1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*
* (C) Copyright 2024- ECMWF.
*
* This software is licensed under the terms of the Apache Licence Version 2.0
* which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
* In applying this licence, ECMWF does not waive the privileges and immunities
* granted to it by virtue of its status as an intergovernmental organisation
* nor does it submit to any jurisdiction.
*/
#include <algorithm>
#include <chrono>
#include <iostream>
#include <vector>
#include "hic/hic.h"
#include "pluto/pluto.h"
// ---------------------------------------------------------------------------------------------------
// Helper array types to allocate and deallocate uninitialized memory using allocator.
// This could be in a separate file
template <typename T, typename Allocator = pluto::allocator<T>>
class array {
public:
using value_type = T;
using allocator_type = Allocator;
array(std::size_t size): size_{size} { data_ = alloc_.allocate(size_); }
array(std::size_t size, pluto::stream_view stream): size_{size}, stream_(stream) {
data_ = alloc_.allocate_async(size_, stream_);
}
template <typename Alloc>
array(std::size_t size, const Alloc& alloc): alloc_{alloc}, size_{size} {
data_ = alloc_.allocate(size_);
}
template <typename Alloc>
array(std::size_t size, pluto::stream_view stream, const Alloc& alloc):
alloc_{alloc}, size_{size}, stream_(stream) {
data_ = alloc_.allocate_async(size_, stream_);
}
~array() {
if (not stream_.empty()) {
alloc_.deallocate_async(data_, size_, stream_);
}
else {
alloc_.deallocate(data_, size_);
}
}
void set_stream(pluto::stream_view stream) { stream_ = stream; }
value_type& operator[](std::size_t i) { return data_[i]; }
const value_type& operator[](std::size_t i) const { return data_[i]; }
value_type* data() { return data_; };
const value_type* data() const { return data_; }
std::size_t size() const { return size_; }
private:
allocator_type alloc_;
std::size_t size_;
value_type* data_{nullptr};
pluto::stream_view stream_;
};
// ---------------------------------------------------------------------------------------------------
// Kernel to add +1 to device array. This could be in a separate CUDA/HIP source file
#if PLUTO_HAVE_HIC
template <typename T>
HIC_GLOBAL void kernel_plus_one_on_device(T* d, int n) {
const int idx{int(blockDim.x) * int(blockIdx.x) + int(threadIdx.x)};
const int stride{int(blockDim.x) * int(gridDim.x)};
for (int i{idx}; i < n; i += stride) {
d[i] += 1.;
}
}
template <typename T>
void plus_one_on_device(T* d, int n, pluto::stream_view stream) {
if (pluto::devices()) {
const int threads_per_block{1024};
const int blocks_per_grid{32};
kernel_plus_one_on_device<<<blocks_per_grid, threads_per_block, 0, stream.value<hicStream_t>()>>>(d, n);
}
else {
for (int i = 0; i < n; ++i) {
d[i] += 1.;
}
}
}
#else
template <typename T>
void plus_one_on_device(T* d, int n, pluto::stream_view) {
for (int i = 0; i < n; ++i) {
d[i] += 1.;
}
}
#endif
// ---------------------------------------------------------------------------------------------------
int main(int argc, char* argv[]) {
std::cerr << "devices = " << pluto::devices() << std::endl;
// Choose data type
using value_type = float;
// Total problem size
std::size_t size = 1'000'000'000;
if (argc > 1) {
size = std::atoi(argv[1]);
}
std::cerr << "size = " << size << " (" << size * sizeof(value_type) / 1024. / 1024. / 1024. << " Gb)"
<< std::endl;
// Number of streams to divide problem size in
std::size_t nb_streams = 7;
if (argc > 2) {
nb_streams = std::atoi(argv[2]);
}
std::cerr << "streams = " << nb_streams << std::endl;
// A stream pool
std::vector<pluto::stream> streams(nb_streams);
std::cerr << "host alloc" << std::endl;
auto host_resource = pluto::pinned_resource();
array<value_type> array_h1(size, host_resource);
array<value_type> array_h2(size, host_resource);
std::cerr << "device alloc" << std::endl;
auto device_resource = pluto::device_resource();
array<value_type> array_d1(size, device_resource);
std::cerr << "async loop start" << std::endl;
auto start = std::chrono::steady_clock::now();
for (std::size_t jstream = 0; jstream < streams.size(); ++jstream) {
const auto& stream = streams[jstream];
{
const auto& stream_offset = jstream * size / streams.size();
const auto& stream_size = (jstream < streams.size() - 1 ? size / streams.size() : size - stream_offset);
array<value_type> stream_tmp(stream_size, stream, device_resource);
auto* h1 = array_h1.data() + stream_offset;
auto* h2 = array_h2.data() + stream_offset;
auto* d1 = array_d1.data() + stream_offset;
[[maybe_unused]] auto* dtmp = stream_tmp.data();
h1[stream_size - 1] = 1.;
h2[stream_size - 1] = -1.;
pluto::copy_host_to_device(d1, h1, stream_size, stream);
plus_one_on_device(d1, stream_size, stream);
pluto::copy_device_to_host(h2, d1, stream_size, stream);
}
//stream.wait();
}
std::cerr << "async loop end" << std::endl;
pluto::wait();
auto end = std::chrono::steady_clock::now();
std::cout << "execution without allocations took " << std::chrono::duration<double>(end - start).count() << " s"
<< std::endl;
if (array_h2[size - 1] != 2.) {
std::cerr << "ERROR: asynchronous execution not successful, h2[size-1] = " << array_h2[size - 1] << std::endl;
}
}
|