1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
// MFEM Example 10 - Parallel Version
//
// Compile with: make ex10p
//
// Sample runs:
// mpirun -np 4 ex10p -m ../data/beam-quad.mesh -s 3 -rs 2 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-tri.mesh -s 3 -rs 2 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-hex.mesh -s 2 -rs 1 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-tet.mesh -s 2 -rs 1 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-wedge.mesh -s 2 -rs 1 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-quad.mesh -s 14 -rs 2 -dt 0.03 -vs 20
// mpirun -np 4 ex10p -m ../data/beam-hex.mesh -s 14 -rs 1 -dt 0.05 -vs 20
// mpirun -np 4 ex10p -m ../data/beam-quad-amr.mesh -s 3 -rs 2 -dt 3
//
// Description: This examples solves a time dependent nonlinear elasticity
// problem of the form dv/dt = H(x) + S v, dx/dt = v, where H is a
// hyperelastic model and S is a viscosity operator of Laplacian
// type. The geometry of the domain is assumed to be as follows:
//
// +---------------------+
// boundary --->| |
// attribute 1 | |
// (fixed) +---------------------+
//
// The example demonstrates the use of nonlinear operators (the
// class HyperelasticOperator defining H(x)), as well as their
// implicit time integration using a Newton method for solving an
// associated reduced backward-Euler type nonlinear equation
// (class ReducedSystemOperator). Each Newton step requires the
// inversion of a Jacobian matrix, which is done through a
// (preconditioned) inner solver. Note that implementing the
// method HyperelasticOperator::ImplicitSolve is the only
// requirement for high-order implicit (SDIRK) time integration.
//
// We recommend viewing examples 2 and 9 before viewing this
// example.
#include "mfem.hpp"
#include <memory>
#include <iostream>
#include <fstream>
using namespace std;
using namespace mfem;
class ReducedSystemOperator;
/** After spatial discretization, the hyperelastic model can be written as a
* system of ODEs:
* dv/dt = -M^{-1}*(H(x) + S*v)
* dx/dt = v,
* where x is the vector representing the deformation, v is the velocity field,
* M is the mass matrix, S is the viscosity matrix, and H(x) is the nonlinear
* hyperelastic operator.
*
* Class HyperelasticOperator represents the right-hand side of the above
* system of ODEs. */
class HyperelasticOperator : public TimeDependentOperator
{
protected:
ParFiniteElementSpace &fespace;
Array<int> ess_tdof_list;
ParBilinearForm M, S;
ParNonlinearForm H;
real_t viscosity;
HyperelasticModel *model;
HypreParMatrix *Mmat; // Mass matrix from ParallelAssemble()
CGSolver M_solver; // Krylov solver for inverting the mass matrix M
HypreSmoother M_prec; // Preconditioner for the mass matrix M
/** Nonlinear operator defining the reduced backward Euler equation for the
velocity. Used in the implementation of method ImplicitSolve. */
ReducedSystemOperator *reduced_oper;
/// Newton solver for the reduced backward Euler equation
NewtonSolver newton_solver;
/// Solver for the Jacobian solve in the Newton method
Solver *J_solver;
/// Preconditioner for the Jacobian solve in the Newton method
Solver *J_prec;
mutable Vector z; // auxiliary vector
public:
HyperelasticOperator(ParFiniteElementSpace &f, Array<int> &ess_bdr,
real_t visc, real_t mu, real_t K);
/// Compute the right-hand side of the ODE system.
virtual void Mult(const Vector &vx, Vector &dvx_dt) const;
/** Solve the Backward-Euler equation: k = f(x + dt*k, t), for the unknown k.
This is the only requirement for high-order SDIRK implicit integration.*/
virtual void ImplicitSolve(const real_t dt, const Vector &x, Vector &k);
real_t ElasticEnergy(const ParGridFunction &x) const;
real_t KineticEnergy(const ParGridFunction &v) const;
void GetElasticEnergyDensity(const ParGridFunction &x,
ParGridFunction &w) const;
virtual ~HyperelasticOperator();
};
/** Nonlinear operator of the form:
k --> (M + dt*S)*k + H(x + dt*v + dt^2*k) + S*v,
where M and S are given BilinearForms, H is a given NonlinearForm, v and x
are given vectors, and dt is a scalar. */
class ReducedSystemOperator : public Operator
{
private:
ParBilinearForm *M, *S;
ParNonlinearForm *H;
mutable HypreParMatrix *Jacobian;
real_t dt;
const Vector *v, *x;
mutable Vector w, z;
const Array<int> &ess_tdof_list;
public:
ReducedSystemOperator(ParBilinearForm *M_, ParBilinearForm *S_,
ParNonlinearForm *H_, const Array<int> &ess_tdof_list);
/// Set current dt, v, x values - needed to compute action and Jacobian.
void SetParameters(real_t dt_, const Vector *v_, const Vector *x_);
/// Compute y = H(x + dt (v + dt k)) + M k + S (v + dt k).
virtual void Mult(const Vector &k, Vector &y) const;
/// Compute J = M + dt S + dt^2 grad_H(x + dt (v + dt k)).
virtual Operator &GetGradient(const Vector &k) const;
virtual ~ReducedSystemOperator();
};
/** Function representing the elastic energy density for the given hyperelastic
model+deformation. Used in HyperelasticOperator::GetElasticEnergyDensity. */
class ElasticEnergyCoefficient : public Coefficient
{
private:
HyperelasticModel &model;
const ParGridFunction &x;
DenseMatrix J;
public:
ElasticEnergyCoefficient(HyperelasticModel &m, const ParGridFunction &x_)
: model(m), x(x_) { }
virtual real_t Eval(ElementTransformation &T, const IntegrationPoint &ip);
virtual ~ElasticEnergyCoefficient() { }
};
void InitialDeformation(const Vector &x, Vector &y);
void InitialVelocity(const Vector &x, Vector &v);
void visualize(ostream &os, ParMesh *mesh,
ParGridFunction *deformed_nodes,
ParGridFunction *field, const char *field_name = NULL,
bool init_vis = false);
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/beam-quad.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 0;
int order = 2;
int ode_solver_type = 3;
real_t t_final = 300.0;
real_t dt = 3.0;
real_t visc = 1e-2;
real_t mu = 0.25;
real_t K = 5.0;
bool adaptive_lin_rtol = true;
bool visualization = true;
int vis_steps = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t"
" 11 - Forward Euler, 12 - RK2,\n\t"
" 13 - RK3 SSP, 14 - RK4."
" 22 - Implicit Midpoint Method,\n\t"
" 23 - SDIRK23 (A-stable), 24 - SDIRK34");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step.");
args.AddOption(&visc, "-v", "--viscosity",
"Viscosity coefficient.");
args.AddOption(&mu, "-mu", "--shear-modulus",
"Shear modulus in the Neo-Hookean hyperelastic model.");
args.AddOption(&K, "-K", "--bulk-modulus",
"Bulk modulus in the Neo-Hookean hyperelastic model.");
args.AddOption(&adaptive_lin_rtol, "-alrtol", "--adaptive-lin-rtol",
"-no-alrtol", "--no-adaptive-lin-rtol",
"Enable or disable adaptive linear solver rtol.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Read the serial mesh from the given mesh file on all processors. We can
// handle triangular, quadrilateral, tetrahedral and hexahedral meshes
// with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Define the ODE solver used for time integration. Several implicit
// singly diagonal implicit Runge-Kutta (SDIRK) methods, as well as
// explicit Runge-Kutta methods are available.
ODESolver *ode_solver;
switch (ode_solver_type)
{
// Implicit L-stable methods
case 1: ode_solver = new BackwardEulerSolver; break;
case 2: ode_solver = new SDIRK23Solver(2); break;
case 3: ode_solver = new SDIRK33Solver; break;
// Explicit methods
case 11: ode_solver = new ForwardEulerSolver; break;
case 12: ode_solver = new RK2Solver(0.5); break; // midpoint method
case 13: ode_solver = new RK3SSPSolver; break;
case 14: ode_solver = new RK4Solver; break;
case 15: ode_solver = new GeneralizedAlphaSolver(0.5); break;
// Implicit A-stable methods (not L-stable)
case 22: ode_solver = new ImplicitMidpointSolver; break;
case 23: ode_solver = new SDIRK23Solver; break;
case 24: ode_solver = new SDIRK34Solver; break;
default:
if (myid == 0)
{
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
}
delete mesh;
return 3;
}
// 5. Refine the mesh in serial to increase the resolution. In this example
// we do 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is
// a command-line parameter.
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh->UniformRefinement();
}
// 7. Define the parallel vector finite element spaces representing the mesh
// deformation x_gf, the velocity v_gf, and the initial configuration,
// x_ref. Define also the elastic energy density, w_gf, which is in a
// discontinuous higher-order space. Since x and v are integrated in time
// as a system, we group them together in block vector vx, on the unique
// parallel degrees of freedom, with offsets given by array true_offset.
H1_FECollection fe_coll(order, dim);
ParFiniteElementSpace fespace(pmesh, &fe_coll, dim);
HYPRE_BigInt glob_size = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of velocity/deformation unknowns: " << glob_size << endl;
}
int true_size = fespace.TrueVSize();
Array<int> true_offset(3);
true_offset[0] = 0;
true_offset[1] = true_size;
true_offset[2] = 2*true_size;
BlockVector vx(true_offset);
ParGridFunction v_gf, x_gf;
v_gf.MakeTRef(&fespace, vx, true_offset[0]);
x_gf.MakeTRef(&fespace, vx, true_offset[1]);
ParGridFunction x_ref(&fespace);
pmesh->GetNodes(x_ref);
L2_FECollection w_fec(order + 1, dim);
ParFiniteElementSpace w_fespace(pmesh, &w_fec);
ParGridFunction w_gf(&w_fespace);
// 8. Set the initial conditions for v_gf, x_gf and vx, and define the
// boundary conditions on a beam-like mesh (see description above).
VectorFunctionCoefficient velo(dim, InitialVelocity);
v_gf.ProjectCoefficient(velo);
v_gf.SetTrueVector();
VectorFunctionCoefficient deform(dim, InitialDeformation);
x_gf.ProjectCoefficient(deform);
x_gf.SetTrueVector();
v_gf.SetFromTrueVector(); x_gf.SetFromTrueVector();
Array<int> ess_bdr(fespace.GetMesh()->bdr_attributes.Max());
ess_bdr = 0;
ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed
// 9. Initialize the hyperelastic operator, the GLVis visualization and print
// the initial energies.
HyperelasticOperator oper(fespace, ess_bdr, visc, mu, K);
socketstream vis_v, vis_w;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
vis_v.open(vishost, visport);
vis_v.precision(8);
visualize(vis_v, pmesh, &x_gf, &v_gf, "Velocity", true);
// Make sure all ranks have sent their 'v' solution before initiating
// another set of GLVis connections (one from each rank):
MPI_Barrier(pmesh->GetComm());
vis_w.open(vishost, visport);
if (vis_w)
{
oper.GetElasticEnergyDensity(x_gf, w_gf);
vis_w.precision(8);
visualize(vis_w, pmesh, &x_gf, &w_gf, "Elastic energy density", true);
}
if (myid == 0)
{
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
real_t ee0 = oper.ElasticEnergy(x_gf);
real_t ke0 = oper.KineticEnergy(v_gf);
if (myid == 0)
{
cout << "initial elastic energy (EE) = " << ee0 << endl;
cout << "initial kinetic energy (KE) = " << ke0 << endl;
cout << "initial total energy (TE) = " << (ee0 + ke0) << endl;
}
real_t t = 0.0;
oper.SetTime(t);
ode_solver->Init(oper);
// 10. Perform time-integration
// (looping over the time iterations, ti, with a time-step dt).
bool last_step = false;
for (int ti = 1; !last_step; ti++)
{
real_t dt_real = min(dt, t_final - t);
ode_solver->Step(vx, t, dt_real);
last_step = (t >= t_final - 1e-8*dt);
if (last_step || (ti % vis_steps) == 0)
{
v_gf.SetFromTrueVector(); x_gf.SetFromTrueVector();
real_t ee = oper.ElasticEnergy(x_gf);
real_t ke = oper.KineticEnergy(v_gf);
if (myid == 0)
{
cout << "step " << ti << ", t = " << t << ", EE = " << ee
<< ", KE = " << ke << ", ΔTE = " << (ee+ke)-(ee0+ke0) << endl;
}
if (visualization)
{
visualize(vis_v, pmesh, &x_gf, &v_gf);
if (vis_w)
{
oper.GetElasticEnergyDensity(x_gf, w_gf);
visualize(vis_w, pmesh, &x_gf, &w_gf);
}
}
}
}
// 11. Save the displaced mesh, the velocity and elastic energy.
{
v_gf.SetFromTrueVector(); x_gf.SetFromTrueVector();
GridFunction *nodes = &x_gf;
int owns_nodes = 0;
pmesh->SwapNodes(nodes, owns_nodes);
ostringstream mesh_name, velo_name, ee_name;
mesh_name << "deformed." << setfill('0') << setw(6) << myid;
velo_name << "velocity." << setfill('0') << setw(6) << myid;
ee_name << "elastic_energy." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
pmesh->SwapNodes(nodes, owns_nodes);
ofstream velo_ofs(velo_name.str().c_str());
velo_ofs.precision(8);
v_gf.Save(velo_ofs);
ofstream ee_ofs(ee_name.str().c_str());
ee_ofs.precision(8);
oper.GetElasticEnergyDensity(x_gf, w_gf);
w_gf.Save(ee_ofs);
}
// 12. Free the used memory.
delete ode_solver;
delete pmesh;
return 0;
}
void visualize(ostream &os, ParMesh *mesh,
ParGridFunction *deformed_nodes,
ParGridFunction *field, const char *field_name, bool init_vis)
{
if (!os)
{
return;
}
GridFunction *nodes = deformed_nodes;
int owns_nodes = 0;
mesh->SwapNodes(nodes, owns_nodes);
os << "parallel " << mesh->GetNRanks()
<< " " << mesh->GetMyRank() << "\n";
os << "solution\n" << *mesh << *field;
mesh->SwapNodes(nodes, owns_nodes);
if (init_vis)
{
os << "window_size 800 800\n";
os << "window_title '" << field_name << "'\n";
if (mesh->SpaceDimension() == 2)
{
os << "view 0 0\n"; // view from top
os << "keys jl\n"; // turn off perspective and light
}
os << "keys cm\n"; // show colorbar and mesh
// update value-range; keep mesh-extents fixed
os << "autoscale value\n";
os << "pause\n";
}
os << flush;
}
ReducedSystemOperator::ReducedSystemOperator(
ParBilinearForm *M_, ParBilinearForm *S_, ParNonlinearForm *H_,
const Array<int> &ess_tdof_list_)
: Operator(M_->ParFESpace()->TrueVSize()), M(M_), S(S_), H(H_),
Jacobian(NULL), dt(0.0), v(NULL), x(NULL), w(height), z(height),
ess_tdof_list(ess_tdof_list_)
{ }
void ReducedSystemOperator::SetParameters(real_t dt_, const Vector *v_,
const Vector *x_)
{
dt = dt_; v = v_; x = x_;
}
void ReducedSystemOperator::Mult(const Vector &k, Vector &y) const
{
// compute: y = H(x + dt*(v + dt*k)) + M*k + S*(v + dt*k)
add(*v, dt, k, w);
add(*x, dt, w, z);
H->Mult(z, y);
M->TrueAddMult(k, y);
S->TrueAddMult(w, y);
y.SetSubVector(ess_tdof_list, 0.0);
}
Operator &ReducedSystemOperator::GetGradient(const Vector &k) const
{
delete Jacobian;
SparseMatrix *localJ = Add(1.0, M->SpMat(), dt, S->SpMat());
add(*v, dt, k, w);
add(*x, dt, w, z);
localJ->Add(dt*dt, H->GetLocalGradient(z));
Jacobian = M->ParallelAssemble(localJ);
delete localJ;
HypreParMatrix *Je = Jacobian->EliminateRowsCols(ess_tdof_list);
delete Je;
return *Jacobian;
}
ReducedSystemOperator::~ReducedSystemOperator()
{
delete Jacobian;
}
HyperelasticOperator::HyperelasticOperator(ParFiniteElementSpace &f,
Array<int> &ess_bdr, real_t visc,
real_t mu, real_t K)
: TimeDependentOperator(2*f.TrueVSize(), (real_t) 0.0), fespace(f),
M(&fespace), S(&fespace), H(&fespace),
viscosity(visc), M_solver(f.GetComm()), newton_solver(f.GetComm()),
z(height/2)
{
#if defined(MFEM_USE_DOUBLE)
const real_t rel_tol = 1e-8;
const real_t newton_abs_tol = 0.0;
#elif defined(MFEM_USE_SINGLE)
const real_t rel_tol = 1e-3;
const real_t newton_abs_tol = 1e-4;
#else
#error "Only single and double precision are supported!"
const real_t rel_tol = real_t(1);
const real_t newton_abs_tol = real_t(0);
#endif
const int skip_zero_entries = 0;
const real_t ref_density = 1.0; // density in the reference configuration
ConstantCoefficient rho0(ref_density);
M.AddDomainIntegrator(new VectorMassIntegrator(rho0));
M.Assemble(skip_zero_entries);
M.Finalize(skip_zero_entries);
Mmat = M.ParallelAssemble();
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
HypreParMatrix *Me = Mmat->EliminateRowsCols(ess_tdof_list);
delete Me;
M_solver.iterative_mode = false;
M_solver.SetRelTol(rel_tol);
M_solver.SetAbsTol(0.0);
M_solver.SetMaxIter(30);
M_solver.SetPrintLevel(0);
M_prec.SetType(HypreSmoother::Jacobi);
M_solver.SetPreconditioner(M_prec);
M_solver.SetOperator(*Mmat);
model = new NeoHookeanModel(mu, K);
H.AddDomainIntegrator(new HyperelasticNLFIntegrator(model));
H.SetEssentialTrueDofs(ess_tdof_list);
ConstantCoefficient visc_coeff(viscosity);
S.AddDomainIntegrator(new VectorDiffusionIntegrator(visc_coeff));
S.Assemble(skip_zero_entries);
S.Finalize(skip_zero_entries);
reduced_oper = new ReducedSystemOperator(&M, &S, &H, ess_tdof_list);
HypreSmoother *J_hypreSmoother = new HypreSmoother;
J_hypreSmoother->SetType(HypreSmoother::l1Jacobi);
J_hypreSmoother->SetPositiveDiagonal(true);
J_prec = J_hypreSmoother;
MINRESSolver *J_minres = new MINRESSolver(f.GetComm());
J_minres->SetRelTol(rel_tol);
J_minres->SetAbsTol(0.0);
J_minres->SetMaxIter(300);
J_minres->SetPrintLevel(-1);
J_minres->SetPreconditioner(*J_prec);
J_solver = J_minres;
newton_solver.iterative_mode = false;
newton_solver.SetSolver(*J_solver);
newton_solver.SetOperator(*reduced_oper);
newton_solver.SetPrintLevel(1); // print Newton iterations
newton_solver.SetRelTol(rel_tol);
newton_solver.SetAbsTol(newton_abs_tol);
newton_solver.SetAdaptiveLinRtol(2, 0.5, 0.9);
newton_solver.SetMaxIter(10);
}
void HyperelasticOperator::Mult(const Vector &vx, Vector &dvx_dt) const
{
// Create views to the sub-vectors v, x of vx, and dv_dt, dx_dt of dvx_dt
int sc = height/2;
Vector v(vx.GetData() + 0, sc);
Vector x(vx.GetData() + sc, sc);
Vector dv_dt(dvx_dt.GetData() + 0, sc);
Vector dx_dt(dvx_dt.GetData() + sc, sc);
H.Mult(x, z);
if (viscosity != 0.0)
{
S.TrueAddMult(v, z);
z.SetSubVector(ess_tdof_list, 0.0);
}
z.Neg(); // z = -z
M_solver.Mult(z, dv_dt);
dx_dt = v;
}
void HyperelasticOperator::ImplicitSolve(const real_t dt,
const Vector &vx, Vector &dvx_dt)
{
int sc = height/2;
Vector v(vx.GetData() + 0, sc);
Vector x(vx.GetData() + sc, sc);
Vector dv_dt(dvx_dt.GetData() + 0, sc);
Vector dx_dt(dvx_dt.GetData() + sc, sc);
// By eliminating kx from the coupled system:
// kv = -M^{-1}*[H(x + dt*kx) + S*(v + dt*kv)]
// kx = v + dt*kv
// we reduce it to a nonlinear equation for kv, represented by the
// reduced_oper. This equation is solved with the newton_solver
// object (using J_solver and J_prec internally).
reduced_oper->SetParameters(dt, &v, &x);
Vector zero; // empty vector is interpreted as zero r.h.s. by NewtonSolver
newton_solver.Mult(zero, dv_dt);
MFEM_VERIFY(newton_solver.GetConverged(), "Newton solver did not converge.");
add(v, dt, dv_dt, dx_dt);
}
real_t HyperelasticOperator::ElasticEnergy(const ParGridFunction &x) const
{
return H.GetEnergy(x);
}
real_t HyperelasticOperator::KineticEnergy(const ParGridFunction &v) const
{
real_t energy = 0.5*M.ParInnerProduct(v, v);
return energy;
}
void HyperelasticOperator::GetElasticEnergyDensity(
const ParGridFunction &x, ParGridFunction &w) const
{
ElasticEnergyCoefficient w_coeff(*model, x);
w.ProjectCoefficient(w_coeff);
}
HyperelasticOperator::~HyperelasticOperator()
{
delete J_solver;
delete J_prec;
delete reduced_oper;
delete model;
delete Mmat;
}
real_t ElasticEnergyCoefficient::Eval(ElementTransformation &T,
const IntegrationPoint &ip)
{
model.SetTransformation(T);
x.GetVectorGradient(T, J);
// return model.EvalW(J); // in reference configuration
return model.EvalW(J)/J.Det(); // in deformed configuration
}
void InitialDeformation(const Vector &x, Vector &y)
{
// set the initial configuration to be the same as the reference, stress
// free, configuration
y = x;
}
void InitialVelocity(const Vector &x, Vector &v)
{
const int dim = x.Size();
const real_t s = 0.1/64.;
v = 0.0;
v(dim-1) = s*x(0)*x(0)*(8.0-x(0));
v(0) = -s*x(0)*x(0);
}
|