File: param.py

package info (click to toggle)
metview-python 1.16.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,900 kB
  • sloc: python: 11,306; makefile: 84; ansic: 51; sh: 7
file content (582 lines) | stat: -rw-r--r-- 18,578 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#

import logging
import re
import pandas as pd

from .indexer import GribIndexer
from .ipython import is_ipython_active
from .utils import is_fieldset_type

# logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s")
# logging.basicConfig(level=logging.DEBUG, format="%(levelname)s - %(message)s")
LOG = logging.getLogger(__name__)

PANDAS_ORI_OPTIONS = {}


def init_pandas_options():
    global PANDAS_ORI_OPTIONS
    if len(PANDAS_ORI_OPTIONS) == 0:
        opt = {
            "display.max_colwidth": 300,
            "display.colheader_justify": "center",
            "display.max_columns": 100,
            "display.max_rows": 500,
            "display.width": None,
        }
        for k, _ in opt.items():
            PANDAS_ORI_OPTIONS[k] = pd.get_option(k)
        for k, v in opt.items():
            pd.set_option(k, v)


def reset_pandas_options():
    global PANDAS_ORI_OPTIONS
    if len(PANDAS_ORI_OPTIONS) > 0:
        for k, v in PANDAS_ORI_OPTIONS.items():
            pd.set_option(k, v)
        PANDAS_ORI_OPTIONS = {}


class ParamInfo:
    SUFFIXES = {
        "hPa": "isobaricInhPa",
        "hpa": "isobaricInhPa",
        "K": "theta",
        "ml": "hybrid",
    }
    LEVEL_TYPES = {"sfc": "surface", "pl": "isobaricInhPa", "ml": "hybrid"}
    LEVEL_RE = re.compile(r"(\d+)")
    NUM_RE = re.compile(r"[0-9]+")
    SURF_RE = re.compile(r"^\d+\w+")
    # SURF_NAME_MAPPER = {"t2": "2t", "q2": "2q", "u10": "10u", "v10": "10v"}
    KNOWN_SURF_NAMES = [
        "2t",
        "2q",
        "10u",
        "10v",
        "100u",
        "100v",
        "200u",
        "200v",
        "msl",
        "wind10m",
        "wind100m",
        "wind200m",
    ]
    VECTOR_NAMES = [
        "wind100m",
        "wind200m",
        "wind10m",
        "wind3d",
        "wind",
    ]  # the longest ones first

    def __init__(self, name, meta=None, scalar=None):
        self.name = name
        self.scalar = scalar if scalar is not None else True
        self.meta = {} if meta is None else meta
        if len(self.meta) == 0:
            self.meta["shortName"] = name

    def make_filter(self):
        dims = {}
        if self.name:
            dims["shortName"] = [self.name]
        for n in ["level", "typeOfLevel"]:
            v = self.meta.get(n, None)
            if v is not None:
                dims[n] = [v]
        return dims

    @staticmethod
    def build_from_name(full_name, param_level_types=None):
        full_name = full_name
        name = full_name
        level = None
        level_type = ""

        # the name is a known param name
        if param_level_types:
            if name in param_level_types:
                lev_t = param_level_types.get(name, [])
                meta = {}
                if len(lev_t) == 1:
                    meta = {"typeOfLevel": lev_t[0], "level": None}
                scalar = not name in ParamInfo.VECTOR_NAMES
                return ParamInfo(name, meta=meta, scalar=scalar)

        t = full_name
        # surface fields
        if t in ParamInfo.KNOWN_SURF_NAMES or ParamInfo.SURF_RE.match(t) is not None:
            level_type = "surface"

        else:
            # guess the level type from the suffix
            for k, v in ParamInfo.SUFFIXES.items():
                if full_name.endswith(k):
                    level_type = v
                    t = full_name[: -(len(k))]
                    break

            # recognise vector params
            for v in ParamInfo.VECTOR_NAMES:
                if t.startswith(v):
                    name = v
                    t = t[len(v) :]
                    break

            # determine level value
            m = ParamInfo.LEVEL_RE.search(t)
            if m and m.groups() and len(m.groups()) == 1:
                level = int(m.group(1))
                if level_type == "" and level > 10:
                    level_type = "isobaricInhPa"
                if name == full_name:
                    name = ParamInfo.NUM_RE.sub("", t)

        # check param name in the conf
        if param_level_types:
            if not name in param_level_types:
                raise Exception(
                    f"Param={name} (guessed from name={full_name}) is not found in dataset!"
                )

            lev_t = param_level_types.get(name, [])
            if lev_t:
                if not level_type and len(lev_t) == 1:
                    level_type = lev_t[0]
                elif level_type and level_type not in lev_t:
                    raise Exception(
                        f"Level type cannot be guessed from param name={full_name}!"
                    )

        if level_type == "":
            level = None
        scalar = not name in ParamInfo.VECTOR_NAMES

        LOG.debug(f"scalar={scalar}")
        meta = {"level": level, "typeOfLevel": level_type}
        return ParamInfo(name, meta=meta, scalar=scalar)

    @staticmethod
    def build_from_fieldset(fs):
        assert is_fieldset_type(fs)
        f = fs[0:3] if len(fs) >= 3 else fs
        m = ParamInfo._grib_get(f, GribIndexer.DEFAULT_ECC_KEYS)
        name = level = lev_type = ""
        scalar = True

        meta_same = True
        for x in m.keys():
            if x != "shortName" and m[x].count(m[x][0]) != len(m[x]):
                same = False
                break
        if meta_same:
            if len(m["shortName"]) == 3 and m["shortName"] == ["u", "v", "w"]:
                name = "wind3d"
                scalar = False
            elif len(m["shortName"]) >= 2:
                if m["shortName"][0:2] == ["u", "v"]:
                    name = "wind"
                    scalar = False
                elif m["shortName"][0:2] == ["10u", "10v"]:
                    name = "wind10m"
                    m["level"][0] = 0
                    m["typeOfLevel"][0] = "sfc"
                    scalar = False
        if not name:
            name = m["shortName"][0]

        if name:
            return ParamInfo(name, meta={k: v[0] for k, v in m.items()}, scalar=scalar)
        else:
            return None

    def _meta_match(self, meta, key):
        local_key = key if key != "levelist" else "level"
        if (
            key in meta
            and meta[key] is not None
            and meta[key]
            and local_key in self.meta
        ):
            # print(f"local={self.meta[local_key]} other={meta[key]}")
            if isinstance(meta[key], list):
                return str(self.meta[local_key]) in meta[key]
            else:
                return meta[key] == str(self.meta[local_key])
        else:
            return False

    def match(self, name, meta):
        # print(f"{self}, name={name}, meta={meta}")
        r = 0
        if self.name == name:
            r += 3
        for n in ["shortName", "paramId"]:
            if self._meta_match(meta, n):
                r += 1
        # we only check the rest if the param is ok
        if r > 0:
            if self._meta_match(meta, "typeOfLevel"):
                r += 1
                if self._meta_match(meta, "levelist"):
                    r += 1

        return r

    def update_meta(self, meta):
        self.meta = {**meta, **self.meta}

    @staticmethod
    def _grib_get(f, keys, single_value_as_list=True):
        md = f.grib_get(keys, "key")
        m = {}
        for k, v in zip(keys, md):
            key_val = k.split(":")[0]
            val = v
            if k.endswith(":l"):
                val = []
                for x in v:
                    try:
                        val.append(int(x))
                    except:
                        val.append(None)
            if not single_value_as_list and len(val) == 1:
                val = val[0]
            m[key_val] = val
        return m

    def __str__(self):
        return "{}[name={}, scalar={}, meta={}]".format(
            self.__class__.__name__, self.name, self.scalar, self.meta
        )


class ParamDesc:
    def __init__(self, name):
        self.db = None
        # self.name = name
        self.md = {}
        self.levels = {}
        self._short_name = None
        self._param_id = None
        self._long_name = None
        self._units = None

    def load(self, db):
        raise NotImplementedError

    def _parse(self, md):
        if "level" in md and len(md["level"]) > 0:
            df = pd.DataFrame(md)
            md.pop("typeOfLevel")
            md.pop("level")

            for md_key in list(md.keys()):
                d = list(df[md_key].unique())
                self.md[md_key] = d

            lev_types = list(df["typeOfLevel"].unique())
            for t in lev_types:
                # print(f" t={t}")
                self.levels[t] = []
                q = f"typeOfLevel == '{t}'"
                # print(q)
                dft = df.query(q)
                if dft is not None:
                    self.levels[t] = list(dft["level"].unique())

            for k, v in self.md.items():
                self.md[k] = sorted(v)

            for k, v in self.levels.items():
                self.levels[k] = sorted(v)

    @property
    def short_name(self):
        if self._short_name is None:
            self._short_name = ""
            if self.md["shortName"]:
                self._short_name = self.md["shortName"][0]
        return self._short_name

    @property
    def param_id(self):
        if self._param_id is None:
            self._param_id = ""
            if self.md["paramId"]:
                self._param_id = self.md["paramId"][0]
        return self._param_id

    @property
    def long_name(self):
        if self._long_name is None:
            self._long_name = ""
            if self.db is not None:
                self._long_name, self._units = self.db.get_longname_and_units(
                    self.short_name, self.param_id
                )
        return self._long_name

    @property
    def units(self):
        if self._units is None:
            self._units = ""
            if self.db:
                self._long_name, self._units = self.db.get_longname_and_units(
                    self.short_name, self.param_id
                )
        return self._units

    @staticmethod
    def describe(db, param=None, no_print=False):
        labels = {"marsClass": "class", "marsStream": "stream", "marsType": "type"}
        in_jupyter = is_ipython_active()

        # describe all the params
        if param is None:
            t = {"parameter": [], "typeOfLevel": [], "level": []}
            need_number = False
            for k, v in db.param_meta.items():
                if not v.md.get("number", None) in [["0"], [None]]:
                    need_number = True
                    break

            for k, v in db.param_meta.items():
                t["parameter"].append(k)
                if len(v.levels) > 1:
                    lev_type = ""
                    level = ""
                    cnt = 0
                    for md_k, md in v.levels.items():
                        if in_jupyter:
                            lev_type += md_k + "<br>"
                            level += str(ParamDesc.format_list(md)) + "<br>"
                        else:
                            prefix = " " if cnt > 0 else ""
                            lev_type += prefix + f"[{cnt+1}]:" + md_k
                            level += (
                                prefix + f"[{cnt+1}]:" + str(ParamDesc.format_list(md))
                            )
                        cnt += 1
                    t["typeOfLevel"].append(lev_type)
                    t["level"].append(level)
                else:
                    for md_k, md in v.levels.items():
                        t["typeOfLevel"].append(md_k)
                        t["level"].append(ParamDesc.format_list(md))

                for md_k, md in v.md.items():
                    if md_k != "number" or need_number:
                        md_k = labels.get(md_k, md_k)
                        if not md_k in t:
                            t[md_k] = []
                        t[md_k].append(ParamDesc.format_list(md))

            if in_jupyter:
                txt = ParamDesc._make_html_table(t)
                from IPython.display import HTML

                return HTML(txt)
            else:
                df = pd.DataFrame.from_dict(t)
                df = df.set_index(["parameter"])
                init_pandas_options()
                if not no_print:
                    print(df)
                return df

        # specific param
        else:
            v = None
            if isinstance(param, str):
                v = db.param_meta.get(param, None)
            elif isinstance(param, int):
                v = db.param_id_meta(param)

            if v is None or len(v.md) == 0:
                print(f"No shortName/paramId={param} found in data!")
                return

            #  if v is not None:
            t = {
                "key": ["shortName"],
                "val": [v.short_name],
            }

            if v.long_name != "" or v.units != "":
                t["key"].append("name")
                t["val"].append(v.long_name)

            t["key"].append("paramId")
            t["val"].append(v.param_id)
            # ParamDesc.format_list(v.md["shortName"], full=True),

            if v.long_name != "" or v.units != "":
                t["key"].append("units")
                t["val"].append(v.units)

            add_cnt = len(v.levels) > 1
            cnt = 0
            for md_k, md in v.levels.items():
                t["key"].append("typeOfLevel" + (f"[{cnt+1}]" if add_cnt else ""))
                t["val"].append(md_k)
                t["key"].append("level" + (f"[{cnt+1}]" if add_cnt else ""))
                t["val"].append(ParamDesc.format_list(md, full=True))
                cnt += 1

            for kk, md_v in v.md.items():
                if kk == "number" and md_v == ["0"]:
                    continue
                if not kk in ["shortName", "paramId"]:
                    t["key"].append(labels.get(kk, kk))
                    t["val"].append(ParamDesc.format_list(md_v, full=True))

            if in_jupyter:
                from IPython.display import HTML

                txt = ParamDesc._make_html_table(t, header=False)
                return HTML(txt)
            else:
                df = pd.DataFrame.from_dict(t)
                df = df.set_index("key")
                init_pandas_options()
                if not no_print:
                    print(df)
                return df

    @staticmethod
    def _make_html_table(d, header=True):
        if len(d) > 1:
            first_column_name = list(d.keys())[0]
            txt = """  
                <table>
                <tr>{}</tr>
                {}
                </table>""".format(
                "" if not header else "".join([f"<th>{k}</th>" for k in d.keys()]),
                "".join(
                    [
                        "<tr><th style='text-align: right;'>"
                        + d[first_column_name][i]
                        + "</th>"
                        + "".join(
                            [
                                f"<td style='text-align: left;'>{ParamDesc.format_list(d[k][i], full=True)}</td>"
                                for k in list(d.keys())[1:]
                            ]
                        )
                        + "</tr>"
                        for i in range(len(d[first_column_name]))
                    ]
                ),
            )
            return txt
        else:
            return ""

    @staticmethod
    def format_list(v, full=False):
        if isinstance(v, list):
            if full is True:
                return ",".join([str(x) for x in v])
            else:
                if len(v) == 1:
                    return v[0]
                if len(v) > 2:
                    return ",".join([str(x) for x in [v[0], v[1], "..."]])
                else:
                    return ",".join([str(x) for x in v])
        else:
            return v


class ParamNameDesc(ParamDesc):
    def __init__(self, name):
        super().__init__(name)
        self._short_name = name

    def load(self, db):
        md = {
            "typeOfLevel": [],
            "level": [],
            "date": [],
            "time": [],
            "step": [],
            "number": [],
            "paramId": [],
            "marsClass": [],
            "marsStream": [],
            "marsType": [],
            "experimentVersionNumber": [],
        }

        self.db = db
        self.md = {}
        self.levels = {}

        # print(f"par={par}")
        for b_name, b_df in db.blocks.items():
            if b_name == "scalar":
                q = f"shortName == '{self.short_name}'"
                dft = b_df.query(q)
            elif b_name == self.short_name:
                dft = b_df
            else:
                dft = None

            if dft is not None:
                for k in md.keys():
                    # print(f"{self.name}/{k}")
                    md[k].extend(dft[k].tolist())
                    # print(f"   df[{k}]={df[k]}")
            # print(df)

        self._parse(md)


class ParamIdDesc(ParamDesc):
    def __init__(self, param_id):
        super().__init__("")
        self._param_id = param_id

    def load(self, db):
        md = {
            "shortName": [],
            "typeOfLevel": [],
            "level": [],
            "date": [],
            "time": [],
            "step": [],
            "number": [],
            "paramId": [],
            "marsClass": [],
            "marsStream": [],
            "marsType": [],
            "experimentVersionNumber": [],
        }

        self.db = db
        self.md = {}
        self.levels = {}

        # print(f"par={par}"
        b_df = db.blocks.get("scalar", None)
        if b_df is not None:
            q = f"paramId == {self._param_id}"
            dft = b_df.query(q, engine="python")
            if dft is not None:
                for k in md.keys():
                    md[k].extend(dft[k].tolist())
                self._parse(md)