File: utils.py

package info (click to toggle)
metview-python 1.16.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,900 kB
  • sloc: python: 11,306; makefile: 84; ansic: 51; sh: 7
file content (350 lines) | stat: -rw-r--r-- 10,954 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#
# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.
#

import datetime
import getpass
import glob
import logging
import math
from pathlib import Path
import shutil
import os
import re
import tempfile

import numpy as np

LOG = logging.getLogger(__name__)


CACHE_DIR = os.path.join(tempfile.gettempdir(), f"mpy-{getpass.getuser()}")


def deacc(fs, key=None, skip_first=False, mark_derived=False):
    r = None
    if key is None or key == "":
        if len(fs) > 1:
            v = fs[1:] - fs[:-1]
        if not skip_first:
            r = fs[0] * 0
            r = r.merge(v)
        else:
            r = v
    else:
        if not isinstance(key, str):
            raise TypeError(f"deacc(): key must be a str (got {type(key)})!")
        fs._get_db().load([key])
        key_vals = fs._unique_metadata(key)
        if key_vals:
            v = fs.select({key: key_vals[0]})
            gr_num = len(v)
            r = None
            if not skip_first:
                r = v * 0
            for i in range(1, len(key_vals)):
                v_next = fs.select({key: key_vals[i]})
                if len(v_next) != gr_num:
                    raise ValueError(
                        f"deacc(): unexpected number of fields (={len(v_next)}) found for {key}={key_vals[i]}! For each {key} value the number of fields must be the same as for {key}={key_vals[0]} (={gr_num})!"
                    )
                if r is None:
                    r = v_next - v
                else:
                    # print(f"i={i}")
                    # v.ls()
                    # v_next.ls()
                    r.append(v_next - v)
                v = v_next
    if not mark_derived:
        r = r.grib_set_long(["generatingProcessIdentifier", 148])
    return r


def date_from_str(d_str):
    # yyyymmdd
    if len(d_str) == 8:
        return datetime.datetime.strptime(d_str, "%Y%m%d")
    # yyyy-mm-dd ....
    elif len(d_str) >= 10 and d_str[4] == "-" and d_str[7] == "-":
        # yyyy-mm-dd
        if len(d_str) == 10:
            return datetime.datetime.strptime(d_str, "%Y-%m-%d")
        # yyyy-mm-dd hh
        elif len(d_str) == 13:
            return datetime.datetime.strptime(d_str, "%Y-%m-%d %H")
        # yyyy-mm-dd hh:mm
        elif len(d_str) == 16:
            return datetime.datetime.strptime(d_str, "%Y-%m-%d %H:%M")
        # yyyy-mm-dd hh:mm:ss
        elif len(d_str) == 19:
            return datetime.datetime.strptime(d_str, "%Y-%m-%d %H:%M:%S")
    # yyyymmdd.decimal_day
    elif len(d_str) > 8 and d_str[8] == ".":
        f = float("0" + d_str[8:])
        if f >= 1:
            raise ValueError
        else:
            return datetime.datetime.strptime(d_str[:8], "%Y%m%d") + datetime.timedelta(
                seconds=int(f * 86400)
            )
    # mmdd or mdd (as in daily climatologies)
    elif len(d_str) in [3, 4]:
        # try to convert to datatime to see if it is valid date
        d = datetime.datetime.strptime("0004" + d_str.rjust(4, "0"), "%Y%m%d")
        # we just return a tuple since datetime cannot have an invalid date
        return (d.month, d.day)
    # b-dd e.g. apr-02 (as in daily climatologies)
    elif len(d_str) == 6 and d_str[3] == "-":
        months = [
            "jan",
            "feb",
            "mar",
            "apr",
            "may",
            "jun",
            "jul",
            "aug",
            "sep",
            "nov",
            "dec",
        ]
        m = d_str[0:3].lower()
        try:
            m_num = months.index(m) + 1
        except:
            raise ValueError(f"Invalid month={m} specified in date={d_str}!")
        # try to convert to datatime to see if it is valid date
        d = datetime.datetime.strptime("0004" + f"{m_num:02}" + d_str[4:6], "%Y%m%d")
        # we just return a tuple since datetime cannot have an invalid date
        return (d.month, d.day)


def time_from_str(t_str):
    h = m = 0
    if not ":" in t_str:
        # formats: h[mm], hh[mm]
        if len(t_str) in [1, 2]:
            h = int(t_str)
        elif len(t_str) in [3, 4]:
            r = int(t_str)
            h = int(r / 100)
            m = int(r - h * 100)
        else:
            raise Exception(f"Invalid time={t_str}")
    else:
        # formats: h:mm, hh:mm
        lst = t_str.split(":")
        if len(lst) >= 2:
            h = int(lst[0])
            m = int(lst[1])
        else:
            raise Exception(f"Invalid time={t_str}")

    return datetime.time(hour=h, minute=m)


def date_from_ecc_keys(d, t):
    try:
        return datetime.datetime.combine(
            date_from_str(str(d)).date(), time_from_str(str(t))
        )
    except:
        return None


def is_fieldset_type(thing):
    # will return True for binary or python fieldset objects
    return "Fieldset" in thing.__class__.__name__


def get_file_list(path, file_name_pattern=None):
    m = None
    # if isinstance(file_name_pattern, re.Pattern):
    #    m = file_name_pattern.match
    # elif isinstance(file_name_pattern, str):
    if isinstance(file_name_pattern, str):
        if file_name_pattern.startswith('re"'):
            m = re.compile(file_name_pattern[3:-1]).match

    # print(f"path={path} file_name_pattern={file_name_pattern}")

    if m is not None:
        return [os.path.join(path, f) for f in filter(m, os.listdir(path=path))]
    else:
        if isinstance(file_name_pattern, str) and file_name_pattern != "":
            path = os.path.join(path, file_name_pattern)
        if not has_globbing(path):
            return [path]
        else:
            return sorted(glob.glob(path))


def has_globbing(text):
    for x in ["*", "?"]:
        if x in text:
            return True
    if "[" in text and "]" in text:
        return True
    else:
        return False


def unpack(file_path, remove=False):
    if any(file_path.endswith(x) for x in [".tar", ".tar.gz", ".tar.bz2"]):
        target_dir = os.path.dirname(file_path)
        LOG.debug(f"file_path={file_path} target_dir={target_dir}")
        shutil.unpack_archive(file_path, target_dir)
        if remove:
            os.remove(file_path)


def download(url, target):
    from tqdm import tqdm
    import requests

    resp = requests.get(url, stream=True)
    total = int(resp.headers.get("content-length", 0))
    with open(target, "wb") as file, tqdm(
        desc=target,
        total=total,
        unit="iB",
        unit_scale=True,
        unit_divisor=1024,
    ) as bar:
        for data in resp.iter_content(chunk_size=1024):
            size = file.write(data)
            bar.update(size)


def simple_download(url, target):
    import requests

    r = requests.get(url, allow_redirects=True)
    r.raise_for_status()
    open(target, "wb").write(r.content)


def _smooth_core(fs, repeat, m_func, m_arg, **kwargs):
    """
    Performs spatial smoothing on each field in fs with the given callable
    """
    # extract metadata for each field
    meta = fs.grib_get(["gridType", "Ni", "generatingProcessIdentifier"])

    # the resulting fieldset. We cannot use the Fieldset constructor here!
    res = type(fs)()

    # build result in a loop
    for fld, fld_meta in zip(fs, meta):
        # smoothing only works for regular latlon grids
        if fld_meta[0] == "regular_ll":
            ncol = int(fld_meta[1])
            val = fld.values()
            val = np.reshape(val, (-1, ncol))
            for _ in range(repeat):
                val = m_func(val, m_arg, **kwargs)
            r = fld.set_values(val.flatten())
            if fld_meta[2] is not None:
                try:
                    r = r.grib_set_long(
                        ["generatingProcessIdentifier", int(fld_meta[2])]
                    )
                except:
                    pass
            res.append(r)
        else:
            raise ValueError(
                f"Unsupported gridType={fld_meta[0]} in field={i}. Only regular_ll is accepted!"
            )

    return res


def convolve(fs, weight, repeat=1, **kwargs):
    """
    Performs spatial smoothing on each field in fs with a convolution
    """
    from scipy.ndimage.filters import convolve

    m_arg = weight
    return _smooth_core(fs, repeat, convolve, m_arg, **kwargs)


def smooth_n_point(fs, n=9, repeat=1, **kwargs):
    """
    Performs spatial smoothing on each field in fs with an n-point averaging
    """
    from scipy.ndimage.filters import convolve

    if n == 9:
        weights = np.array(
            [[0.0625, 0.125, 0.0625], [0.125, 0.25, 0.125], [0.0625, 0.125, 0.0625]],
            dtype=float,
        )
        m_arg = weights
    elif n == 5:
        weights = np.array(
            [[0.0, 0.125, 0.0], [0.125, 0.5, 0.125], [0.0, 0.125, 0.0]], dtype=float
        )
        m_arg = weights
    else:
        raise ValueError("smooth_n_point: n must be either 5 or 9!")

    return _smooth_core(fs, repeat, convolve, m_arg, **kwargs)


def smooth_gaussian(fs, sigma=1, repeat=1, **kwargs):
    """
    Performs spatial smoothing on each field in fs with a Gaussian filter
    """
    from scipy.ndimage.filters import gaussian_filter

    m_arg = sigma
    return _smooth_core(fs, repeat, gaussian_filter, m_arg, **kwargs)


class Cache:
    ROOT_DIR = os.path.join(tempfile.gettempdir(), f"mpy_ds_{getpass.getuser()}")

    def all_exists(self, items, path):
        for name in items:
            p = os.path.join(path, name)
            # print(f"p={p}")
            if not os.path.exists(p):
                return False
            elif os.path.isdir(p):
                cont_file = os.path.join(path, f".content_{name}")
                if os.path.exists(cont_file):
                    with open(cont_file, "r") as f:
                        try:
                            for item in f.read().split("\n"):
                                if item and not os.path.exists(
                                    os.path.join(path, item)
                                ):
                                    return False
                        except:
                            return False
                else:
                    return False
        return True

    def make_reference(self, items, path):
        for name in items:
            p = os.path.join(path, name)
            if os.path.isdir(p):
                cont_file = os.path.join(path, f".content_{name}")
                with open(cont_file, "w") as f:
                    for item in Path(p).rglob("*"):
                        if item.is_file():
                            f.write(item.relative_to(path).as_posix() + "\n")


CACHE = Cache()