File: split_monthly.py

package info (click to toggle)
metview 5.26.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 614,356 kB
  • sloc: cpp: 560,586; ansic: 44,641; xml: 19,933; f90: 17,984; sh: 7,454; python: 5,565; yacc: 2,318; lex: 1,372; perl: 701; makefile: 88
file content (347 lines) | stat: -rwxr-xr-x 10,752 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
# Program to read NEMO ocean model output temperature field file (netCDF3),
# Requirements:
# 1) Convert it to netcdf4 and write one output variable per file.
# 2) Output files should also pass CF checker.
# 3) Mars attributes should be added clearly identified
# 4) Modifications to time should be handled
#
# K Marsh 20/7/16
#
# 
# v3 modified from V2 to take command line input file, output file (prefix),
# type of file to be processed and configuration file to amend attributes etc.
#
# Currently only works for NEMO 3hr and 1D data files - Not 1 month/ non-NEMO data
#
# K Marsh 8/8/16
#
#*****************************************************************
# to run:
# python convert_nemo_to_1_variable_all_levels_one_timestep_v2.py 
# -i copy_of_2366_1d_1900022721_1900022821_grid_T_02.nc 
# -o copy_of_2366_1d_1900022721_1900022821_grid_T_02 
# -k NEMO -c convert_nemo_to_1_variable_all_levels_one_timestep.cfg
# 
# Note that this appends the variable name, timestep and "INTERIM.nc3" 
# to the output filename
#
from netCDF4 import Dataset, netcdftime, num2date
import glob
import sys
import getopt
import datetime
import os
import calendar

def seconds_in_month(month, year):
    nomatter, daysinmonth = calendar.monthrange(year, month)
    return daysinmonth * 24 * 60 * 60


def get_original_dimensions_and_global_attributes(file_in):
    islDebugFlag0 = True
#
#get dimensions
#
    dim_list = file_in.dimensions
    dim_dict = {}
    nc_attrs = {}
#
#Copy dimensions from whole file
#
    for dname, the_dim in file_in.dimensions.iteritems():
        dim_dict[dname] = len(the_dim)
#
# get global attributes
#
    nc_atts = file_in.ncattrs()
    print nc_atts, type(nc_atts)
    print "NetCDF Global Attributes:"
    print dir(file_in)
    if len(nc_atts) == 0:
        print "No Global attributes in source file"
    if islDebugFlag0:
        for nc_attr in nc_atts:
            print nc_attr
            nc_attrs[nc_attr] = file_in.getncattr(nc_attr)
    return dim_dict, nc_attrs


print "to run: "
print "split monthly nemo data file to extract 1 variable (salinity) " +\
"-i <input file> -o <output file prefix> "
print "to Run "
print "python split_monthly.py "
print "-i <nemo monthly file>" 
print "-o <nemo monthly split file> "


print "Note that this appends the variable name, timestep and <INTERIM.nc3>" 
print "to the output filename"

print "Parsing input config file"
options, remainder = getopt.getopt(sys.argv[1:], 'c:i:o:k:')
print options, remainder
if len(options) == 0:
    print "Option required; Exiting"
    sys.exit()
for opt, arg in options:
    print opt, arg

    if opt == '-i':
        input_filename = arg
        if not os.path.isfile(input_filename):
            print "Input file does not exist; exiting"
            sys.exit()
        print "Input file is ", input_filename   
        hasInputFile = True         
    if opt == '-o':   
        output_filename = arg
        if os.path.isfile(output_filename):
            print "Output file does exist and will be overwritten"
        print "Output file is ", output_filename            
        hasOutputFilePath = True



fname_out_temp = output_filename
fname = input_filename

#flist = glob.glob("/hugetmp/cera20c/model_data/2366_1m_1900*.nc")
#print flist

islDebugFlag = 0

#cmd = "rm -f /hugetmp/cera20c/model_data/split_month/*.nc*"
#os.system(cmd)

#op_dir = "/hugetmp/cera20c/model_data/split_month/"

co_var = "vosaline"

for var_count in [1]:
       fin = Dataset(fname, 'r')
     
       #fname_out_temp = op_dir + co_var + "_" + fname.split("/")[-1] + "4"
       
       print "writing INTERIM NC4 file to " + fname_out_temp

       try:
          dsout = Dataset(fname_out_temp, "w", \
          format="NETCDF4_CLASSIC")
       except:
          print "Error creating output file ", fname_out_temp
          print "exiting"
          sys.exit()
       date_str = fname.split("/")[-1].split("_")[2]
#       print "**",date_str

       year=date_str[0:4]
       month= date_str[4:6]
       day=date_str[6:9].lstrip("0")
       print year, month,day
       time_units_str = "seconds since " + year +"-"+ month+"-"+ date_str[6:9] +" 00:00:00"
       print time_units_str       
       

       var_out_dimensions = {}
       var_out = fin.variables[co_var] 

#       print var_out.shape
#       print var_out
#       print "dimesniosns", var_out.dimensions


# set dimensions

       dim_count = 0

       for dim_name in var_out.dimensions:
           if dim_name == "time_counter":
               var_out_dimensions["time"] = var_out.shape[dim_count]
           elif dim_name == "deptht":
               var_out_dimensions["depth"] = var_out.shape[dim_count]
           else:    
               var_out_dimensions[dim_name] = var_out.shape[dim_count]
           dim_count = dim_count + 1
           print dim_name, var_out_dimensions
       if islDebugFlag:
           print var_out_dimensions
           print var_out.shape
           print type(var_out), type(var_out)
       
       print var_out_dimensions
       print fin.variables[co_var].datatype
       print 'dimensions',var_out_dimensions
       for dname, the_dim in var_out_dimensions.iteritems():
           if dname == "time_counter":
               dsout.createDimension(dname, size=0)
           else:
               dsout.createDimension(dname, the_dim)    

# get time values from bounds

       intyear=int(year)
       intmonth=int(month)
       secs=seconds_in_month(intmonth, intyear)
       
       time_set = 0
       lower_time_bound = 0
       upper_time_bound = secs
       
#       dstime_bounds'][0,0] = 0
#       dset.variables['time_bounds'][0,1] = secs 
               
# create variable
   
       outVar = dsout.createVariable(co_var, \
       fin.variables[co_var].datatype, \
       ("time", "depth", "y", "x"))

      
       for k in fin.variables[co_var].ncattrs():
           print k
           if k == "coordinates": 
              print "reset coords *****",k, type(fin.variables[co_var].getncattr(k)), 
              print type("time depth nav_lat nav_lon") 
              co_str = "time depth nav_lat nav_lon"
              outVar.setncattr("coordinates",co_str)
           else: 
               outVar.setncattr(k,fin.variables[co_var].getncattr(k))
           
       outVar[:] = fin.variables[co_var][:] 
       
# add extra attributes
       ec_var_atts = {"standard_name" : "sea_water_salinity", \
                "cell_methods":"time: mean (interval: 1.0 month)" , \
                "mars_stream" : "enda" , \
                "mars_class" : "ep" , \
                "mars_type" : "an" , \
                "mars_expver" : 2366 , \
                "mars_levtype" : "dp" , \
                "mars_time" : 0 , \
                "mars_date" : int(date_str) , \
                "mars_param" : 34 , \
                "mars_levelist" : 1 , \
                "mars_number" : 1 }
       
       for ncattr in ec_var_atts.keys():
           outVar.setncattr(ncattr, ec_var_atts[ncattr])        
       
          
# create time variable 
       
       outVar = dsout.createVariable("time", \
       fin.variables[co_var].datatype, \
       ("time",))
       
       for k in fin.variables["time_counter"].ncattrs():
           if k == "time_origin": 
               continue
           outVar.setncattr(k,fin.variables["time_counter"].getncattr(k))
           if k == "bounds": 
               outVar.setncattr(k,"time_bnds")  
           if k == "units":
               outVar.setncattr(k,time_units_str)  
                    

       outVar[:] = time_set

#       outVar[:] = fin.variables["time_counter"][:]        #for original values

# create depth variable
       
       outVar = dsout.createVariable("depth", \
       fin.variables["deptht"].datatype, \
       ("depth",))
       for k in fin.variables["deptht"].ncattrs():
           if k == "title": 
               outVar.setncattr("title","depth")
           else:
               outVar.setncattr(k,fin.variables["deptht"].getncattr(k))

       outVar[:] = fin.variables["deptht"][:]    

#nav lon
                 
       outVar = dsout.createVariable("nav_lon", \
       fin.variables["nav_lon"].datatype, \
       ("y","x"))
       outVar.setncatts({k: \
       fin.variables["nav_lon"].getncattr(k) \
       for k in fin.variables["nav_lon"].ncattrs()})

       outVar[:] = fin.variables["nav_lon"][:]                    

#nav lat
       
       outVar = dsout.createVariable("nav_lat", \
       fin.variables["nav_lat"].datatype, \
       ("y","x"))
       outVar.setncatts({k: \
       fin.variables["nav_lat"].getncattr(k) \
       for k in fin.variables["nav_lat"].ncattrs()})

       outVar[:] = fin.variables["nav_lat"][:]     

# time bounds

       tbnds_length = 2 
       dsout.createDimension("tbnds",tbnds_length )
       outVar = dsout.createVariable("time_bnds", \
       fin.variables["time_counter_bnds"].datatype, \
       ("time", "tbnds"))
       outVar.setncatts({k: \
       fin.variables["time_counter_bnds"].getncattr(k) \
       for k in fin.variables["time_counter_bnds"].ncattrs()})
       outVar[0,0] = lower_time_bound
       outVar[0,1] = upper_time_bound
       
#       outVar[:] = fin.variables["time_counter_bnds"][:] #for original values
       
       
       
# Global attributes       
       
#      
       nc_attrs_dict = {}
       nc_atts_list = fin.ncattrs()
       print nc_atts_list, type(nc_atts_list)
       print "NetCDF Global Attributes:"

       if len(nc_atts_list) == 0:
           print "No Global attributes in source file"

       for nc_attr in nc_atts_list:
           print nc_attr
           nc_attrs_dict[nc_attr] = fin.getncattr(nc_attr)       
       print nc_attrs_dict
           
           
       for ncattr in nc_attrs_dict.keys():
           if ncattr == "history" or ncattr == "nco_openmp_thread_number":
               continue
           print "***",ncattr, nc_attrs_dict[ncattr]
           dsout.setncattr(ncattr, nc_attrs_dict[ncattr])       

       ec_global_atts={"comment":"Produced at ECMWF",
       "title":"NEMO model output",
       "Conventions" : "CF-1.6",
       "source":"NEMO V3.4" ,
       "references": "Madec G. 2008: NEMO ocean engine Note du Pole de " + \
       "modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 "+ \
       "ISSN No 1288-1619. \\nhttp://www.nemo-ocean.eu/content/download/21612/"+ \
       "97924/file/NEMO_book_3_4.pdf",
       "institution":"ECMWF"}
        
       for ncattr in ec_global_atts.keys():

           print "***",ncattr, ec_global_atts[ncattr]
           dsout.setncattr(ncattr, ec_global_atts[ncattr])       
        
       dsout.close()
     
       fin.close()