File: indexer.py

package info (click to toggle)
metview-python 1.16.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,900 kB
  • sloc: python: 11,306; makefile: 84; ansic: 51; sh: 7
file content (655 lines) | stat: -rw-r--r-- 24,581 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#
# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#

import copy
import datetime
import logging
import os
from pathlib import Path

from . import utils
import numpy as np
import pandas as pd
import yaml

# logging.basicConfig(level=logging.DEBUG)
# logging.basicConfig(level=logging.INFO)
LOG = logging.getLogger(__name__)

NEWER = True


class GribIndexer:
    VECTOR_PARAMS = {
        "wind10m": ["10u", "10v"],
        "wind100m": ["100u", "100v"],
        "wind200m": ["200u", "200v"],
        "wind": ["u", "v"],
        "wind3d": ["u", "v", "w"],
    }

    # tuple-> 0: ecCodes type, 1: pandas type, 2: Python type 3: use in duplicate check
    DEFAULT_KEYS = {
        "shortName": ("s", str, str, False),
        "paramId": ("l", "Int32", int, False),
        "date": ("l", "Int64", int, True),
        "time": ("l", "Int64", int, True),
        "step": ("l", "Int32", int, True),
        "level": ("l", "Int32", int, True),
        "typeOfLevel": ("s", str, str, False),
        "number": ("s", str, str, True),
        "experimentVersionNumber": ("s", str, str, False),
        "marsClass": ("s", str, str, False),
        "marsStream": ("s", str, str, False),
        "marsType": ("s", str, str, False),
    }

    DEFAULT_ECC_KEYS = [f"{k}:{v[0]}" for k, v in DEFAULT_KEYS.items()]
    BLOCK_KEYS = ["shortName", "typeOfLevel"]

    DEFAULT_SORT_KEYS = [
        "date",
        "time",
        "step",
        "number",
        "level",
        "paramId",
    ]
    DATE_KEYS = {
        k: ("l", "Int64", int)
        for k in ["date", "dataDate", "validityDate", "mars.date", "marsDate"]
    }
    TIME_KEYS = {
        k: ("l", "Int64", int)
        for k in ["time", "dataTime", "validityTime", "mars.time", "marsTime"]
    }

    DATETIME_KEYS = {
        "_dateTime": ("date", "time"),
        "_dataDateTime": ("dataDate", "dataTime"),
        "_validityDateTime": ("validityDate", "validityTime"),
    }

    KEYS_TO_REPLACE = {
        ("type", "mars.type"): "marsType",
        ("stream", "mars.stream"): "marsStream",
        ("class", "mars.class", "class_"): "marsClass",
        ("perturbationNumber"): "number",
        ("mars.date", "marsDate"): "date",
        ("mars.time", "marsTime"): "time",
    }

    PREDEF_KEYS = copy.deepcopy(DEFAULT_KEYS)
    PREDEF_KEYS.update(DATE_KEYS)
    PREDEF_KEYS.update(TIME_KEYS)

    PREDEF_PD_TYPES = {k: v[1] for k, v in PREDEF_KEYS.items()}
    PREDEF_PT_TYPES = {k: v[2] for k, v in PREDEF_KEYS.items()}

    def __init__(self, db):
        self.db = db
        assert self.db is not None
        self.ref_column_count = None
        self.keys = []
        self.keys_ecc = []
        for k, v in GribIndexer.DEFAULT_KEYS.items():
            name = k
            self.keys.append(name)
            if v[0]:
                name = f"{k}:{v[0]}"
            self.keys_ecc.append(name)

        self.keys_duplicate_check = [
            k for k, v in GribIndexer.DEFAULT_KEYS.items() if v[3] == True
        ]

        self.shortname_index = self.keys.index("shortName")
        self.levtype_index = self.keys.index("typeOfLevel")
        self.type_index = self.keys.index("marsType")
        self.number_index = self.keys.index("number")
        self.param_id_index = self.keys.index("paramId")

        self.wind_check_index = []
        for v in [
            "date",
            "time",
            "step",
            "level",
            "typeOfLevel",
            "level",
            "number",
            "experimentVersionNumber",
            "marsClass",
            "marsStream",
            "marsType",
        ]:
            self.wind_check_index.append(self.keys.index(v) + 1)

        # self.block_key_index = [self.keys.index(v) for v in GribIndexer.BLOCK_KEYS]

        self.pd_types = {k: v[1] for k, v in GribIndexer.DEFAULT_KEYS.items()}
        self.pt_types = {k: v[2] for k, v in GribIndexer.DEFAULT_KEYS.items()}

    def update_keys(self, keys):
        ret = False
        for k in keys:
            name = k
            # we do not add datetime keys (they are pseudo keys, and their value
            # is always generated on the fly)
            if name not in self.keys and name not in GribIndexer.DATETIME_KEYS:
                self.keys.append(name)
                p = GribIndexer.PREDEF_KEYS.get(name, ("", str, str))
                ecc_name = name if p[0] == "" else name + ":" + p[0]
                self.keys_ecc.append(ecc_name)
                self.pd_types[name] = p[1]
                self.pt_types[name] = p[2]
                ret = True
        return ret

    def _check_duplicates(self, name, df):
        dup = df.duplicated(subset=self.keys_duplicate_check)
        first_dup = True
        cnt = 0
        for i, v in dup.items():
            if v:
                if first_dup:
                    LOG.error(
                        f"{name}: has duplicates for key group: {self.keys_duplicate_check}!"
                    )
                    first_dup = False
                    LOG.error(f" first duplicate: {df.iloc[i]}")
                cnt += 1

        if cnt > 1:
            LOG.error(f"  + {cnt-1} more duplicate(s)!")

    def _build_vector_index(self, df, v_name, v_comp):
        # LOG.debug(f"v_name={v_name} v_comp={v_comp}")
        comp_num = len(v_comp)

        # filter components belonging together
        comp_df = []
        for i, comp_name in enumerate(v_comp):
            query = f"shortName == '{comp_name}'"
            r = df.query(query, engine="python")
            # if we do not use copy, the assignment below as:
            # comp_df[0].loc[...
            # generates the SettingWithCopyWarning warning!!!
            if i == 0:
                r = df.query(query, engine="python").copy()
            else:
                r = df.query(query, engine="python")
            if r.empty:
                return []
            else:
                comp_df.append(r)

        assert comp_num == len(comp_df)

        # pair up components within a 2D vector field. This
        # version proved to be the fastest!
        # LOG.debug(" pair up collected components:")

        # print(f"v_name={v_name} {len(comp_df[1].index)}")
        # print("view=", comp_df[0]._is_view)
        r = []
        used1 = np.full(len(comp_df[1].index), False, dtype="?")
        comp_df[0].loc[:, "shortName"] = v_name
        # 2D
        if comp_num == 2:
            for row0 in comp_df[0].itertuples(name=None):
                i = 0
                for row1 in comp_df[1].itertuples(name=None):
                    if not used1[i]:
                        b = True
                        for x in self.wind_check_index:
                            if row0[x] != row1[x]:
                                b = False
                                break
                        if b:
                            d = list(row0[1:])
                            d.extend(row1[-self.ref_column_count :])
                            r.append(d)
                            used1[i] = True
                            break
                    i += 1
        # 3D
        elif comp_num == 3:
            used2 = np.full(len(comp_df[2].index), False, dtype="?")
            for row0 in comp_df[0].itertuples(name=None):
                i = 0
                for row1 in comp_df[1].itertuples(name=None):
                    if not used1[i]:
                        b = True
                        for x in self.wind_check_index:
                            if row0[x] != row1[x]:
                                b = False
                                break
                        if b:
                            j = 0
                            for row2 in comp_df[2].itertuples(name=None):
                                if not used2[j]:
                                    b = True
                                    for x in self.wind_check_index:
                                        if row0[x] != row2[x]:
                                            b = False
                                            break
                                    if b:
                                        d = list(row0[1:])
                                        d.extend(row1[-self.ref_column_count :])
                                        d.extend(row2[-self.ref_column_count :])
                                        r.append(d)
                                        used1[i] = True
                                        used2[j] = True
                                        j = -1
                                        break
                                j += 1
                            if j == -1:
                                break
                    i += 1
        return r

    def _make_dataframe(self, data, sort=False, columns=None):
        if columns is not None:
            df = pd.DataFrame(data, columns=columns)
        else:
            df = pd.DataFrame(data)

        for c in df.columns:
            if self.pd_types.get(c, "") in ["Int32", "Int64"]:
                df.fillna(value={c: np.nan}, inplace=True)
            df = df.astype(self.pd_types)
        if sort:
            df = GribIndexer._sort_dataframe(df)

        return df

    @staticmethod
    def _sort_dataframe(df, columns=None, ascending=True):
        if columns is None:
            columns = list(df.columns)
        elif not isinstance(columns, list):
            columns = [columns]

        # mergesoft is a stable sorting algorithm
        df = df.sort_values(by=columns, ascending=ascending, kind="mergesort")
        df = df.reset_index(drop=True)
        return df

    def _write_dataframe(self, df, name, out_dir):
        f_name = os.path.join(out_dir, f"{name}.csv.gz")
        df.to_csv(path_or_buf=f_name, header=True, index=False, compression="gzip")

    @staticmethod
    def read_dataframe(key, dir_name):
        # assert len(key) == len(GribIndexer.BLOCK_KEYS)
        name = key
        f_name = os.path.join(dir_name, f"{name}.csv.gz")
        # LOG.debug("f_name={}".format(f_name))
        return pd.read_csv(f_name, index_col=None, dtype=GribIndexer.PREDEF_PD_TYPES)

    @staticmethod
    def get_storage_key_list(dir_name):
        r = []
        # LOG.debug(f"dir_name={dir_name}")
        suffix = ".csv.gz"
        for f in utils.get_file_list(os.path.join(dir_name, f"*{suffix}")):
            name = os.path.basename(f)
            # LOG.debug(f"name={name}")
            r.append(name[: -len(suffix)])
        return r

    @staticmethod
    def is_key_wind(key):
        return key in GribIndexer.VECTOR_PARAMS

    @staticmethod
    def _convert_query_value(v, col_type):
        # print(f"v={v} {type(v)} {col_type}")
        return v if col_type != "object" else str(v)

    @staticmethod
    def _check_datetime_in_filter_input(keys):
        for k, v in GribIndexer.DATETIME_KEYS.items():
            name = k[1:]
            name_date = v[0]
            name_time = v[1]
            if keys.get(name, []) and (
                keys.get(name_date, []) or keys.get(name_time, [])
            ):
                raise Exception(
                    f"Cannot specify {name} together with {name_date} and {name_time}!"
                )

    @staticmethod
    def _convert_filter_value(name, val):
        """
        Analyse the filter key-value pairs and perform the necessary conversions
        """
        valid_name = name.split(":")[0] if ":" in name else name

        # datetime keys are pseudo keys, they start with _. Their value is converted to
        # datetime. The key itself is not added to the scan!
        if ("_" + valid_name) in GribIndexer.DATETIME_KEYS:
            valid_name = "_" + valid_name
            name_date = GribIndexer.DATETIME_KEYS[valid_name][0]
            name_time = GribIndexer.DATETIME_KEYS[valid_name][1]
            for i, t in enumerate(val):
                val[i] = GribIndexer._to_datetime(name, t)
                # print(f"t={t} -> {val[i]}")
            # We add the date and time components with an empty value. So they will be
            # added to the scan, but they will be ignored by the query. Conversely,
            # the datetime key itself will be ignored in the scan, but will be used
            # in the query.
            return [("_" + name, val), (name_date, []), (name_time, [])]
        # we convert dates to int
        elif valid_name in GribIndexer.DATE_KEYS:
            for i, t in enumerate(val):
                d = GribIndexer._to_date(name, t)
                # for daily climatologies dates where the year is missing the
                # the a tuple is returned
                if not isinstance(d, tuple):
                    val[i] = int(d.strftime("%Y%m%d"))
                else:
                    val[i] = d[0] * 100 + d[1]
        # we convert times to int
        elif valid_name in GribIndexer.TIME_KEYS:
            for i, t in enumerate(val):
                val[i] = int(GribIndexer._to_time(name, t).strftime("%H%M"))
                # print(f"t={t} -> {val[i]}")
        else:
            pt_type = GribIndexer.PREDEF_PT_TYPES.get(name, None)
            # print(f"name={name} {pt_type}")
            if pt_type is not None:
                for i, t in enumerate(val):
                    val[i] = pt_type(t)
                    # print(f" t={t} -> {val[i]}")

        # remap some names to the ones already in the default set of indexer keys
        for k, v in GribIndexer.KEYS_TO_REPLACE.items():
            if name in k:
                name = v

        return [(name, val)]

    @staticmethod
    def _to_datetime(param, val):
        try:
            if isinstance(val, datetime.datetime):
                return val
            elif isinstance(val, str):
                return utils.date_from_str(val)
            elif isinstance(val, (int, float)):
                return utils.date_from_str(str(val))
            else:
                raise
        except:
            raise Exception(f"Invalid datetime value={val} specified for key={param}")

    @staticmethod
    def _to_date(param, val):
        try:
            if isinstance(val, datetime.datetime):
                return val.date()
            elif isinstance(val, datetime.date):
                return val
            elif isinstance(val, str):
                d = utils.date_from_str(val)
                return d.date() if not isinstance(d, tuple) else d
            elif isinstance(val, (int, float)):
                d = utils.date_from_str(str(val))
                return d.date() if not isinstance(d, tuple) else d
            else:
                raise
        except:
            raise Exception(f"Invalid date value={val} specified for key={param}")

    @staticmethod
    def _to_time(param, val):
        try:
            if isinstance(val, (datetime.datetime)):
                return val.time()
            elif isinstance(val, datetime.time):
                return val
            elif isinstance(val, str):
                return utils.time_from_str(val)
            elif isinstance(val, int):
                return utils.time_from_str(str(val))
            else:
                raise
        except:
            raise Exception(f"Invalid time value={val} specified for key={param}")


class FieldsetIndexer(GribIndexer):
    def __init__(self, *args):
        super().__init__(*args)
        self.ref_column_count = 1

    def scan(self, vector=False):
        data = self._scan(self.db.fs, mapped_params=self.db.mapped_params)
        if data:
            df = self._make_dataframe(data, sort=False)
            self.db.blocks["scalar"] = df
            if vector:
                self._scan_vector()

    def _scan(self, fs, mapped_params={}):
        LOG.info(f" scan fields ...")
        data = {}
        # print(f"fs_len={len(fs)}")
        # print(f"keys_ecc={self.keys_ecc}")
        if utils.is_fieldset_type(fs) and len(fs) > 0:
            md_vals = fs.grib_get(self.keys_ecc, "key")
            if mapped_params:
                for i in range(len(fs)):
                    v = md_vals[self.param_id_index][i]
                    if v in mapped_params:
                        short_name = mapped_params[v]
                        md_vals[self.shortname_index][i] = short_name

            assert len(self.keys) == len(self.keys_ecc)
            data = {k: md_vals[i] for i, k in enumerate(self.keys)}
            data["_msgIndex1"] = list(range(len(fs)))
            LOG.info(f" {len(fs)} GRIB messages processed")
        return data

    def _scan_vector(self):
        df = self.db.blocks["scalar"]
        if df is not None and not df.empty:
            for v_name, v_comp in GribIndexer.VECTOR_PARAMS.items():
                r = self._build_vector_index(df, v_name, v_comp)
                comp_num = len(v_comp)
                if r:
                    cols = [*self.keys]
                    for i in range(comp_num):
                        cols.extend([f"_msgIndex{i+1}"])
                    w_df = self._make_dataframe(r, sort=False, columns=cols)
                    self.db.blocks[v_name] = w_df
                    # self._write_dataframe(w_df, v_name, out_dir)
                else:
                    LOG.debug(" No paired fields found!")
                    continue


class ExperimentIndexer(GribIndexer):
    def __init__(self, *args):
        super().__init__(*args)
        self.ref_column_count = 2

    def scan(self):
        out_dir = self.db.db_dir
        Path(out_dir).mkdir(exist_ok=True, parents=True)
        LOG.info(f"scan {self.db} out_dir={out_dir} ...")

        data = {k: [] for k in [*self.keys, "_msgIndex1", "_fileIndex1"]}
        input_files = []

        # print(f"out_dir={out_dir}")
        # merge existing experiment objects
        if self.db.merge_conf:
            ds = []
            # simple merge
            if isinstance(self.db.merge_conf, list):
                for c_name in self.db.merge_conf:
                    ds.append(
                        {"data": db.dataset.find(c_name), "name": c_name, "ens": {}}
                    )
            # explicit ENS merge
            else:
                assert "pf" in self.db.merge_conf
                # control forecast
                c_name = self.db.merge_conf.get("cf", "")
                if c_name != "":
                    ds.append(
                        {
                            "data": self.db.dataset.find(c_name, comp="field"),
                            "name": c_name,
                            "ens": {"type": "cf", "number": 0},
                        }
                    )
                for i, c_name in enumerate(self.db.merge_conf.get("pf", [])):
                    ds.append(
                        {
                            "data": self.db.dataset.find(c_name, comp="field"),
                            "name": c_name,
                            "ens": {"type": "pf", "number": i + 1},
                        }
                    )

            for c in ds:
                if c["data"] is None:
                    c_name = d["name"]
                    raise Exception(
                        f"Cannot merge experiments as {self.db}! Experiment {c_name} is not found!"
                    )
                else:
                    input_files = self._scan_one(
                        input_dir=c["data"].path,
                        file_name_pattern=c["data"].file_name_pattern,
                        input_files=input_files,
                        mapped_params=self.db.mapped_params,
                        ens=c["ens"],
                        data=data,
                        rootdir_placeholder_value=c["data"].rootdir_placeholder_value,
                        rootdir_placeholder_token=self.db.ROOTDIR_PLACEHOLDER_TOKEN,
                    )
        # index a single experiment
        else:
            input_files = self._scan_one(
                input_dir=self.db.path,
                file_name_pattern=self.db.file_name_pattern,
                input_files=[],
                mapped_params=self.db.mapped_params,
                ens={},
                data=data,
                rootdir_placeholder_value=self.db.rootdir_placeholder_value,
                rootdir_placeholder_token=self.db.ROOTDIR_PLACEHOLDER_TOKEN,
            )

        # print(f"input_files={input_files}")
        if len(input_files) > 0 and len(data["shortName"]) > 0:
            # write config file for input file list
            LOG.info(f"generate datafiles.yaml ...")
            f_name = os.path.join(out_dir, "datafiles.yaml")
            r = yaml.dump(input_files, default_flow_style=False)
            with open(f_name, "w") as f:
                f.write(r)
            self.db.input_files = input_files

            # scalar
            LOG.info(f"generate scalar fields index ...")
            df = self._make_dataframe(data, sort=True)
            self.db.blocks["scalar"] = df
            self._write_dataframe(df, "scalar", out_dir)

            # vector (2D)
            LOG.info(f"generate vector fields index ...")
            for v_name, v_comp in GribIndexer.VECTOR_PARAMS.items():
                r = self._build_vector_index(df, v_name, v_comp)
                comp_num = len(v_comp)
                if r:
                    cols = [*self.keys]
                    for i in range(comp_num):
                        cols.extend([f"_msgIndex{i+1}", f"_fileIndex{i+1}"])
                    w_df = self._make_dataframe(r, sort=True, columns=cols)
                    # print(f"wind_len={len(w_df.index)}")
                    self.db.blocks[v_name] = w_df
                    self._write_dataframe(w_df, v_name, out_dir)
                else:
                    LOG.debug(" No paired fields found!")
                    continue

    def _scan_one(
        self,
        input_dir="",
        file_name_pattern="",
        input_files=[],
        mapped_params={},
        ens={},
        data={},
        rootdir_placeholder_value="",
        rootdir_placeholder_token=None,
    ):
        LOG.info("scan fields ...")
        LOG.info(f" input_dir={input_dir} file_name_pattern={file_name_pattern}")
        # print(f" input_dir={input_dir} file_name_pattern={file_name_pattern}")

        # for f_path in glob.glob(f_pattern):
        cnt = 0
        input_files_tmp = []
        for f_path in utils.get_file_list(
            input_dir, file_name_pattern=file_name_pattern
        ):
            # LOG.debug(f"  f_path={f_path}")
            fs = self.db.fieldset_class(path=f_path)
            if utils.is_fieldset_type(fs) and len(fs) > 0:
                cnt += 1
                input_files_tmp.append(f_path)
                file_index = len(input_files) + len(input_files_tmp) - 1
                md_vals = fs.grib_get(self.keys_ecc, "key")

                if mapped_params:
                    for i in range(len(fs)):
                        v = md_vals[self.param_id_index][i]
                        if v in mapped_params:
                            short_name = mapped_params[v]
                            md_vals[self.shortname_index][i] = short_name
                if ens:
                    for i in range(len(fs)):
                        md_vals[self.type_index][i] = ens["type"]
                        md_vals[self.number_index][i] = ens["number"]

                assert len(self.keys) == len(self.keys_ecc)
                for i, c in enumerate(self.keys):
                    data[c].extend(md_vals[i])
                data["_msgIndex1"].extend(list(range(len(fs))))
                data["_fileIndex1"].extend([file_index] * len(fs))

                # print({k: len(v) for k, v in data.items()})

        if rootdir_placeholder_value:
            input_files_tmp = [
                x.replace(rootdir_placeholder_value, rootdir_placeholder_token)
                for x in input_files_tmp
            ]

        input_files.extend(input_files_tmp)

        LOG.info(f" {cnt} GRIB files processed")
        return input_files

    def allowed_keys(self):
        r = list(self.keys)
        r.extend(GribIndexer.DATE_KEYS)
        r.extend(GribIndexer.TIME_KEYS)
        r.extend(list(GribIndexer.DATETIME_KEYS.keys()))
        return set(r)