, ``'lakes'``, ``'land'``,
# ``'ocean'``, ``'rivers'``, ``'counties'``.
#
# ``area``
#
# This attribute sets the geographical area of the panel. This can be set with a predefined
# name of an area including all US state postal abbreviations (e.g., ``‘us’``, ``‘natl’``,
# ``‘in’``, ``‘il’``, ``‘wi’``, ``‘mi’``, etc.) or a tuple value that corresponds to
# longitude/latitude box based on the projection of the map with the format
# ``(west-most longitude, east-most longitude, south-most latitude, north-most latitude)``.
# This tuple defines a box from the lower-left to the upper-right corner.
#
# ``title``
#
# This attribute sets a title for the panel.
#
# ``plots``
#
# A list collecting the observations to be plotted in the panel.
#########################################################################
# BarbPlot()
# ----------
#
# This plot class is used to add wind barbs to the plot with the following
#
# Attributes:
#
# ``data``
#
# This attribute must be set to the variable that contains the vector components to be plotted.
#
# ``field``
#
# This attribute is a list of the vector components to be plotted. For the typical
# meteorological case it would be the ``[‘u-component’, ‘v-component’]``.
#
# ``time``
#
# This attribute should be set to a datetime object, the same as for all other declarative
# classes.
#
# ``barblength``
#
# This attribute sets the length of the wind barbs. The default value is based on the
# font size.
#
# ``color``
#
# This attribute sets the color of the wind barbs, which can be any Matplotlib color.
# Default color is ``‘black’``.
#
# ``earth_relative``
#
# This attribute can be set to False if the vector components are grid relative (e.g., for NAM
# or NARR output)
#
# ``pivot``
#
# This attribute can be set to a string value about where the wind barb will pivot relative to
# the grid point. Possible values include ``‘tip’`` or ``‘middle’``. Default is ``‘middle’``.
########################################################################
# PlotObs()
# ---------
#
# This class is used to plot point observations from the surface or upper-air.
#
# Attributes:
#
# ``data``
#
# This attribute needs to be set to the DataFrame variable containing the fields that you
# desire to plot.
#
# ``fields``
#
# This attribute is a list of variable names from your DataFrame that you desire to plot at the
# given locations around the station model.
#
# ``level``
#
# For a surface plot this needs to be set to None.
#
# ``time``
#
# This attribute needs to be set to subset your data attribute for the time of the observations
# to be plotted. This needs to be a datetime object.
#
# ``locations``
#
# This attribute sets the location of the fields to be plotted around the surface station
# model. The default location is center ``(‘C’)``
#
# ``time_window``
#
# This attribute allows you to define a window for valid observations (e.g., 15 minutes on
# either side of the datetime object setting. This is important for surface data since actual
# observed times are not all exactly on the hour. If multiple observations exist in the defined
# window, the most recent observations is retained for plotting purposes.
#
# ``formats``
#
# This attribute sets a formatter for text or plotting symbols around the station model. For
# example, plotting mean sea-level pressure is done in a three-digit code and a formatter can
# be used to achieve that on the station plot.
#
# MSLP Formatter: ``lambda v: format(10 * v, '.0f')[-3:]``
#
# For plotting symbols use the available MetPy options through their name. Valid symbol formats
# are ``'current_weather'``, ``'sky_cover'``, ``'low_clouds'``, ``'mid_clouds'``,
# ``'high_clouds'``, and ``'pressure_tendency'``.
#
# ``colors``
#
# This attribute can change the color of the plotted observation. Default is ``‘black’``.
# Acceptable colors are those available through Matplotlib:
# https://matplotlib.org/3.1.1/_images/sphx_glr_named_colors_003.png
#
# ``vector_field``
#
# This attribute can be set to a list of wind component values for plotting
# (e.g., ``[‘uwind’, ‘vwind’]``)
#
# ``vector_field_color``
#
# Same as colors except only controls the color of the wind barbs. Default is ``‘black’``.
#
# ``reduce_points``
#
# This attribute can be set to a real number to reduce the number of stations that are plotted.
# Default value is zero (e.g., no points are removed from the plot).
|