1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#
import copy
import logging
import os
import pandas as pd
from .indexer import GribIndexer, FieldsetIndexer
from .param import (
ParamInfo,
ParamNameDesc,
ParamIdDesc,
init_pandas_options,
)
from .ipython import is_ipython_active
# logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s")
# logging.basicConfig(level=logging.DEBUG, format="%(levelname)s - %(message)s")
LOG = logging.getLogger(__name__)
class IndexDb:
ROOTDIR_PLACEHOLDER_TOKEN = "__ROOTDIR__"
def __init__(
self,
name,
label="",
desc="",
path="",
rootdir_placeholder_value="",
file_name_pattern="",
db_dir="",
blocks=None,
data_files=None,
merge_conf=None,
mapped_params=None,
regrid_from=None,
dataset=None,
):
self.name = name
self.dataset = dataset
self.label = label
if self.label is None or self.label == "":
self.label = self.name
self.desc = desc
self.path = path
self.rootdir_placeholder_value = rootdir_placeholder_value
self.file_name_pattern = file_name_pattern
if self.file_name_pattern == "":
self.path = os.path.dirname(self.path)
self.file_name_pattern = os.path.basename(self.path)
self.db_dir = db_dir
self.mapped_params = {} if mapped_params is None else mapped_params
self.regrid_from = [] if regrid_from is None else regrid_from
self.blocks = {} if blocks is None else blocks
self.vector_loaded = False
self._param_types = {}
self.data_files = [] if data_files is None else data_files
self.merge_conf = [] if merge_conf is None else merge_conf
self._params = {}
def select_with_name(self, name):
"""
Perform a select operation where selection options are derived
from the specified name.
"""
# print(f"select_with_name blocks: {self.blocks.keys()}")
# print(f"vector_loaded: {self.vector_loaded}")
if "wind" in name and not self.vector_loaded:
self.load(vector=True)
pnf = ParamInfo.build_from_name(name, param_level_types=self.param_types)
if pnf is not None:
fs = self._select_fs(
**pnf.make_filter(), _named_vector_param=(not pnf.scalar)
)
if fs is not None:
pnf.update_meta(fs._db._first_index_row())
fs._ds_param_info = pnf
return fs
return None
def select(self, **kwargs):
return self._select_fs(**kwargs)
def _select_fs(self, **kwargs):
"""
Create a fieldset with the specified filter conditions. The resulting fieldset
will contain an index db.
"""
LOG.debug(f"kwargs={kwargs}")
vector = kwargs.pop("_named_vector_param", False)
max_count = kwargs.pop("_max_count", -1)
# print(f"kwargs={kwargs}")
# LOG.debug(f"blocks={self.blocks}")
dims = self._make_dims(kwargs)
# We can only have a vector param when the fs["wind"]-like operator is
# invoked and we deduce the shortName from the specified name
if vector:
short_name = dims.get("shortName", [])
if isinstance(short_name, list):
assert len(short_name) == 1
# print(f"dims={dims}")
self.load(keys=list(dims.keys()), vector=vector)
db, fs = self._get_fields(dims, max_count=max_count, vector=vector)
fs._db = db
# LOG.debug(f"fs={fs}")
# print(f"blocks={fs._db.blocks}")
return fs
def _get_fields(self, dims, max_count=-1, vector=False):
res = self.fieldset_class()
dfs = {}
LOG.debug(f"dims={dims}")
name_filter = "shortName" in dims or "paramId" in dims
if not vector and name_filter:
# in this case filtering can only be done on the scalar block
if "scalar" in self.blocks.keys():
self._get_fields_for_block("scalar", dims, dfs, res, max_count)
else:
for key in self.blocks.keys():
self._get_fields_for_block(key, dims, dfs, res, max_count)
if max_count != -1 and len(res) >= max_count:
break
# LOG.debug(f"len_res={len(res)}")
# LOG.debug(f"dfs={dfs}")
# LOG.debug(f"res={res}")
c = FieldsetDb(
res,
name=self.name,
blocks=dfs,
label=self.label,
mapped_params=self.mapped_params,
regrid_from=self.regrid_from,
)
return c, res
def _get_meta(self, dims):
LOG.debug(f"dims={dims}")
key = "scalar"
if key in self.blocks:
if self.blocks[key] is None:
self._load_block(key)
df = self._filter_df(df=self.blocks[key], dims=dims)
# LOG.debug(f"df={df}")
return df
return None
def _build_query(self, dims, df):
q = ""
for column, v in dims.items():
# print(f"v={v}")
if v:
col_type = None
if q:
q += " and "
# datetime columns
if column in GribIndexer.DATETIME_KEYS:
name_date = GribIndexer.DATETIME_KEYS[column][0]
name_time = GribIndexer.DATETIME_KEYS[column][1]
# here we should simply say: name_date*10000 + name_time. However,
# pandas cannot handle it in the query because the column types are
# Int64. np.int64 would work but that cannot handle missing values. So
# we need to break down the condition into individual logical components!
s = []
for x in v:
# print(f"x={x}")
# print(" date=" + x.strftime("%Y%m%d"))
# print(" time=" + x.strftime("%H%M"))
s.append(
f"(`{name_date}` == "
+ str(int(x.strftime("%Y%m%d")))
+ " and "
+ f"`{name_time}` == "
+ str(int(x.strftime("%H%M")))
+ ")"
)
q += "(" + " or ".join(s) + " ) "
else:
col_type = df.dtypes[column]
column = f"`{column}`"
if not isinstance(v, list):
q += f"{column} == {GribIndexer._convert_query_value(v, col_type)}"
else:
v = [GribIndexer._convert_query_value(x, col_type) for x in v]
q += f"{column} in {v}"
return q
def _filter_df(self, df=None, dims={}):
if len(dims) == 0:
return df
else:
df_res = None
if df is not None:
# print("types={}".format(df.dtypes))
q = self._build_query(dims, df)
# print("query={}".format(q))
if q != "":
df_res = df.query(q, engine="python")
df_res.reset_index(drop=True, inplace=True)
# print(f"df_res={df_res}")
# LOG.debug(f"df_res={df_res}")
else:
return df
return df_res
def _get_fields_for_block(self, key, dims, dfs, res, max_count):
# print(f"key={key} dims={dims}")
# LOG.debug(f"block={self.blocks[key]}")
if self.blocks[key] is None:
self._load_block(key)
df = self._filter_df(df=self.blocks[key], dims=dims)
# print(f"df={df}")
# LOG.debug(f"df={df}")
if df is not None and not df.empty:
df_fs = self._extract_fields(df, res, max_count)
# LOG.debug(f"len_res={len(res)}")
if df_fs is not None:
# LOG.debug(f"df_fs={df_fs}")
dfs[key] = df_fs
def _make_param_info(self):
m = self._first_index_row()
if m:
name = m["shortName"]
pnf = ParamInfo(
name, meta=dict(m), scalar=not name in ParamInfo.VECTOR_NAMES
)
return pnf
return None
def _first_index_row(self):
if self.blocks:
df = self.blocks[list(self.blocks.keys())[0]]
if df is not None and not df.empty:
row = df.iloc[0]
return dict(row)
return {}
def _make_dims(self, options):
dims = {}
GribIndexer._check_datetime_in_filter_input(options)
for k, v in options.items():
name = str(k)
vv = copy.deepcopy(v)
r = GribIndexer._convert_filter_value(name, self._to_list(vv))
for name, vv in r:
if len(r) > 1 or vv:
dims[name] = vv
return dims
def _to_list(self, v):
if not isinstance(v, list):
v = [v]
return v
@property
def param_types(self):
if len(self._param_types) == 0:
self.load()
for k, df in self.blocks.items():
df_u = df[["shortName", "typeOfLevel"]].drop_duplicates()
for row in df_u.itertuples(name=None):
if not row[1] in self._param_types:
self._param_types[row[1]] = [row[2]]
else:
self._param_types[row[1]].append(row[2])
# print(self._param_types)
return self._param_types
def unique(self, key):
self.load([key])
for _, v in self.blocks.items():
if key in v.columns:
return list(v[key].unique())
return []
@property
def param_meta(self):
if len(self._params) == 0:
self.load()
for par in sorted(self.unique("shortName")):
self._params[par] = ParamNameDesc(par)
self._params[par].load(self)
return self._params
def param_id_meta(self, param_id):
self.load()
p = ParamIdDesc(param_id)
p.load(self)
return p
def describe(self, *args, **kwargs):
param = args[0] if len(args) == 1 else None
if param is None:
param = kwargs.pop("param", None)
return ParamNameDesc.describe(self, param=param, **kwargs)
def to_df(self):
return pd.concat([p for _, p in self.blocks.items()])
def __str__(self):
return "{}[name={}]".format(self.__class__.__name__, self.name)
class FieldsetDb(IndexDb):
def __init__(self, fs, name="", **kwargs):
super().__init__(name, **kwargs)
self.fs = fs
self.fieldset_class = fs.__class__
self._indexer = None
@property
def indexer(self):
if self._indexer is None:
self._indexer = FieldsetIndexer(self)
return self._indexer
def scan(self, vector=False):
self.indexer.scan(vector=vector)
self.vector_loaded = vector
def load(self, keys=[], vector=False):
# print(f"blocks={self.blocks}")
if self.indexer.update_keys(keys):
self.blocks = {}
self._param_types = {}
self.scan(vector=self.vector_loaded)
elif not self.blocks:
self._param_types = {}
self.scan(vector=vector)
self.vector_loaded = vector
elif vector and not self.vector_loaded:
self._param_types = {}
self.indexer._scan_vector()
self.vector_loaded = True
def _extract_fields(self, df, fs, max_count):
if df.empty:
return None
# print(f"cols={df.columns}")
if "_msgIndex3" in df.columns:
comp_num = 3
elif "_msgIndex2" in df.columns:
comp_num = 2
elif "_msgIndex1" in df.columns:
comp_num = 1
else:
return None
# print(f"comp_num={comp_num}")
idx = [[] for k in range(comp_num)]
comp_lst = list(range(comp_num))
cnt = 0
for row in df.itertuples():
# print(f"{row}")
if max_count == -1 or len(fs) < max_count:
for comp in comp_lst:
fs.append(self.fs[row[-1 - (comp_num - comp - 1)]])
idx[comp].append(len(fs) - 1)
cnt += 1
else:
break
# generate a new dataframe
if max_count == -1 or cnt == df.shape[0]:
df = df.copy()
else:
df = df.head(cnt).copy()
for k, v in enumerate(idx):
df[f"_msgIndex{k+1}"] = v
return df
def _extract_scalar_fields(self, df):
if df.empty:
return None, None
assert "_msgIndex1" in df.columns
assert "_msgIndex2" not in df.columns
assert "_msgIndex3" not in df.columns
fs = self.fieldset_class()
for row in df.itertuples():
fs.append(self.fs[row[-1]])
assert len(fs) == len(df.index)
# generate a new dataframe
df = df.copy()
df["_msgIndex1"] = list(range(len(df.index)))
return df, fs
def _clone(self):
db = FieldsetDb(self.name, label=self.label, regrid_from=self.regrid_from)
if self._indexer is not None:
db.indexer.update_keys(self._indexer.keys_ecc)
db.blocks = {k: v.copy() for k, v in self.blocks.items()}
db.vector_loaded = self.vector_loaded
return db
@staticmethod
def make_param_info(fs):
if fs._db is not None:
return fs._db._make_param_info()
else:
return ParamInfo.build_from_fieldset(fs)
def ls(self, extra_keys=None, filter=None, no_print=False):
default_keys = [
"centre",
"shortName",
"typeOfLevel",
"level",
"dataDate",
"dataTime",
"stepRange",
"dataType",
"number",
"gridType",
]
ls_keys = default_keys
extra_keys = [] if extra_keys is None else extra_keys
if extra_keys is not None:
[ls_keys.append(x) for x in extra_keys if x not in ls_keys]
keys = list(ls_keys)
# add keys appearing in the filter to the full list of keys
dims = {} if filter is None else filter
dims = self._make_dims(dims)
[keys.append(k) for k, v in dims.items() if k not in keys]
# get metadata
self.load(keys=keys, vector=False)
# performs filter
df = self._get_meta(dims)
# extract results
keys = list(ls_keys)
keys.append("_msgIndex1")
df = df[keys]
df = df.sort_values("_msgIndex1")
df = df.rename(columns={"_msgIndex1": "Message"})
df = df.set_index("Message")
# only show the column for number in the default set of keys if
# there are any valid values in it
if "number" not in extra_keys:
r = df["number"].unique()
skip = False
if len(r) == 1:
skip = r[0] in ["0", None]
if skip:
df.drop("number", axis=1, inplace=True)
init_pandas_options()
# test whether we're in the Jupyter environment
if is_ipython_active():
return df
elif not no_print:
print(df)
return df
def sort(self, *args, **kwargs):
# handle arguments
keys = []
asc = None
if len(args) >= 1:
keys = args[0]
if not isinstance(keys, list):
keys = [keys]
# optional positional argument - we only implement it to provide
# backward compability for the sort() Macro function
if len(args) == 2:
asc = args[1]
if isinstance(asc, list):
if len(keys) != len(asc):
raise ValueError(
f"sort(): when order is specified as a list it must have the same number of elements as keys! {len(keys)} != {len(asc)}"
)
for i, v in enumerate(asc):
if v not in [">", "<"]:
raise ValueError(
f"sort(): invalid value={v} in order! Only "
> " and "
< " are allowed!"
)
asc[i] = True if v == "<" else False
else:
if asc not in [">", "<"]:
raise ValueError(
f"sort(): invalid value={asc} in order! Only "
> " and "
< " are allowed!"
)
asc = True if asc == "<" else False
if "ascending" in kwargs:
if asc is not None:
raise ValueError(
"sort(): cannot take both a second positional argument and the ascending keyword argument!"
)
asc = kwargs.pop("ascending")
if asc is None:
asc = True
if len(keys) == 0:
keys = self.indexer.DEFAULT_SORT_KEYS
# print(f"keys={keys} asc={asc}")
# get metadata
self.load(keys=keys, vector=False)
scalar_df = self.blocks.get("scalar")
if scalar_df is not None:
dfs = self.indexer._sort_dataframe(scalar_df, columns=keys, ascending=asc)
# print(f"dfs={dfs.iloc[0:5]}")
# print(dfs)
df, res = self._extract_scalar_fields(dfs)
# print(f"df={df.iloc[0:5]}")
# LOG.debug(f"len_res={len(res)}")
# LOG.debug(f"dfs={dfs}")
# LOG.debug(f"res={res}")
c = FieldsetDb(
res,
name=self.name,
blocks={"scalar": df},
label=self.label,
mapped_params=self.mapped_params,
regrid_from=self.regrid_from,
)
res._db = c
return res
def get_longname_and_units(self, short_name, param_id):
# The name and units keys are not included in the default set of keys for the
# indexer. When we need them (primarily in ParamDesc) we simply get the first
# grib message and extract them from it.
a = {}
if short_name:
a["shortName"] = short_name
if param_id:
a["paramId"] = param_id
if a:
a["_max_count"] = 1
r = self.select(**a)
if r is not None and len(r) > 0:
md = r[0].grib_get(["name", "units"])
if md and len(md[0]) == 2:
return md[0][0], md[0][1]
return "", ""
|