File: indexdb.py

package info (click to toggle)
metview-python 1.16.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,900 kB
  • sloc: python: 11,306; makefile: 84; ansic: 51; sh: 7
file content (581 lines) | stat: -rw-r--r-- 19,602 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#

import copy
import logging
import os

import pandas as pd

from .indexer import GribIndexer, FieldsetIndexer
from .param import (
    ParamInfo,
    ParamNameDesc,
    ParamIdDesc,
    init_pandas_options,
)
from .ipython import is_ipython_active


# logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s")
# logging.basicConfig(level=logging.DEBUG, format="%(levelname)s - %(message)s")
LOG = logging.getLogger(__name__)


class IndexDb:
    ROOTDIR_PLACEHOLDER_TOKEN = "__ROOTDIR__"

    def __init__(
        self,
        name,
        label="",
        desc="",
        path="",
        rootdir_placeholder_value="",
        file_name_pattern="",
        db_dir="",
        blocks=None,
        data_files=None,
        merge_conf=None,
        mapped_params=None,
        regrid_from=None,
        dataset=None,
    ):
        self.name = name
        self.dataset = dataset
        self.label = label
        if self.label is None or self.label == "":
            self.label = self.name
        self.desc = desc
        self.path = path

        self.rootdir_placeholder_value = rootdir_placeholder_value
        self.file_name_pattern = file_name_pattern
        if self.file_name_pattern == "":
            self.path = os.path.dirname(self.path)
            self.file_name_pattern = os.path.basename(self.path)

        self.db_dir = db_dir
        self.mapped_params = {} if mapped_params is None else mapped_params
        self.regrid_from = [] if regrid_from is None else regrid_from
        self.blocks = {} if blocks is None else blocks
        self.vector_loaded = False
        self._param_types = {}
        self.data_files = [] if data_files is None else data_files
        self.merge_conf = [] if merge_conf is None else merge_conf
        self._params = {}

    def select_with_name(self, name):
        """
        Perform a select operation where selection options are derived
        from the specified name.
        """
        # print(f"select_with_name blocks: {self.blocks.keys()}")
        # print(f"vector_loaded: {self.vector_loaded}")

        if "wind" in name and not self.vector_loaded:
            self.load(vector=True)
        pnf = ParamInfo.build_from_name(name, param_level_types=self.param_types)
        if pnf is not None:
            fs = self._select_fs(
                **pnf.make_filter(), _named_vector_param=(not pnf.scalar)
            )
            if fs is not None:
                pnf.update_meta(fs._db._first_index_row())
                fs._ds_param_info = pnf
                return fs
        return None

    def select(self, **kwargs):
        return self._select_fs(**kwargs)

    def _select_fs(self, **kwargs):
        """
        Create a fieldset with the specified filter conditions. The resulting fieldset
        will contain an index db.
        """
        LOG.debug(f"kwargs={kwargs}")

        vector = kwargs.pop("_named_vector_param", False)
        max_count = kwargs.pop("_max_count", -1)

        # print(f"kwargs={kwargs}")
        # LOG.debug(f"blocks={self.blocks}")
        dims = self._make_dims(kwargs)

        # We can only have a vector param when the fs["wind"]-like operator is
        # invoked and we deduce the shortName from the specified name
        if vector:
            short_name = dims.get("shortName", [])
            if isinstance(short_name, list):
                assert len(short_name) == 1

        # print(f"dims={dims}")
        self.load(keys=list(dims.keys()), vector=vector)

        db, fs = self._get_fields(dims, max_count=max_count, vector=vector)
        fs._db = db
        # LOG.debug(f"fs={fs}")
        # print(f"blocks={fs._db.blocks}")
        return fs

    def _get_fields(self, dims, max_count=-1, vector=False):

        res = self.fieldset_class()
        dfs = {}
        LOG.debug(f"dims={dims}")

        name_filter = "shortName" in dims or "paramId" in dims
        if not vector and name_filter:
            # in this case filtering can only be done on the scalar block
            if "scalar" in self.blocks.keys():
                self._get_fields_for_block("scalar", dims, dfs, res, max_count)
        else:
            for key in self.blocks.keys():
                self._get_fields_for_block(key, dims, dfs, res, max_count)
                if max_count != -1 and len(res) >= max_count:
                    break

        # LOG.debug(f"len_res={len(res)}")
        # LOG.debug(f"dfs={dfs}")
        # LOG.debug(f"res={res}")
        c = FieldsetDb(
            res,
            name=self.name,
            blocks=dfs,
            label=self.label,
            mapped_params=self.mapped_params,
            regrid_from=self.regrid_from,
        )
        return c, res

    def _get_meta(self, dims):
        LOG.debug(f"dims={dims}")
        key = "scalar"
        if key in self.blocks:
            if self.blocks[key] is None:
                self._load_block(key)
            df = self._filter_df(df=self.blocks[key], dims=dims)
            # LOG.debug(f"df={df}")
            return df
        return None

    def _build_query(self, dims, df):
        q = ""
        for column, v in dims.items():
            # print(f"v={v}")
            if v:
                col_type = None
                if q:
                    q += " and "

                # datetime columns
                if column in GribIndexer.DATETIME_KEYS:
                    name_date = GribIndexer.DATETIME_KEYS[column][0]
                    name_time = GribIndexer.DATETIME_KEYS[column][1]
                    # here we should simply say: name_date*10000 + name_time. However,
                    # pandas cannot handle it in the query because the column types are
                    # Int64. np.int64 would work but that cannot handle missing values. So
                    # we need to break down the condition into individual logical components!
                    s = []
                    for x in v:
                        # print(f"x={x}")
                        # print(" date=" + x.strftime("%Y%m%d"))
                        # print(" time=" + x.strftime("%H%M"))
                        s.append(
                            f"(`{name_date}` == "
                            + str(int(x.strftime("%Y%m%d")))
                            + " and "
                            + f"`{name_time}` == "
                            + str(int(x.strftime("%H%M")))
                            + ")"
                        )
                    q += "(" + " or ".join(s) + " ) "
                else:
                    col_type = df.dtypes[column]
                    column = f"`{column}`"
                    if not isinstance(v, list):
                        q += f"{column} == {GribIndexer._convert_query_value(v, col_type)}"
                    else:
                        v = [GribIndexer._convert_query_value(x, col_type) for x in v]
                        q += f"{column} in {v}"
        return q

    def _filter_df(self, df=None, dims={}):
        if len(dims) == 0:
            return df
        else:
            df_res = None
            if df is not None:
                # print("types={}".format(df.dtypes))
                q = self._build_query(dims, df)
                # print("query={}".format(q))
                if q != "":
                    df_res = df.query(q, engine="python")
                    df_res.reset_index(drop=True, inplace=True)
                    # print(f"df_res={df_res}")
                    # LOG.debug(f"df_res={df_res}")
                else:
                    return df
            return df_res

    def _get_fields_for_block(self, key, dims, dfs, res, max_count):
        # print(f"key={key} dims={dims}")
        # LOG.debug(f"block={self.blocks[key]}")
        if self.blocks[key] is None:
            self._load_block(key)
        df = self._filter_df(df=self.blocks[key], dims=dims)
        # print(f"df={df}")
        # LOG.debug(f"df={df}")
        if df is not None and not df.empty:
            df_fs = self._extract_fields(df, res, max_count)
            # LOG.debug(f"len_res={len(res)}")
            if df_fs is not None:
                # LOG.debug(f"df_fs={df_fs}")
                dfs[key] = df_fs

    def _make_param_info(self):
        m = self._first_index_row()
        if m:
            name = m["shortName"]
            pnf = ParamInfo(
                name, meta=dict(m), scalar=not name in ParamInfo.VECTOR_NAMES
            )
            return pnf
        return None

    def _first_index_row(self):
        if self.blocks:
            df = self.blocks[list(self.blocks.keys())[0]]
            if df is not None and not df.empty:
                row = df.iloc[0]
                return dict(row)
        return {}

    def _make_dims(self, options):
        dims = {}
        GribIndexer._check_datetime_in_filter_input(options)
        for k, v in options.items():
            name = str(k)
            vv = copy.deepcopy(v)
            r = GribIndexer._convert_filter_value(name, self._to_list(vv))
            for name, vv in r:
                if len(r) > 1 or vv:
                    dims[name] = vv
        return dims

    def _to_list(self, v):
        if not isinstance(v, list):
            v = [v]
        return v

    @property
    def param_types(self):
        if len(self._param_types) == 0:
            self.load()
            for k, df in self.blocks.items():
                df_u = df[["shortName", "typeOfLevel"]].drop_duplicates()
                for row in df_u.itertuples(name=None):
                    if not row[1] in self._param_types:
                        self._param_types[row[1]] = [row[2]]
                    else:
                        self._param_types[row[1]].append(row[2])
            # print(self._param_types)
        return self._param_types

    def unique(self, key):
        self.load([key])
        for _, v in self.blocks.items():
            if key in v.columns:
                return list(v[key].unique())
        return []

    @property
    def param_meta(self):
        if len(self._params) == 0:
            self.load()
            for par in sorted(self.unique("shortName")):
                self._params[par] = ParamNameDesc(par)
                self._params[par].load(self)
        return self._params

    def param_id_meta(self, param_id):
        self.load()
        p = ParamIdDesc(param_id)
        p.load(self)
        return p

    def describe(self, *args, **kwargs):
        param = args[0] if len(args) == 1 else None
        if param is None:
            param = kwargs.pop("param", None)
        return ParamNameDesc.describe(self, param=param, **kwargs)

    def to_df(self):
        return pd.concat([p for _, p in self.blocks.items()])

    def __str__(self):
        return "{}[name={}]".format(self.__class__.__name__, self.name)


class FieldsetDb(IndexDb):
    def __init__(self, fs, name="", **kwargs):
        super().__init__(name, **kwargs)
        self.fs = fs
        self.fieldset_class = fs.__class__
        self._indexer = None

    @property
    def indexer(self):
        if self._indexer is None:
            self._indexer = FieldsetIndexer(self)
        return self._indexer

    def scan(self, vector=False):
        self.indexer.scan(vector=vector)
        self.vector_loaded = vector

    def load(self, keys=[], vector=False):
        # print(f"blocks={self.blocks}")
        if self.indexer.update_keys(keys):
            self.blocks = {}
            self._param_types = {}
            self.scan(vector=self.vector_loaded)
        elif not self.blocks:
            self._param_types = {}
            self.scan(vector=vector)
            self.vector_loaded = vector
        elif vector and not self.vector_loaded:
            self._param_types = {}
            self.indexer._scan_vector()
            self.vector_loaded = True

    def _extract_fields(self, df, fs, max_count):
        if df.empty:
            return None

        # print(f"cols={df.columns}")
        if "_msgIndex3" in df.columns:
            comp_num = 3
        elif "_msgIndex2" in df.columns:
            comp_num = 2
        elif "_msgIndex1" in df.columns:
            comp_num = 1
        else:
            return None

        # print(f"comp_num={comp_num}")
        idx = [[] for k in range(comp_num)]
        comp_lst = list(range(comp_num))
        cnt = 0
        for row in df.itertuples():
            # print(f"{row}")
            if max_count == -1 or len(fs) < max_count:
                for comp in comp_lst:
                    fs.append(self.fs[row[-1 - (comp_num - comp - 1)]])
                    idx[comp].append(len(fs) - 1)
                cnt += 1
            else:
                break

        # generate a new dataframe
        if max_count == -1 or cnt == df.shape[0]:
            df = df.copy()
        else:
            df = df.head(cnt).copy()

        for k, v in enumerate(idx):
            df[f"_msgIndex{k+1}"] = v
        return df

    def _extract_scalar_fields(self, df):
        if df.empty:
            return None, None

        assert "_msgIndex1" in df.columns
        assert "_msgIndex2" not in df.columns
        assert "_msgIndex3" not in df.columns

        fs = self.fieldset_class()
        for row in df.itertuples():
            fs.append(self.fs[row[-1]])

        assert len(fs) == len(df.index)
        # generate a new dataframe
        df = df.copy()
        df["_msgIndex1"] = list(range(len(df.index)))
        return df, fs

    def _clone(self):
        db = FieldsetDb(self.name, label=self.label, regrid_from=self.regrid_from)

        if self._indexer is not None:
            db.indexer.update_keys(self._indexer.keys_ecc)
        db.blocks = {k: v.copy() for k, v in self.blocks.items()}
        db.vector_loaded = self.vector_loaded
        return db

    @staticmethod
    def make_param_info(fs):
        if fs._db is not None:
            return fs._db._make_param_info()
        else:
            return ParamInfo.build_from_fieldset(fs)

    def ls(self, extra_keys=None, filter=None, no_print=False):
        default_keys = [
            "centre",
            "shortName",
            "typeOfLevel",
            "level",
            "dataDate",
            "dataTime",
            "stepRange",
            "dataType",
            "number",
            "gridType",
        ]
        ls_keys = default_keys
        extra_keys = [] if extra_keys is None else extra_keys
        if extra_keys is not None:
            [ls_keys.append(x) for x in extra_keys if x not in ls_keys]
        keys = list(ls_keys)

        # add keys appearing in the filter to the full list of keys
        dims = {} if filter is None else filter
        dims = self._make_dims(dims)
        [keys.append(k) for k, v in dims.items() if k not in keys]

        # get metadata
        self.load(keys=keys, vector=False)

        # performs filter
        df = self._get_meta(dims)

        # extract results
        keys = list(ls_keys)
        keys.append("_msgIndex1")
        df = df[keys]
        df = df.sort_values("_msgIndex1")
        df = df.rename(columns={"_msgIndex1": "Message"})
        df = df.set_index("Message")

        # only show the column for number in the default set of keys if
        # there are any valid values in it
        if "number" not in extra_keys:
            r = df["number"].unique()
            skip = False
            if len(r) == 1:
                skip = r[0] in ["0", None]
            if skip:
                df.drop("number", axis=1, inplace=True)

        init_pandas_options()

        # test whether we're in the Jupyter environment
        if is_ipython_active():
            return df
        elif not no_print:
            print(df)
        return df

    def sort(self, *args, **kwargs):
        # handle arguments
        keys = []
        asc = None
        if len(args) >= 1:
            keys = args[0]
            if not isinstance(keys, list):
                keys = [keys]
            # optional positional argument - we only implement it to provide
            # backward compability for the sort() Macro function
            if len(args) == 2:
                asc = args[1]
                if isinstance(asc, list):
                    if len(keys) != len(asc):
                        raise ValueError(
                            f"sort(): when order is specified as a list it must have the same number of elements as keys! {len(keys)} != {len(asc)}"
                        )
                    for i, v in enumerate(asc):
                        if v not in [">", "<"]:
                            raise ValueError(
                                f"sort(): invalid value={v} in order! Only "
                                > " and "
                                < " are allowed!"
                            )
                        asc[i] = True if v == "<" else False
                else:
                    if asc not in [">", "<"]:
                        raise ValueError(
                            f"sort(): invalid value={asc} in order! Only "
                            > " and "
                            < " are allowed!"
                        )
                    asc = True if asc == "<" else False

        if "ascending" in kwargs:
            if asc is not None:
                raise ValueError(
                    "sort(): cannot take both a second positional argument and the ascending keyword argument!"
                )
            asc = kwargs.pop("ascending")

        if asc is None:
            asc = True

        if len(keys) == 0:
            keys = self.indexer.DEFAULT_SORT_KEYS

        # print(f"keys={keys} asc={asc}")

        # get metadata
        self.load(keys=keys, vector=False)

        scalar_df = self.blocks.get("scalar")
        if scalar_df is not None:
            dfs = self.indexer._sort_dataframe(scalar_df, columns=keys, ascending=asc)
            # print(f"dfs={dfs.iloc[0:5]}")
            # print(dfs)

            df, res = self._extract_scalar_fields(dfs)
            # print(f"df={df.iloc[0:5]}")

            # LOG.debug(f"len_res={len(res)}")
            # LOG.debug(f"dfs={dfs}")
            # LOG.debug(f"res={res}")
            c = FieldsetDb(
                res,
                name=self.name,
                blocks={"scalar": df},
                label=self.label,
                mapped_params=self.mapped_params,
                regrid_from=self.regrid_from,
            )

            res._db = c
        return res

    def get_longname_and_units(self, short_name, param_id):
        # The name and units keys are not included in the default set of keys for the
        # indexer. When we need them (primarily in ParamDesc) we simply get the first
        # grib message and extract them from it.
        a = {}
        if short_name:
            a["shortName"] = short_name
        if param_id:
            a["paramId"] = param_id
        if a:
            a["_max_count"] = 1
            r = self.select(**a)
            if r is not None and len(r) > 0:
                md = r[0].grib_get(["name", "units"])
                if md and len(md[0]) == 2:
                    return md[0][0], md[0][1]
        return "", ""