1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#
import logging
import re
import pandas as pd
from .indexer import GribIndexer
from .ipython import is_ipython_active
from .utils import is_fieldset_type
# logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s")
# logging.basicConfig(level=logging.DEBUG, format="%(levelname)s - %(message)s")
LOG = logging.getLogger(__name__)
PANDAS_ORI_OPTIONS = {}
def init_pandas_options():
global PANDAS_ORI_OPTIONS
if len(PANDAS_ORI_OPTIONS) == 0:
opt = {
"display.max_colwidth": 300,
"display.colheader_justify": "center",
"display.max_columns": 100,
"display.max_rows": 500,
"display.width": None,
}
for k, _ in opt.items():
PANDAS_ORI_OPTIONS[k] = pd.get_option(k)
for k, v in opt.items():
pd.set_option(k, v)
def reset_pandas_options():
global PANDAS_ORI_OPTIONS
if len(PANDAS_ORI_OPTIONS) > 0:
for k, v in PANDAS_ORI_OPTIONS.items():
pd.set_option(k, v)
PANDAS_ORI_OPTIONS = {}
class ParamInfo:
SUFFIXES = {
"hPa": "isobaricInhPa",
"hpa": "isobaricInhPa",
"K": "theta",
"ml": "hybrid",
}
LEVEL_TYPES = {"sfc": "surface", "pl": "isobaricInhPa", "ml": "hybrid"}
LEVEL_RE = re.compile(r"(\d+)")
NUM_RE = re.compile(r"[0-9]+")
SURF_RE = re.compile(r"^\d+\w+")
# SURF_NAME_MAPPER = {"t2": "2t", "q2": "2q", "u10": "10u", "v10": "10v"}
KNOWN_SURF_NAMES = [
"2t",
"2q",
"10u",
"10v",
"100u",
"100v",
"200u",
"200v",
"msl",
"wind10m",
"wind100m",
"wind200m",
]
VECTOR_NAMES = [
"wind100m",
"wind200m",
"wind10m",
"wind3d",
"wind",
] # the longest ones first
def __init__(self, name, meta=None, scalar=None):
self.name = name
self.scalar = scalar if scalar is not None else True
self.meta = {} if meta is None else meta
if len(self.meta) == 0:
self.meta["shortName"] = name
def make_filter(self):
dims = {}
if self.name:
dims["shortName"] = [self.name]
for n in ["level", "typeOfLevel"]:
v = self.meta.get(n, None)
if v is not None:
dims[n] = [v]
return dims
@staticmethod
def build_from_name(full_name, param_level_types=None):
full_name = full_name
name = full_name
level = None
level_type = ""
# the name is a known param name
if param_level_types:
if name in param_level_types:
lev_t = param_level_types.get(name, [])
meta = {}
if len(lev_t) == 1:
meta = {"typeOfLevel": lev_t[0], "level": None}
scalar = not name in ParamInfo.VECTOR_NAMES
return ParamInfo(name, meta=meta, scalar=scalar)
t = full_name
# surface fields
if t in ParamInfo.KNOWN_SURF_NAMES or ParamInfo.SURF_RE.match(t) is not None:
level_type = "surface"
else:
# guess the level type from the suffix
for k, v in ParamInfo.SUFFIXES.items():
if full_name.endswith(k):
level_type = v
t = full_name[: -(len(k))]
break
# recognise vector params
for v in ParamInfo.VECTOR_NAMES:
if t.startswith(v):
name = v
t = t[len(v) :]
break
# determine level value
m = ParamInfo.LEVEL_RE.search(t)
if m and m.groups() and len(m.groups()) == 1:
level = int(m.group(1))
if level_type == "" and level > 10:
level_type = "isobaricInhPa"
if name == full_name:
name = ParamInfo.NUM_RE.sub("", t)
# check param name in the conf
if param_level_types:
if not name in param_level_types:
raise Exception(
f"Param={name} (guessed from name={full_name}) is not found in dataset!"
)
lev_t = param_level_types.get(name, [])
if lev_t:
if not level_type and len(lev_t) == 1:
level_type = lev_t[0]
elif level_type and level_type not in lev_t:
raise Exception(
f"Level type cannot be guessed from param name={full_name}!"
)
if level_type == "":
level = None
scalar = not name in ParamInfo.VECTOR_NAMES
LOG.debug(f"scalar={scalar}")
meta = {"level": level, "typeOfLevel": level_type}
return ParamInfo(name, meta=meta, scalar=scalar)
@staticmethod
def build_from_fieldset(fs):
assert is_fieldset_type(fs)
f = fs[0:3] if len(fs) >= 3 else fs
m = ParamInfo._grib_get(f, GribIndexer.DEFAULT_ECC_KEYS)
name = level = lev_type = ""
scalar = True
meta_same = True
for x in m.keys():
if x != "shortName" and m[x].count(m[x][0]) != len(m[x]):
same = False
break
if meta_same:
if len(m["shortName"]) == 3 and m["shortName"] == ["u", "v", "w"]:
name = "wind3d"
scalar = False
elif len(m["shortName"]) >= 2:
if m["shortName"][0:2] == ["u", "v"]:
name = "wind"
scalar = False
elif m["shortName"][0:2] == ["10u", "10v"]:
name = "wind10m"
m["level"][0] = 0
m["typeOfLevel"][0] = "sfc"
scalar = False
if not name:
name = m["shortName"][0]
if name:
return ParamInfo(name, meta={k: v[0] for k, v in m.items()}, scalar=scalar)
else:
return None
def _meta_match(self, meta, key):
local_key = key if key != "levelist" else "level"
if (
key in meta
and meta[key] is not None
and meta[key]
and local_key in self.meta
):
# print(f"local={self.meta[local_key]} other={meta[key]}")
if isinstance(meta[key], list):
return str(self.meta[local_key]) in meta[key]
else:
return meta[key] == str(self.meta[local_key])
else:
return False
def match(self, name, meta):
# print(f"{self}, name={name}, meta={meta}")
r = 0
if self.name == name:
r += 3
for n in ["shortName", "paramId"]:
if self._meta_match(meta, n):
r += 1
# we only check the rest if the param is ok
if r > 0:
if self._meta_match(meta, "typeOfLevel"):
r += 1
if self._meta_match(meta, "levelist"):
r += 1
return r
def update_meta(self, meta):
self.meta = {**meta, **self.meta}
@staticmethod
def _grib_get(f, keys, single_value_as_list=True):
md = f.grib_get(keys, "key")
m = {}
for k, v in zip(keys, md):
key_val = k.split(":")[0]
val = v
if k.endswith(":l"):
val = []
for x in v:
try:
val.append(int(x))
except:
val.append(None)
if not single_value_as_list and len(val) == 1:
val = val[0]
m[key_val] = val
return m
def __str__(self):
return "{}[name={}, scalar={}, meta={}]".format(
self.__class__.__name__, self.name, self.scalar, self.meta
)
class ParamDesc:
def __init__(self, name):
self.db = None
# self.name = name
self.md = {}
self.levels = {}
self._short_name = None
self._param_id = None
self._long_name = None
self._units = None
def load(self, db):
raise NotImplementedError
def _parse(self, md):
if "level" in md and len(md["level"]) > 0:
df = pd.DataFrame(md)
md.pop("typeOfLevel")
md.pop("level")
for md_key in list(md.keys()):
d = list(df[md_key].unique())
self.md[md_key] = d
lev_types = list(df["typeOfLevel"].unique())
for t in lev_types:
# print(f" t={t}")
self.levels[t] = []
q = f"typeOfLevel == '{t}'"
# print(q)
dft = df.query(q)
if dft is not None:
self.levels[t] = list(dft["level"].unique())
for k, v in self.md.items():
self.md[k] = sorted(v)
for k, v in self.levels.items():
self.levels[k] = sorted(v)
@property
def short_name(self):
if self._short_name is None:
self._short_name = ""
if self.md["shortName"]:
self._short_name = self.md["shortName"][0]
return self._short_name
@property
def param_id(self):
if self._param_id is None:
self._param_id = ""
if self.md["paramId"]:
self._param_id = self.md["paramId"][0]
return self._param_id
@property
def long_name(self):
if self._long_name is None:
self._long_name = ""
if self.db is not None:
self._long_name, self._units = self.db.get_longname_and_units(
self.short_name, self.param_id
)
return self._long_name
@property
def units(self):
if self._units is None:
self._units = ""
if self.db:
self._long_name, self._units = self.db.get_longname_and_units(
self.short_name, self.param_id
)
return self._units
@staticmethod
def describe(db, param=None, no_print=False):
labels = {"marsClass": "class", "marsStream": "stream", "marsType": "type"}
in_jupyter = is_ipython_active()
# describe all the params
if param is None:
t = {"parameter": [], "typeOfLevel": [], "level": []}
need_number = False
for k, v in db.param_meta.items():
if not v.md.get("number", None) in [["0"], [None]]:
need_number = True
break
for k, v in db.param_meta.items():
t["parameter"].append(k)
if len(v.levels) > 1:
lev_type = ""
level = ""
cnt = 0
for md_k, md in v.levels.items():
if in_jupyter:
lev_type += md_k + "<br>"
level += str(ParamDesc.format_list(md)) + "<br>"
else:
prefix = " " if cnt > 0 else ""
lev_type += prefix + f"[{cnt+1}]:" + md_k
level += (
prefix + f"[{cnt+1}]:" + str(ParamDesc.format_list(md))
)
cnt += 1
t["typeOfLevel"].append(lev_type)
t["level"].append(level)
else:
for md_k, md in v.levels.items():
t["typeOfLevel"].append(md_k)
t["level"].append(ParamDesc.format_list(md))
for md_k, md in v.md.items():
if md_k != "number" or need_number:
md_k = labels.get(md_k, md_k)
if not md_k in t:
t[md_k] = []
t[md_k].append(ParamDesc.format_list(md))
if in_jupyter:
txt = ParamDesc._make_html_table(t)
from IPython.display import HTML
return HTML(txt)
else:
df = pd.DataFrame.from_dict(t)
df = df.set_index(["parameter"])
init_pandas_options()
if not no_print:
print(df)
return df
# specific param
else:
v = None
if isinstance(param, str):
v = db.param_meta.get(param, None)
elif isinstance(param, int):
v = db.param_id_meta(param)
if v is None or len(v.md) == 0:
print(f"No shortName/paramId={param} found in data!")
return
# if v is not None:
t = {
"key": ["shortName"],
"val": [v.short_name],
}
if v.long_name != "" or v.units != "":
t["key"].append("name")
t["val"].append(v.long_name)
t["key"].append("paramId")
t["val"].append(v.param_id)
# ParamDesc.format_list(v.md["shortName"], full=True),
if v.long_name != "" or v.units != "":
t["key"].append("units")
t["val"].append(v.units)
add_cnt = len(v.levels) > 1
cnt = 0
for md_k, md in v.levels.items():
t["key"].append("typeOfLevel" + (f"[{cnt+1}]" if add_cnt else ""))
t["val"].append(md_k)
t["key"].append("level" + (f"[{cnt+1}]" if add_cnt else ""))
t["val"].append(ParamDesc.format_list(md, full=True))
cnt += 1
for kk, md_v in v.md.items():
if kk == "number" and md_v == ["0"]:
continue
if not kk in ["shortName", "paramId"]:
t["key"].append(labels.get(kk, kk))
t["val"].append(ParamDesc.format_list(md_v, full=True))
if in_jupyter:
from IPython.display import HTML
txt = ParamDesc._make_html_table(t, header=False)
return HTML(txt)
else:
df = pd.DataFrame.from_dict(t)
df = df.set_index("key")
init_pandas_options()
if not no_print:
print(df)
return df
@staticmethod
def _make_html_table(d, header=True):
if len(d) > 1:
first_column_name = list(d.keys())[0]
txt = """
<table>
<tr>{}</tr>
{}
</table>""".format(
"" if not header else "".join([f"<th>{k}</th>" for k in d.keys()]),
"".join(
[
"<tr><th style='text-align: right;'>"
+ d[first_column_name][i]
+ "</th>"
+ "".join(
[
f"<td style='text-align: left;'>{ParamDesc.format_list(d[k][i], full=True)}</td>"
for k in list(d.keys())[1:]
]
)
+ "</tr>"
for i in range(len(d[first_column_name]))
]
),
)
return txt
else:
return ""
@staticmethod
def format_list(v, full=False):
if isinstance(v, list):
if full is True:
return ",".join([str(x) for x in v])
else:
if len(v) == 1:
return v[0]
if len(v) > 2:
return ",".join([str(x) for x in [v[0], v[1], "..."]])
else:
return ",".join([str(x) for x in v])
else:
return v
class ParamNameDesc(ParamDesc):
def __init__(self, name):
super().__init__(name)
self._short_name = name
def load(self, db):
md = {
"typeOfLevel": [],
"level": [],
"date": [],
"time": [],
"step": [],
"number": [],
"paramId": [],
"marsClass": [],
"marsStream": [],
"marsType": [],
"experimentVersionNumber": [],
}
self.db = db
self.md = {}
self.levels = {}
# print(f"par={par}")
for b_name, b_df in db.blocks.items():
if b_name == "scalar":
q = f"shortName == '{self.short_name}'"
dft = b_df.query(q)
elif b_name == self.short_name:
dft = b_df
else:
dft = None
if dft is not None:
for k in md.keys():
# print(f"{self.name}/{k}")
md[k].extend(dft[k].tolist())
# print(f" df[{k}]={df[k]}")
# print(df)
self._parse(md)
class ParamIdDesc(ParamDesc):
def __init__(self, param_id):
super().__init__("")
self._param_id = param_id
def load(self, db):
md = {
"shortName": [],
"typeOfLevel": [],
"level": [],
"date": [],
"time": [],
"step": [],
"number": [],
"paramId": [],
"marsClass": [],
"marsStream": [],
"marsType": [],
"experimentVersionNumber": [],
}
self.db = db
self.md = {}
self.levels = {}
# print(f"par={par}"
b_df = db.blocks.get("scalar", None)
if b_df is not None:
q = f"paramId == {self._param_id}"
dft = b_df.query(q, engine="python")
if dft is not None:
for k in md.keys():
md[k].extend(dft[k].tolist())
self._parse(md)
|